- 06 12月, 2022 2 次提交
-
-
由 Josef Bacik 提交于
This inline helper calls btrfs_fs_compat_ro(), which is defined in another header. To avoid weird header dependency problems move this helper into disk-io.c with the rest of the global root helpers. Reviewed-by: NQu Wenruo <wqu@suse.com> Reviewed-by: NJohannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: NJosef Bacik <josef@toxicpanda.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 Peng Hao 提交于
Since leaf is already NULL, and no other branch will go to fail_unlock, the fail_unlock label is useless and can be removed Signed-off-by: NPeng Hao <flyingpeng@tencent.com> Reviewed-by: NDavid Sterba <dsterba@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
- 07 11月, 2022 1 次提交
-
-
由 Johannes Thumshirn 提交于
When performing seeding on a zoned filesystem it is necessary to initialize each zoned device's btrfs_zoned_device_info structure, otherwise mounting the filesystem will cause a NULL pointer dereference. This was uncovered by fstests' testcase btrfs/163. CC: stable@vger.kernel.org # 5.15+ Signed-off-by: NJohannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
- 24 10月, 2022 1 次提交
-
-
由 Qu Wenruo 提交于
Previous commit a05d3c91 ("btrfs: check superblock to ensure the fs was not modified at thaw time") only checks the content of the super block, but it doesn't really check if the on-disk super block has a matching checksum. This patch will add the checksum verification to thaw time superblock verification. This involves the following extra changes: - Export btrfs_check_super_csum() As we need to call it in super.c. - Change the argument list of btrfs_check_super_csum() Instead of passing a char *, directly pass struct btrfs_super_block * pointer. - Verify that our checksum type didn't change before checking the checksum value, like it's done at mount time Fixes: a05d3c91 ("btrfs: check superblock to ensure the fs was not modified at thaw time") Reviewed-by: NJohannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: NQu Wenruo <wqu@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
- 26 9月, 2022 15 次提交
-
-
由 Qu Wenruo 提交于
[BUG] When one user did a wrong attempt to clear block group tree, which can not be done through mount option, by using "-o clear_cache,space_cache=v2", it will cause the following error on a fs with block-group-tree feature: BTRFS info (device dm-1): force clearing of disk cache BTRFS info (device dm-1): using free space tree BTRFS info (device dm-1): clearing free space tree BTRFS info (device dm-1): clearing compat-ro feature flag for FREE_SPACE_TREE (0x1) BTRFS info (device dm-1): clearing compat-ro feature flag for FREE_SPACE_TREE_VALID (0x2) BTRFS error (device dm-1): block-group-tree feature requires fres-space-tree and no-holes BTRFS error (device dm-1): super block corruption detected before writing it to disk BTRFS: error (device dm-1) in write_all_supers:4318: errno=-117 Filesystem corrupted (unexpected superblock corruption detected) BTRFS warning (device dm-1: state E): Skipping commit of aborted transaction. [CAUSE] Although the dependency for block-group-tree feature is just an artificial one (to reduce test matrix), we put the dependency check into btrfs_validate_super(). This is too strict, and during space cache clearing, we will have a window where free space tree is cleared, and we need to commit the super block. In that window, we had block group tree without v2 cache, and triggered the artificial dependency check. This is not necessary at all, especially for such a soft dependency. [FIX] Introduce a new helper, btrfs_check_features(), to do all the runtime limitation checks, including: - Unsupported incompat flags check - Unsupported compat RO flags check - Setting missing incompat flags - Artificial feature dependency checks Currently only block group tree will rely on this. - Subpage runtime check for v1 cache With this helper, we can move quite some checks from open_ctree()/btrfs_remount() into it, and just call it after btrfs_parse_options(). Now "-o clear_cache,space_cache=v2" will not trigger the above error anymore. Signed-off-by: NQu Wenruo <wqu@suse.com> Reviewed-by: NDavid Sterba <dsterba@suse.com> [ edit messages ] Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 Josef Bacik 提交于
This exists to insert the btree_inode in the super blocks inode hash table. Since it's only used for the btree inode move the code to where we use it in disk-io.c and remove the helper. Reviewed-by: NJohannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: NAnand Jain <anand.jain@oracle.com> Signed-off-by: NJosef Bacik <josef@toxicpanda.com> Reviewed-by: NDavid Sterba <dsterba@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 Josef Bacik 提交于
We only use this for normal inodes, so don't set it if we're not a normal inode. Signed-off-by: NJosef Bacik <josef@toxicpanda.com> Reviewed-by: NDavid Sterba <dsterba@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 Josef Bacik 提交于
Since commit 78361f64ff42 ("btrfs: remove unnecessary EXTENT_UPTODATE state in buffered I/O path") we no longer check ->track_uptodate, remove it. Signed-off-by: NJosef Bacik <josef@toxicpanda.com> Reviewed-by: NDavid Sterba <dsterba@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com> -
由 Josef Bacik 提交于
We have two variants of lock/unlock extent, one set that takes a cached state, another that does not. This is slightly annoying, and generally speaking there are only a few places where we don't have a cached state. Simplify this by making lock_extent/unlock_extent the only variant and make it take a cached state, then convert all the callers appropriately. Signed-off-by: NJosef Bacik <josef@toxicpanda.com> Reviewed-by: NDavid Sterba <dsterba@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 Qu Wenruo 提交于
Btrfs qgroup has a long history of bringing performance penalty in btrfs_commit_transaction(). Although we tried our best to migrate such impact, there is still an unsolved call site, btrfs_drop_snapshot(). This function will find the highest shared tree block and modify its extent ownership to do a subvolume/snapshot dropping. Such change will affect the whole subtree, and cause tons of qgroup dirty extents and stall btrfs_commit_transaction(). To avoid such problem, here we introduce a new sysfs interface, /sys/fs/btrfs/<uuid>/qgroups/drop_subptree_threshold, to determine at whether and at which level we should skip qgroup accounting for subtree dropping. The default value is BTRFS_MAX_LEVEL, thus every subtree drop will go through qgroup accounting, to ensure qgroup numbers are kept as consistent as possible. While for performance sensitive cases, add a way to change the values to more reasonable values like 3, to make any subtree, which is at or higher than level 3, to mark qgroup inconsistent and skip the accounting. The cost is obvious, the qgroup number is no longer consistent, but at least performance is more reasonable, and users have the control. Signed-off-by: NQu Wenruo <wqu@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 Qu Wenruo 提交于
The problem of long mount time caused by block group item search is already known for some time, and the solution of block group tree has been proposed. There is really no need to bound this feature into extent tree v2, just introduce compat RO flag, BLOCK_GROUP_TREE, to correctly solve the problem. All the code handling block group root is already in the upstream kernel, thus this patch really only needs to introduce the new compat RO flag. This patch introduces one extra artificial limitation on block group tree feature, that free space cache v2 and no-holes feature must be enabled to use this new compat RO feature. This artificial requirement is mostly to reduce the test combinations, and can be a guideline for future features, to mostly rely on the latest default features. Signed-off-by: NQu Wenruo <wqu@suse.com> Reviewed-by: NDavid Sterba <dsterba@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 Qu Wenruo 提交于
The extent tree v2 needs a new root for storing all block group items, the whole feature hasn't been finished yet so we can afford to do some changes. My initial proposal years ago just added a new tree rootid, and load it from tree root, just like what we did for quota/free space tree/uuid/extent roots. But the extent tree v2 patches introduced a completely new way to store block group tree root into super block which is arguably wasteful. Currently there are only 3 trees stored in super blocks, and they all have their valid reasons: - Chunk root Needed for bootstrap. - Tree root Really the entry point for all trees. - Log root This is special as log root has to be updated out of existing transaction mechanism. There is not even any reason to put block group root into super blocks, the block group tree is updated at the same time as the old extent tree, no need for extra bootstrap/out-of-transaction update. So just move block group root from super block into tree root. Signed-off-by: NQu Wenruo <wqu@suse.com> Reviewed-by: NDavid Sterba <dsterba@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 Qu Wenruo 提交于
[BACKGROUND] There is an incident report that, one user hibernated the system, with one btrfs on removable device still mounted. Then by some incident, the btrfs got mounted and modified by another system/OS, then back to the hibernated system. After resuming from the hibernation, new write happened into the victim btrfs. Now the fs is completely broken, since the underlying btrfs is no longer the same one before the hibernation, and the user lost their data due to various transid mismatch. [REPRODUCER] We can emulate the situation using the following small script: truncate -s 1G $dev mkfs.btrfs -f $dev mount $dev $mnt fsstress -w -d $mnt -n 500 sync xfs_freeze -f $mnt cp $dev $dev.backup # There is no way to mount the same cloned fs on the same system, # as the conflicting fsid will be rejected by btrfs. # Thus here we have to wipe the fs using a different btrfs. mkfs.btrfs -f $dev.backup dd if=$dev.backup of=$dev bs=1M xfs_freeze -u $mnt fsstress -w -d $mnt -n 20 umount $mnt btrfs check $dev The final fsck will fail due to some tree blocks has incorrect fsid. This is enough to emulate the problem hit by the unfortunate user. [ENHANCEMENT] Although such case should not be that common, it can still happen from time to time. From the view of btrfs, we can detect any unexpected super block change, and if there is any unexpected change, we just mark the fs read-only, and thaw the fs. By this we can limit the damage to minimal, and I hope no one would lose their data by this anymore. Suggested-by: NGoffredo Baroncelli <kreijack@libero.it> Link: https://lore.kernel.org/linux-btrfs/83bf3b4b-7f4c-387a-b286-9251e3991e34@bluemole.com/Reviewed-by: NAnand Jain <anand.jain@oracle.com> Signed-off-by: NQu Wenruo <wqu@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 Christoph Hellwig 提交于
Currently btrfs_bio end I/O handling is a bit of a mess. The bi_end_io handler and bi_private pointer of the embedded struct bio are both used to handle the completion of the high-level btrfs_bio and for the I/O completion for the low-level device that the embedded bio ends up being sent to. To support this bi_end_io and bi_private are saved into the btrfs_io_context structure and then restored after the bio sent to the underlying device has completed the actual I/O. Untangle this by adding an end I/O handler and private data to struct btrfs_bio for the high-level btrfs_bio based completions, and leave the actual bio bi_end_io handler and bi_private pointer entirely to the low-level device I/O. Reviewed-by: NNikolay Borisov <nborisov@suse.com> Reviewed-by: NJohannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: NAnand Jain <anand.jain@oracle.com> Tested-by: NNikolay Borisov <nborisov@suse.com> Tested-by: NJohannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 Ioannis Angelakopoulos 提交于
This wait event is very similar to the pending ordered wait event in the sense that it occurs in a different context than the condition signaling for the event. The signaling occurs in btrfs_remove_ordered_extent() while the wait event is implemented in btrfs_start_ordered_extent() in fs/btrfs/ordered-data.c However, in this case a thread must not acquire the lockdep map for the ordered extents wait event when the ordered extent is related to a free space inode. That is because lockdep creates dependencies between locks acquired both in execution paths related to normal inodes and paths related to free space inodes, thus leading to false positives. Reviewed-by: NJosef Bacik <josef@toxicpanda.com> Signed-off-by: NIoannis Angelakopoulos <iangelak@fb.com> Reviewed-by: NDavid Sterba <dsterba@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 Ioannis Angelakopoulos 提交于
In contrast to the num_writers and num_extwriters wait events, the condition for the pending ordered wait event is signaled in a different context from the wait event itself. The condition signaling occurs in btrfs_remove_ordered_extent() in fs/btrfs/ordered-data.c while the wait event is implemented in btrfs_commit_transaction() in fs/btrfs/transaction.c Thus the thread signaling the condition has to acquire the lockdep map as a reader at the start of btrfs_remove_ordered_extent() and release it after it has signaled the condition. In this case some dependencies might be left out due to the placement of the annotation, but it is better than no annotation at all. Reviewed-by: NJosef Bacik <josef@toxicpanda.com> Signed-off-by: NIoannis Angelakopoulos <iangelak@fb.com> Reviewed-by: NDavid Sterba <dsterba@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 Ioannis Angelakopoulos 提交于
Add lockdep annotations for the transaction states that have wait events; 1) TRANS_STATE_COMMIT_START 2) TRANS_STATE_UNBLOCKED 3) TRANS_STATE_SUPER_COMMITTED 4) TRANS_STATE_COMPLETED The new macros introduced here to annotate the transaction states wait events have the same effect as the generic lockdep annotation macros. With the exception of the lockdep annotation for TRANS_STATE_COMMIT_START the transaction thread has to acquire the lockdep maps for the transaction states as reader after the lockdep map for num_writers is released so that lockdep does not complain. Reviewed-by: NJosef Bacik <josef@toxicpanda.com> Signed-off-by: NIoannis Angelakopoulos <iangelak@fb.com> Reviewed-by: NDavid Sterba <dsterba@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 Ioannis Angelakopoulos 提交于
Similarly to the num_writers wait event in fs/btrfs/transaction.c add a lockdep annotation for the num_extwriters wait event. Reviewed-by: NJosef Bacik <josef@toxicpanda.com> Signed-off-by: NIoannis Angelakopoulos <iangelak@fb.com> Reviewed-by: NDavid Sterba <dsterba@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 Ioannis Angelakopoulos 提交于
Annotate the num_writers wait event in fs/btrfs/transaction.c with lockdep in order to catch deadlocks involving this wait event. Reviewed-by: NJosef Bacik <josef@toxicpanda.com> Signed-off-by: NIoannis Angelakopoulos <iangelak@fb.com> Reviewed-by: NDavid Sterba <dsterba@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
- 13 9月, 2022 2 次提交
-
-
由 Filipe Manana 提交于
Often when running generic/562 from fstests we can hang during unmount, resulting in a trace like this: Sep 07 11:52:00 debian9 unknown: run fstests generic/562 at 2022-09-07 11:52:00 Sep 07 11:55:32 debian9 kernel: INFO: task umount:49438 blocked for more than 120 seconds. Sep 07 11:55:32 debian9 kernel: Not tainted 6.0.0-rc2-btrfs-next-122 #1 Sep 07 11:55:32 debian9 kernel: "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. Sep 07 11:55:32 debian9 kernel: task:umount state:D stack: 0 pid:49438 ppid: 25683 flags:0x00004000 Sep 07 11:55:32 debian9 kernel: Call Trace: Sep 07 11:55:32 debian9 kernel: <TASK> Sep 07 11:55:32 debian9 kernel: __schedule+0x3c8/0xec0 Sep 07 11:55:32 debian9 kernel: ? rcu_read_lock_sched_held+0x12/0x70 Sep 07 11:55:32 debian9 kernel: schedule+0x5d/0xf0 Sep 07 11:55:32 debian9 kernel: schedule_timeout+0xf1/0x130 Sep 07 11:55:32 debian9 kernel: ? lock_release+0x224/0x4a0 Sep 07 11:55:32 debian9 kernel: ? lock_acquired+0x1a0/0x420 Sep 07 11:55:32 debian9 kernel: ? trace_hardirqs_on+0x2c/0xd0 Sep 07 11:55:32 debian9 kernel: __wait_for_common+0xac/0x200 Sep 07 11:55:32 debian9 kernel: ? usleep_range_state+0xb0/0xb0 Sep 07 11:55:32 debian9 kernel: __flush_work+0x26d/0x530 Sep 07 11:55:32 debian9 kernel: ? flush_workqueue_prep_pwqs+0x140/0x140 Sep 07 11:55:32 debian9 kernel: ? trace_clock_local+0xc/0x30 Sep 07 11:55:32 debian9 kernel: __cancel_work_timer+0x11f/0x1b0 Sep 07 11:55:32 debian9 kernel: ? close_ctree+0x12b/0x5b3 [btrfs] Sep 07 11:55:32 debian9 kernel: ? __trace_bputs+0x10b/0x170 Sep 07 11:55:32 debian9 kernel: close_ctree+0x152/0x5b3 [btrfs] Sep 07 11:55:32 debian9 kernel: ? evict_inodes+0x166/0x1c0 Sep 07 11:55:32 debian9 kernel: generic_shutdown_super+0x71/0x120 Sep 07 11:55:32 debian9 kernel: kill_anon_super+0x14/0x30 Sep 07 11:55:32 debian9 kernel: btrfs_kill_super+0x12/0x20 [btrfs] Sep 07 11:55:32 debian9 kernel: deactivate_locked_super+0x2e/0xa0 Sep 07 11:55:32 debian9 kernel: cleanup_mnt+0x100/0x160 Sep 07 11:55:32 debian9 kernel: task_work_run+0x59/0xa0 Sep 07 11:55:32 debian9 kernel: exit_to_user_mode_prepare+0x1a6/0x1b0 Sep 07 11:55:32 debian9 kernel: syscall_exit_to_user_mode+0x16/0x40 Sep 07 11:55:32 debian9 kernel: do_syscall_64+0x48/0x90 Sep 07 11:55:32 debian9 kernel: entry_SYSCALL_64_after_hwframe+0x63/0xcd Sep 07 11:55:32 debian9 kernel: RIP: 0033:0x7fcde59a57a7 Sep 07 11:55:32 debian9 kernel: RSP: 002b:00007ffe914217c8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 Sep 07 11:55:32 debian9 kernel: RAX: 0000000000000000 RBX: 00007fcde5ae8264 RCX: 00007fcde59a57a7 Sep 07 11:55:32 debian9 kernel: RDX: 0000000000000000 RSI: 0000000000000000 RDI: 000055b57556cdd0 Sep 07 11:55:32 debian9 kernel: RBP: 000055b57556cba0 R08: 0000000000000000 R09: 00007ffe91420570 Sep 07 11:55:32 debian9 kernel: R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 Sep 07 11:55:32 debian9 kernel: R13: 000055b57556cdd0 R14: 000055b57556ccb8 R15: 0000000000000000 Sep 07 11:55:32 debian9 kernel: </TASK> What happens is the following: 1) The cleaner kthread tries to start a transaction to delete an unused block group, but the metadata reservation can not be satisfied right away, so a reservation ticket is created and it starts the async metadata reclaim task (fs_info->async_reclaim_work); 2) Writeback for all the filler inodes with an i_size of 2K starts (generic/562 creates a lot of 2K files with the goal of filling metadata space). We try to create an inline extent for them, but we fail when trying to insert the inline extent with -ENOSPC (at cow_file_range_inline()) - since this is not critical, we fallback to non-inline mode (back to cow_file_range()), reserve extents, create extent maps and create the ordered extents; 3) An unmount starts, enters close_ctree(); 4) The async reclaim task is flushing stuff, entering the flush states one by one, until it reaches RUN_DELAYED_IPUTS. There it runs all current delayed iputs. After running the delayed iputs and before calling btrfs_wait_on_delayed_iputs(), one or more ordered extents complete, and btrfs_add_delayed_iput() is called for each one through btrfs_finish_ordered_io() -> btrfs_put_ordered_extent(). This results in bumping fs_info->nr_delayed_iputs from 0 to some positive value. So the async reclaim task blocks at btrfs_wait_on_delayed_iputs() waiting for fs_info->nr_delayed_iputs to become 0; 5) The current transaction is committed by the transaction kthread, we then start unpinning extents and end up calling btrfs_try_granting_tickets() through unpin_extent_range(), since we released some space. This results in satisfying the ticket created by the cleaner kthread at step 1, waking up the cleaner kthread; 6) At close_ctree() we ask the cleaner kthread to park; 7) The cleaner kthread starts the transaction, deletes the unused block group, and then calls kthread_should_park(), which returns true, so it parks. And at this point we have the delayed iputs added by the completion of the ordered extents still pending; 8) Then later at close_ctree(), when we call: cancel_work_sync(&fs_info->async_reclaim_work); We hang forever, since the cleaner was parked and no one else can run delayed iputs after that, while the reclaim task is waiting for the remaining delayed iputs to be completed. Fix this by waiting for all ordered extents to complete and running the delayed iputs before attempting to stop the async reclaim tasks. Note that we can not wait for ordered extents with btrfs_wait_ordered_roots() (or other similar functions) because that waits for the BTRFS_ORDERED_COMPLETE flag to be set on an ordered extent, but the delayed iput is added after that, when doing the final btrfs_put_ordered_extent(). So instead wait for the work queues used for executing ordered extent completion to be empty, which works because we do the final put on an ordered extent at btrfs_finish_ordered_io() (while we are in the unmount context). Fixes: d6fd0ae2 ("Btrfs: fix missing delayed iputs on unmount") CC: stable@vger.kernel.org # 5.15+ Reviewed-by: NJosef Bacik <josef@toxicpanda.com> Signed-off-by: NFilipe Manana <fdmanana@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com> -
由 Filipe Manana 提交于
During early unmount, at close_ctree(), we try to stop the block group reclaim task with cancel_work_sync(), but that may hang if the block group reclaim task is currently at btrfs_relocate_block_group() waiting for the flag BTRFS_FS_UNFINISHED_DROPS to be cleared from fs_info->flags. During unmount we only clear that flag later, after trying to stop the block group reclaim task. Fix that by clearing BTRFS_FS_UNFINISHED_DROPS before trying to stop the block group reclaim task and after setting BTRFS_FS_CLOSING_START, so that if the reclaim task is waiting on that bit, it will stop immediately after being woken, because it sees the filesystem is closing (with a call to btrfs_fs_closing()), and then returns immediately with -EINTR. Fixes: 31e70e52 ("btrfs: fix hang during unmount when block group reclaim task is running") CC: stable@vger.kernel.org # 5.15+ Reviewed-by: NJosef Bacik <josef@toxicpanda.com> Signed-off-by: NFilipe Manana <fdmanana@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
- 05 9月, 2022 1 次提交
-
-
由 Naohiro Aota 提交于
The commit 2ce543f4 ("btrfs: zoned: wait until zone is finished when allocation didn't progress") implemented a zone finish waiting mechanism to the write path of zoned mode. However, using wait_var_event()/wake_up_all() on fs_info->zone_finish_wait is wrong and wait_var_event() just hangs because no one ever wakes it up once it goes into sleep. Instead, we can simply use wait_on_bit_io() and clear_and_wake_up_bit() on fs_info->flags with a proper barrier installed. Fixes: 2ce543f4 ("btrfs: zoned: wait until zone is finished when allocation didn't progress") CC: stable@vger.kernel.org # 5.16+ Signed-off-by: NNaohiro Aota <naohiro.aota@wdc.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
- 17 8月, 2022 1 次提交
-
-
由 Josef Bacik 提交于
These definitions exist in disk-io.c, which is not related to the locking. Move this over to locking.h/c where it makes more sense. Reviewed-by: NJohannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: NJosef Bacik <josef@toxicpanda.com> Reviewed-by: NDavid Sterba <dsterba@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
- 03 8月, 2022 2 次提交
-
-
由 Matthew Wilcox (Oracle) 提交于
Convert all callers to pass a folio. Most have the folio already available. Switch all users from aops->migratepage to aops->migrate_folio. Also turn the documentation into kerneldoc. Signed-off-by: NMatthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: NChristoph Hellwig <hch@lst.de> Acked-by: NDavid Sterba <dsterba@suse.com>
-
由 Matthew Wilcox (Oracle) 提交于
Use a folio throughout this function. migrate_page() will be converted later. Signed-off-by: NMatthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: NChristoph Hellwig <hch@lst.de> Acked-by: NDavid Sterba <dsterba@suse.com>
-
- 25 7月, 2022 15 次提交
-
-
由 Naohiro Aota 提交于
When the allocated position doesn't progress, we cannot submit IOs to finish a block group, but there should be ongoing IOs that will finish a block group. So, in that case, we wait for a zone to be finished and retry the allocation after that. Introduce a new flag BTRFS_FS_NEED_ZONE_FINISH for fs_info->flags to indicate we need a zone finish to have proceeded. The flag is set when the allocator detected it cannot activate a new block group. And, it is cleared once a zone is finished. CC: stable@vger.kernel.org # 5.16+ Fixes: afba2bc0 ("btrfs: zoned: implement active zone tracking") Signed-off-by: NNaohiro Aota <naohiro.aota@wdc.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 Naohiro Aota 提交于
On zoned filesystem, data write out is limited by max_zone_append_size, and a large ordered extent is split according the size of a bio. OTOH, the number of extents to be written is calculated using BTRFS_MAX_EXTENT_SIZE, and that estimated number is used to reserve the metadata bytes to update and/or create the metadata items. The metadata reservation is done at e.g, btrfs_buffered_write() and then released according to the estimation changes. Thus, if the number of extent increases massively, the reserved metadata can run out. The increase of the number of extents easily occurs on zoned filesystem if BTRFS_MAX_EXTENT_SIZE > max_zone_append_size. And, it causes the following warning on a small RAM environment with disabling metadata over-commit (in the following patch). [75721.498492] ------------[ cut here ]------------ [75721.505624] BTRFS: block rsv 1 returned -28 [75721.512230] WARNING: CPU: 24 PID: 2327559 at fs/btrfs/block-rsv.c:537 btrfs_use_block_rsv+0x560/0x760 [btrfs] [75721.581854] CPU: 24 PID: 2327559 Comm: kworker/u64:10 Kdump: loaded Tainted: G W 5.18.0-rc2-BTRFS-ZNS+ #109 [75721.597200] Hardware name: Supermicro Super Server/H12SSL-NT, BIOS 2.0 02/22/2021 [75721.607310] Workqueue: btrfs-endio-write btrfs_work_helper [btrfs] [75721.616209] RIP: 0010:btrfs_use_block_rsv+0x560/0x760 [btrfs] [75721.646649] RSP: 0018:ffffc9000fbdf3e0 EFLAGS: 00010286 [75721.654126] RAX: 0000000000000000 RBX: 0000000000004000 RCX: 0000000000000000 [75721.663524] RDX: 0000000000000004 RSI: 0000000000000008 RDI: fffff52001f7be6e [75721.672921] RBP: ffffc9000fbdf420 R08: 0000000000000001 R09: ffff889f8d1fc6c7 [75721.682493] R10: ffffed13f1a3f8d8 R11: 0000000000000001 R12: ffff88980a3c0e28 [75721.692284] R13: ffff889b66590000 R14: ffff88980a3c0e40 R15: ffff88980a3c0e8a [75721.701878] FS: 0000000000000000(0000) GS:ffff889f8d000000(0000) knlGS:0000000000000000 [75721.712601] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [75721.720726] CR2: 000055d12e05c018 CR3: 0000800193594000 CR4: 0000000000350ee0 [75721.730499] Call Trace: [75721.735166] <TASK> [75721.739886] btrfs_alloc_tree_block+0x1e1/0x1100 [btrfs] [75721.747545] ? btrfs_alloc_logged_file_extent+0x550/0x550 [btrfs] [75721.756145] ? btrfs_get_32+0xea/0x2d0 [btrfs] [75721.762852] ? btrfs_get_32+0xea/0x2d0 [btrfs] [75721.769520] ? push_leaf_left+0x420/0x620 [btrfs] [75721.776431] ? memcpy+0x4e/0x60 [75721.781931] split_leaf+0x433/0x12d0 [btrfs] [75721.788392] ? btrfs_get_token_32+0x580/0x580 [btrfs] [75721.795636] ? push_for_double_split.isra.0+0x420/0x420 [btrfs] [75721.803759] ? leaf_space_used+0x15d/0x1a0 [btrfs] [75721.811156] btrfs_search_slot+0x1bc3/0x2790 [btrfs] [75721.818300] ? lock_downgrade+0x7c0/0x7c0 [75721.824411] ? free_extent_buffer.part.0+0x107/0x200 [btrfs] [75721.832456] ? split_leaf+0x12d0/0x12d0 [btrfs] [75721.839149] ? free_extent_buffer.part.0+0x14f/0x200 [btrfs] [75721.846945] ? free_extent_buffer+0x13/0x20 [btrfs] [75721.853960] ? btrfs_release_path+0x4b/0x190 [btrfs] [75721.861429] btrfs_csum_file_blocks+0x85c/0x1500 [btrfs] [75721.869313] ? rcu_read_lock_sched_held+0x16/0x80 [75721.876085] ? lock_release+0x552/0xf80 [75721.881957] ? btrfs_del_csums+0x8c0/0x8c0 [btrfs] [75721.888886] ? __kasan_check_write+0x14/0x20 [75721.895152] ? do_raw_read_unlock+0x44/0x80 [75721.901323] ? _raw_write_lock_irq+0x60/0x80 [75721.907983] ? btrfs_global_root+0xb9/0xe0 [btrfs] [75721.915166] ? btrfs_csum_root+0x12b/0x180 [btrfs] [75721.921918] ? btrfs_get_global_root+0x820/0x820 [btrfs] [75721.929166] ? _raw_write_unlock+0x23/0x40 [75721.935116] ? unpin_extent_cache+0x1e3/0x390 [btrfs] [75721.942041] btrfs_finish_ordered_io.isra.0+0xa0c/0x1dc0 [btrfs] [75721.949906] ? try_to_wake_up+0x30/0x14a0 [75721.955700] ? btrfs_unlink_subvol+0xda0/0xda0 [btrfs] [75721.962661] ? rcu_read_lock_sched_held+0x16/0x80 [75721.969111] ? lock_acquire+0x41b/0x4c0 [75721.974982] finish_ordered_fn+0x15/0x20 [btrfs] [75721.981639] btrfs_work_helper+0x1af/0xa80 [btrfs] [75721.988184] ? _raw_spin_unlock_irq+0x28/0x50 [75721.994643] process_one_work+0x815/0x1460 [75722.000444] ? pwq_dec_nr_in_flight+0x250/0x250 [75722.006643] ? do_raw_spin_trylock+0xbb/0x190 [75722.013086] worker_thread+0x59a/0xeb0 [75722.018511] kthread+0x2ac/0x360 [75722.023428] ? process_one_work+0x1460/0x1460 [75722.029431] ? kthread_complete_and_exit+0x30/0x30 [75722.036044] ret_from_fork+0x22/0x30 [75722.041255] </TASK> [75722.045047] irq event stamp: 0 [75722.049703] hardirqs last enabled at (0): [<0000000000000000>] 0x0 [75722.057610] hardirqs last disabled at (0): [<ffffffff8118a94a>] copy_process+0x1c1a/0x66b0 [75722.067533] softirqs last enabled at (0): [<ffffffff8118a989>] copy_process+0x1c59/0x66b0 [75722.077423] softirqs last disabled at (0): [<0000000000000000>] 0x0 [75722.085335] ---[ end trace 0000000000000000 ]--- To fix the estimation, we need to introduce fs_info->max_extent_size to replace BTRFS_MAX_EXTENT_SIZE, which allow setting the different size for regular vs zoned filesystem. Set fs_info->max_extent_size to BTRFS_MAX_EXTENT_SIZE by default. On zoned filesystem, it is set to fs_info->max_zone_append_size. CC: stable@vger.kernel.org # 5.12+ Fixes: d8e3fb10 ("btrfs: zoned: use ZONE_APPEND write for zoned mode") Reviewed-by: NJohannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: NNaohiro Aota <naohiro.aota@wdc.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 Filipe Manana 提交于
We currently don't use the location key of the btree inode, its content is set to zeroes, as it's a special inode that is not persisted (it has no inode item stored in any btree). At btrfs_ino(), an inline function used extensively in btrfs, we have this special check if the given inode's location objectid is 0, and if it is, we return the value stored in the VFS' inode i_ino field instead (which is BTRFS_BTREE_INODE_OBJECTID for the btree inode). To reduce the code at btrfs_ino(), we can simply set the objectid of the btree inode to the value BTRFS_BTREE_INODE_OBJECTID. This eliminates the need to check for the special case of the objectid being zero, with the side effect of reducing the overall code size and having less code to execute, as btrfs_ino() is an inline function. Before: $ size fs/btrfs/btrfs.ko text data bss dec hex filename 1620502 189240 29032 1838774 1c0eb6 fs/btrfs/btrfs.ko After: $ size fs/btrfs/btrfs.ko text data bss dec hex filename 1617487 189240 29032 1835759 1c02ef fs/btrfs/btrfs.ko Reviewed-by: NNikolay Borisov <nborisov@suse.com> Signed-off-by: NFilipe Manana <fdmanana@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 Christoph Hellwig 提交于
btrfs_wq_submit_bio is used for writeback under memory pressure. Instead of failing the I/O when we can't allocate the async_submit_bio, just punt back to the synchronous submission path. Reviewed-by: NNikolay Borisov <nborisov@suse.com> Tested-by: NNikolay Borisov <nborisov@suse.com> Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 Christoph Hellwig 提交于
Always consume the bio and call the end_io handler on error instead of returning an error and letting the caller handle it. This matches what the block layer submission does and avoids any confusion on who needs to handle errors. As this requires touching all the callers, rename the function to btrfs_submit_bio, which describes the functionality much better. Reviewed-by: NNikolay Borisov <nborisov@suse.com> Tested-by: NNikolay Borisov <nborisov@suse.com> Reviewed-by: NJohannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: NQu Wenruo <wqu@suse.com> Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 Nikolay Borisov 提交于
Skinny extents have been a default mkfs feature since version 3.18 i (introduced in btrfs-progs commit 6715de04d9a7 ("btrfs-progs: mkfs: make skinny-metadata default") ). It really doesn't bring any value to users to simply remove it. Reviewed-by: NQu Wenruo <wqu@suse.com> Signed-off-by: NNikolay Borisov <nborisov@suse.com> Reviewed-by: NDavid Sterba <dsterba@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com> -
由 Nikolay Borisov 提交于
Added in commit 727011e0 ("Btrfs: allow metadata blocks larger than the page size") in 2010 and it's been default for mkfs since 3.12 (2013). The message doesn't really convey any useful information to users. Remove it. Reviewed-by: NQu Wenruo <wqu@suse.com> Signed-off-by: NNikolay Borisov <nborisov@suse.com> Reviewed-by: NDavid Sterba <dsterba@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 Nikolay Borisov 提交于
Commit 6f93e834 seemingly inadvertently moved the code responsible for flagging the filesystem as having BIG_METADATA to a place where setting the flag was essentially lost. This means that filesystems created with kernels containing this bug (starting with 5.15) can potentially be mounted by older (pre-3.4) kernels. In reality chances for this happening are low because there are other incompat flags introduced in the mean time. Still the correct behavior is to set INCOMPAT_BIG_METADATA flag and persist this in the superblock. Fixes: 6f93e834 ("btrfs: fix upper limit for max_inline for page size 64K") CC: stable@vger.kernel.org # 5.4+ Reviewed-by: NQu Wenruo <wqu@suse.com> Signed-off-by: NNikolay Borisov <nborisov@suse.com> Reviewed-by: NDavid Sterba <dsterba@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 David Sterba 提交于
Per user request, print the checksum type and implementation at mount time among the messages. The checksum is user configurable and the actual crypto implementation is useful to see for performance reasons. The same information is also available after mount in /sys/fs/FSID/checksum file. Example: [25.323662] BTRFS info (device vdb): using sha256 (sha256-generic) checksum algorithm Link: https://github.com/kdave/btrfs-progs/issues/483Reviewed-by: NJohannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: NNikolay Borisov <nborisov@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 Qu Wenruo 提交于
When handling a real world transid mismatch image, it's hard to know which copy is corrupted, as the error messages just look like this: BTRFS warning (device dm-3): checksum verify failed on 30408704 wanted 0xcdcdcdcd found 0x3c0adc8e level 0 BTRFS warning (device dm-3): checksum verify failed on 30408704 wanted 0xcdcdcdcd found 0x3c0adc8e level 0 BTRFS warning (device dm-3): checksum verify failed on 30408704 wanted 0xcdcdcdcd found 0x3c0adc8e level 0 BTRFS warning (device dm-3): checksum verify failed on 30408704 wanted 0xcdcdcdcd found 0x3c0adc8e level 0 We don't even know if the retry is caused by btrfs or the VFS retry. To make things a little easier to read, add mirror number for all related tree block read errors. So the above messages would look like this: BTRFS warning (device dm-3): checksum verify failed on logical 30408704 mirror 1 wanted 0xcdcdcdcd found 0x3c0adc8e level 0 BTRFS warning (device dm-3): checksum verify failed on logical 30408704 mirror 2 wanted 0xcdcdcdcd found 0x3c0adc8e level 0 BTRFS warning (device dm-3): checksum verify failed on logical 30408704 mirror 1 wanted 0xcdcdcdcd found 0x3c0adc8e level 0 BTRFS warning (device dm-3): checksum verify failed on logical 30408704 mirror 2 wanted 0xcdcdcdcd found 0x3c0adc8e level 0 Signed-off-by: NQu Wenruo <wqu@suse.com> [ update messages, add "logical" ] Reviewed-by: NDavid Sterba <dsterba@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 Qu Wenruo 提交于
[BUG] If we have a btrfs image with dirty log, along with an unsupported RO compatible flag: log_root 30474240 ... compat_flags 0x0 compat_ro_flags 0x40000003 ( FREE_SPACE_TREE | FREE_SPACE_TREE_VALID | unknown flag: 0x40000000 ) Then even if we can only mount it RO, we will still cause metadata update for log replay: BTRFS info (device dm-1): flagging fs with big metadata feature BTRFS info (device dm-1): using free space tree BTRFS info (device dm-1): has skinny extents BTRFS info (device dm-1): start tree-log replay This is definitely against RO compact flag requirement. [CAUSE] RO compact flag only forces us to do RO mount, but we will still do log replay for plain RO mount. Thus this will result us to do log replay and update metadata. This can be very problematic for new RO compat flag, for example older kernel can not understand v2 cache, and if we allow metadata update on RO mount and invalidate/corrupt v2 cache. [FIX] Just reject the mount unless rescue=nologreplay is provided: BTRFS error (device dm-1): cannot replay dirty log with unsupport optional features (0x40000000), try rescue=nologreplay instead We don't want to set rescue=nologreply directly, as this would make the end user to read the old data, and cause confusion. Since the such case is really rare, we're mostly fine to just reject the mount with an error message, which also includes the proper workaround. CC: stable@vger.kernel.org #4.9+ Signed-off-by: NQu Wenruo <wqu@suse.com> Reviewed-by: NDavid Sterba <dsterba@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 Christoph Hellwig 提交于
All reads bio that go through btrfs_map_bio need to be completed in user context. And read I/Os are the most common and timing critical in almost any file system workloads. Embed a work_struct into struct btrfs_bio and use it to complete all read bios submitted through btrfs_map, using the REQ_META flag to decide which workqueue they are placed on. This removes the need for a separate 128 byte allocation (typically rounded up to 192 bytes by slab) for all reads with a size increase of 24 bytes for struct btrfs_bio. Future patches will reorganize struct btrfs_bio to make use of this extra space for writes as well. (All sizes are based a on typical 64-bit non-debug build) Reviewed-by: NQu Wenruo <wqu@suse.com> Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 Christoph Hellwig 提交于
Set REQ_META in btrfs_submit_metadata_bio instead of the various callers. We'll start relying on this flag inside of btrfs in a bit, and this ensures it is always set correctly. Reviewed-by: NQu Wenruo <wqu@suse.com> Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDavid Sterba <dsterba@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 Christoph Hellwig 提交于
Compressed write bio completion is the only user of btrfs_bio_wq_end_io for writes, and the use of btrfs_bio_wq_end_io is a little suboptimal here as we only real need user context for the final completion of a compressed_bio structure, and not every single bio completion. Add a work_struct to struct compressed_bio instead and use that to call finish_compressed_bio_write. This allows to remove all handling of write bios in the btrfs_bio_wq_end_io infrastructure. Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 Christoph Hellwig 提交于
Instead of attaching an extra allocation an indirect call to each low-level bio issued by the RAID code, add a work_struct to struct btrfs_raid_bio and only defer the per-rbio completion action. The per-bio action for all the I/Os are trivial and can be safely done from interrupt context. As a nice side effect this also allows sharing the boilerplate code for the per-bio completions Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-