1. 15 1月, 2018 1 次提交
  2. 03 1月, 2018 2 次提交
  3. 30 12月, 2017 1 次提交
    • T
      genirq/irqdomain: Rename early argument of irq_domain_activate_irq() · 702cb0a0
      Thomas Gleixner 提交于
      The 'early' argument of irq_domain_activate_irq() is actually used to
      denote reservation mode. To avoid confusion, rename it before abuse
      happens.
      
      No functional change.
      
      Fixes: 72491643 ("genirq/irqdomain: Update irq_domain_ops.activate() signature")
      Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
      Cc: Alexandru Chirvasitu <achirvasub@gmail.com>
      Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
      Cc: Dou Liyang <douly.fnst@cn.fujitsu.com>
      Cc: Pavel Machek <pavel@ucw.cz>
      Cc: Maciej W. Rozycki <macro@linux-mips.org>
      Cc: Mikael Pettersson <mikpelinux@gmail.com>
      Cc: Josh Poulson <jopoulso@microsoft.com>
      Cc: Mihai Costache <v-micos@microsoft.com>
      Cc: Stephen Hemminger <sthemmin@microsoft.com>
      Cc: Marc Zyngier <marc.zyngier@arm.com>
      Cc: linux-pci@vger.kernel.org
      Cc: Haiyang Zhang <haiyangz@microsoft.com>
      Cc: Dexuan Cui <decui@microsoft.com>
      Cc: Simon Xiao <sixiao@microsoft.com>
      Cc: Saeed Mahameed <saeedm@mellanox.com>
      Cc: Jork Loeser <Jork.Loeser@microsoft.com>
      Cc: Bjorn Helgaas <bhelgaas@google.com>
      Cc: devel@linuxdriverproject.org
      Cc: KY Srinivasan <kys@microsoft.com>
      Cc: Alan Cox <alan@linux.intel.com>
      Cc: Sakari Ailus <sakari.ailus@intel.com>,
      Cc: linux-media@vger.kernel.org
      702cb0a0
  4. 22 11月, 2017 1 次提交
    • K
      treewide: setup_timer() -> timer_setup() · e99e88a9
      Kees Cook 提交于
      This converts all remaining cases of the old setup_timer() API into using
      timer_setup(), where the callback argument is the structure already
      holding the struct timer_list. These should have no behavioral changes,
      since they just change which pointer is passed into the callback with
      the same available pointers after conversion. It handles the following
      examples, in addition to some other variations.
      
      Casting from unsigned long:
      
          void my_callback(unsigned long data)
          {
              struct something *ptr = (struct something *)data;
          ...
          }
          ...
          setup_timer(&ptr->my_timer, my_callback, ptr);
      
      and forced object casts:
      
          void my_callback(struct something *ptr)
          {
          ...
          }
          ...
          setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr);
      
      become:
      
          void my_callback(struct timer_list *t)
          {
              struct something *ptr = from_timer(ptr, t, my_timer);
          ...
          }
          ...
          timer_setup(&ptr->my_timer, my_callback, 0);
      
      Direct function assignments:
      
          void my_callback(unsigned long data)
          {
              struct something *ptr = (struct something *)data;
          ...
          }
          ...
          ptr->my_timer.function = my_callback;
      
      have a temporary cast added, along with converting the args:
      
          void my_callback(struct timer_list *t)
          {
              struct something *ptr = from_timer(ptr, t, my_timer);
          ...
          }
          ...
          ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback;
      
      And finally, callbacks without a data assignment:
      
          void my_callback(unsigned long data)
          {
          ...
          }
          ...
          setup_timer(&ptr->my_timer, my_callback, 0);
      
      have their argument renamed to verify they're unused during conversion:
      
          void my_callback(struct timer_list *unused)
          {
          ...
          }
          ...
          timer_setup(&ptr->my_timer, my_callback, 0);
      
      The conversion is done with the following Coccinelle script:
      
      spatch --very-quiet --all-includes --include-headers \
      	-I ./arch/x86/include -I ./arch/x86/include/generated \
      	-I ./include -I ./arch/x86/include/uapi \
      	-I ./arch/x86/include/generated/uapi -I ./include/uapi \
      	-I ./include/generated/uapi --include ./include/linux/kconfig.h \
      	--dir . \
      	--cocci-file ~/src/data/timer_setup.cocci
      
      @fix_address_of@
      expression e;
      @@
      
       setup_timer(
      -&(e)
      +&e
       , ...)
      
      // Update any raw setup_timer() usages that have a NULL callback, but
      // would otherwise match change_timer_function_usage, since the latter
      // will update all function assignments done in the face of a NULL
      // function initialization in setup_timer().
      @change_timer_function_usage_NULL@
      expression _E;
      identifier _timer;
      type _cast_data;
      @@
      
      (
      -setup_timer(&_E->_timer, NULL, _E);
      +timer_setup(&_E->_timer, NULL, 0);
      |
      -setup_timer(&_E->_timer, NULL, (_cast_data)_E);
      +timer_setup(&_E->_timer, NULL, 0);
      |
      -setup_timer(&_E._timer, NULL, &_E);
      +timer_setup(&_E._timer, NULL, 0);
      |
      -setup_timer(&_E._timer, NULL, (_cast_data)&_E);
      +timer_setup(&_E._timer, NULL, 0);
      )
      
      @change_timer_function_usage@
      expression _E;
      identifier _timer;
      struct timer_list _stl;
      identifier _callback;
      type _cast_func, _cast_data;
      @@
      
      (
      -setup_timer(&_E->_timer, _callback, _E);
      +timer_setup(&_E->_timer, _callback, 0);
      |
      -setup_timer(&_E->_timer, &_callback, _E);
      +timer_setup(&_E->_timer, _callback, 0);
      |
      -setup_timer(&_E->_timer, _callback, (_cast_data)_E);
      +timer_setup(&_E->_timer, _callback, 0);
      |
      -setup_timer(&_E->_timer, &_callback, (_cast_data)_E);
      +timer_setup(&_E->_timer, _callback, 0);
      |
      -setup_timer(&_E->_timer, (_cast_func)_callback, _E);
      +timer_setup(&_E->_timer, _callback, 0);
      |
      -setup_timer(&_E->_timer, (_cast_func)&_callback, _E);
      +timer_setup(&_E->_timer, _callback, 0);
      |
      -setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E);
      +timer_setup(&_E->_timer, _callback, 0);
      |
      -setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E);
      +timer_setup(&_E->_timer, _callback, 0);
      |
      -setup_timer(&_E._timer, _callback, (_cast_data)_E);
      +timer_setup(&_E._timer, _callback, 0);
      |
      -setup_timer(&_E._timer, _callback, (_cast_data)&_E);
      +timer_setup(&_E._timer, _callback, 0);
      |
      -setup_timer(&_E._timer, &_callback, (_cast_data)_E);
      +timer_setup(&_E._timer, _callback, 0);
      |
      -setup_timer(&_E._timer, &_callback, (_cast_data)&_E);
      +timer_setup(&_E._timer, _callback, 0);
      |
      -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E);
      +timer_setup(&_E._timer, _callback, 0);
      |
      -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E);
      +timer_setup(&_E._timer, _callback, 0);
      |
      -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E);
      +timer_setup(&_E._timer, _callback, 0);
      |
      -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E);
      +timer_setup(&_E._timer, _callback, 0);
      |
       _E->_timer@_stl.function = _callback;
      |
       _E->_timer@_stl.function = &_callback;
      |
       _E->_timer@_stl.function = (_cast_func)_callback;
      |
       _E->_timer@_stl.function = (_cast_func)&_callback;
      |
       _E._timer@_stl.function = _callback;
      |
       _E._timer@_stl.function = &_callback;
      |
       _E._timer@_stl.function = (_cast_func)_callback;
      |
       _E._timer@_stl.function = (_cast_func)&_callback;
      )
      
      // callback(unsigned long arg)
      @change_callback_handle_cast
       depends on change_timer_function_usage@
      identifier change_timer_function_usage._callback;
      identifier change_timer_function_usage._timer;
      type _origtype;
      identifier _origarg;
      type _handletype;
      identifier _handle;
      @@
      
       void _callback(
      -_origtype _origarg
      +struct timer_list *t
       )
       {
      (
      	... when != _origarg
      	_handletype *_handle =
      -(_handletype *)_origarg;
      +from_timer(_handle, t, _timer);
      	... when != _origarg
      |
      	... when != _origarg
      	_handletype *_handle =
      -(void *)_origarg;
      +from_timer(_handle, t, _timer);
      	... when != _origarg
      |
      	... when != _origarg
      	_handletype *_handle;
      	... when != _handle
      	_handle =
      -(_handletype *)_origarg;
      +from_timer(_handle, t, _timer);
      	... when != _origarg
      |
      	... when != _origarg
      	_handletype *_handle;
      	... when != _handle
      	_handle =
      -(void *)_origarg;
      +from_timer(_handle, t, _timer);
      	... when != _origarg
      )
       }
      
      // callback(unsigned long arg) without existing variable
      @change_callback_handle_cast_no_arg
       depends on change_timer_function_usage &&
                           !change_callback_handle_cast@
      identifier change_timer_function_usage._callback;
      identifier change_timer_function_usage._timer;
      type _origtype;
      identifier _origarg;
      type _handletype;
      @@
      
       void _callback(
      -_origtype _origarg
      +struct timer_list *t
       )
       {
      +	_handletype *_origarg = from_timer(_origarg, t, _timer);
      +
      	... when != _origarg
      -	(_handletype *)_origarg
      +	_origarg
      	... when != _origarg
       }
      
      // Avoid already converted callbacks.
      @match_callback_converted
       depends on change_timer_function_usage &&
                  !change_callback_handle_cast &&
      	    !change_callback_handle_cast_no_arg@
      identifier change_timer_function_usage._callback;
      identifier t;
      @@
      
       void _callback(struct timer_list *t)
       { ... }
      
      // callback(struct something *handle)
      @change_callback_handle_arg
       depends on change_timer_function_usage &&
      	    !match_callback_converted &&
                  !change_callback_handle_cast &&
                  !change_callback_handle_cast_no_arg@
      identifier change_timer_function_usage._callback;
      identifier change_timer_function_usage._timer;
      type _handletype;
      identifier _handle;
      @@
      
       void _callback(
      -_handletype *_handle
      +struct timer_list *t
       )
       {
      +	_handletype *_handle = from_timer(_handle, t, _timer);
      	...
       }
      
      // If change_callback_handle_arg ran on an empty function, remove
      // the added handler.
      @unchange_callback_handle_arg
       depends on change_timer_function_usage &&
      	    change_callback_handle_arg@
      identifier change_timer_function_usage._callback;
      identifier change_timer_function_usage._timer;
      type _handletype;
      identifier _handle;
      identifier t;
      @@
      
       void _callback(struct timer_list *t)
       {
      -	_handletype *_handle = from_timer(_handle, t, _timer);
       }
      
      // We only want to refactor the setup_timer() data argument if we've found
      // the matching callback. This undoes changes in change_timer_function_usage.
      @unchange_timer_function_usage
       depends on change_timer_function_usage &&
                  !change_callback_handle_cast &&
                  !change_callback_handle_cast_no_arg &&
      	    !change_callback_handle_arg@
      expression change_timer_function_usage._E;
      identifier change_timer_function_usage._timer;
      identifier change_timer_function_usage._callback;
      type change_timer_function_usage._cast_data;
      @@
      
      (
      -timer_setup(&_E->_timer, _callback, 0);
      +setup_timer(&_E->_timer, _callback, (_cast_data)_E);
      |
      -timer_setup(&_E._timer, _callback, 0);
      +setup_timer(&_E._timer, _callback, (_cast_data)&_E);
      )
      
      // If we fixed a callback from a .function assignment, fix the
      // assignment cast now.
      @change_timer_function_assignment
       depends on change_timer_function_usage &&
                  (change_callback_handle_cast ||
                   change_callback_handle_cast_no_arg ||
                   change_callback_handle_arg)@
      expression change_timer_function_usage._E;
      identifier change_timer_function_usage._timer;
      identifier change_timer_function_usage._callback;
      type _cast_func;
      typedef TIMER_FUNC_TYPE;
      @@
      
      (
       _E->_timer.function =
      -_callback
      +(TIMER_FUNC_TYPE)_callback
       ;
      |
       _E->_timer.function =
      -&_callback
      +(TIMER_FUNC_TYPE)_callback
       ;
      |
       _E->_timer.function =
      -(_cast_func)_callback;
      +(TIMER_FUNC_TYPE)_callback
       ;
      |
       _E->_timer.function =
      -(_cast_func)&_callback
      +(TIMER_FUNC_TYPE)_callback
       ;
      |
       _E._timer.function =
      -_callback
      +(TIMER_FUNC_TYPE)_callback
       ;
      |
       _E._timer.function =
      -&_callback;
      +(TIMER_FUNC_TYPE)_callback
       ;
      |
       _E._timer.function =
      -(_cast_func)_callback
      +(TIMER_FUNC_TYPE)_callback
       ;
      |
       _E._timer.function =
      -(_cast_func)&_callback
      +(TIMER_FUNC_TYPE)_callback
       ;
      )
      
      // Sometimes timer functions are called directly. Replace matched args.
      @change_timer_function_calls
       depends on change_timer_function_usage &&
                  (change_callback_handle_cast ||
                   change_callback_handle_cast_no_arg ||
                   change_callback_handle_arg)@
      expression _E;
      identifier change_timer_function_usage._timer;
      identifier change_timer_function_usage._callback;
      type _cast_data;
      @@
      
       _callback(
      (
      -(_cast_data)_E
      +&_E->_timer
      |
      -(_cast_data)&_E
      +&_E._timer
      |
      -_E
      +&_E->_timer
      )
       )
      
      // If a timer has been configured without a data argument, it can be
      // converted without regard to the callback argument, since it is unused.
      @match_timer_function_unused_data@
      expression _E;
      identifier _timer;
      identifier _callback;
      @@
      
      (
      -setup_timer(&_E->_timer, _callback, 0);
      +timer_setup(&_E->_timer, _callback, 0);
      |
      -setup_timer(&_E->_timer, _callback, 0L);
      +timer_setup(&_E->_timer, _callback, 0);
      |
      -setup_timer(&_E->_timer, _callback, 0UL);
      +timer_setup(&_E->_timer, _callback, 0);
      |
      -setup_timer(&_E._timer, _callback, 0);
      +timer_setup(&_E._timer, _callback, 0);
      |
      -setup_timer(&_E._timer, _callback, 0L);
      +timer_setup(&_E._timer, _callback, 0);
      |
      -setup_timer(&_E._timer, _callback, 0UL);
      +timer_setup(&_E._timer, _callback, 0);
      |
      -setup_timer(&_timer, _callback, 0);
      +timer_setup(&_timer, _callback, 0);
      |
      -setup_timer(&_timer, _callback, 0L);
      +timer_setup(&_timer, _callback, 0);
      |
      -setup_timer(&_timer, _callback, 0UL);
      +timer_setup(&_timer, _callback, 0);
      |
      -setup_timer(_timer, _callback, 0);
      +timer_setup(_timer, _callback, 0);
      |
      -setup_timer(_timer, _callback, 0L);
      +timer_setup(_timer, _callback, 0);
      |
      -setup_timer(_timer, _callback, 0UL);
      +timer_setup(_timer, _callback, 0);
      )
      
      @change_callback_unused_data
       depends on match_timer_function_unused_data@
      identifier match_timer_function_unused_data._callback;
      type _origtype;
      identifier _origarg;
      @@
      
       void _callback(
      -_origtype _origarg
      +struct timer_list *unused
       )
       {
      	... when != _origarg
       }
      Signed-off-by: NKees Cook <keescook@chromium.org>
      e99e88a9
  5. 18 11月, 2017 1 次提交
    • R
      iommu/vt-d: Fix scatterlist offset handling · 29a90b70
      Robin Murphy 提交于
      The intel-iommu DMA ops fail to correctly handle scatterlists where
      sg->offset is greater than PAGE_SIZE - the IOVA allocation is computed
      appropriately based on the page-aligned portion of the offset, but the
      mapping is set up relative to sg->page, which means it fails to actually
      cover the whole buffer (and in the worst case doesn't cover it at all):
      
          (sg->dma_address + sg->dma_len) ----+
          sg->dma_address ---------+          |
          iov_pfn------+           |          |
                       |           |          |
                       v           v          v
      iova:   a        b        c        d        e        f
              |--------|--------|--------|--------|--------|
                                <...calculated....>
                       [_____mapped______]
      pfn:    0        1        2        3        4        5
              |--------|--------|--------|--------|--------|
                       ^           ^          ^
                       |           |          |
          sg->page ----+           |          |
          sg->offset --------------+          |
          (sg->offset + sg->length) ----------+
      
      As a result, the caller ends up overrunning the mapping into whatever
      lies beyond, which usually goes badly:
      
      [  429.645492] DMAR: DRHD: handling fault status reg 2
      [  429.650847] DMAR: [DMA Write] Request device [02:00.4] fault addr f2682000 ...
      
      Whilst this is a fairly rare occurrence, it can happen from the result
      of intermediate scatterlist processing such as scatterwalk_ffwd() in the
      crypto layer. Whilst that particular site could be fixed up, it still
      seems worthwhile to bring intel-iommu in line with other DMA API
      implementations in handling this robustly.
      
      To that end, fix the intel_map_sg() path to line up the mapping
      correctly (in units of MM pages rather than VT-d pages to match the
      aligned_nrpages() calculation) regardless of the offset, and use
      sg_phys() consistently for clarity.
      Reported-by: NHarsh Jain <Harsh@chelsio.com>
      Signed-off-by: NRobin Murphy <robin.murphy@arm.com>
      Reviewed by: Ashok Raj <ashok.raj@intel.com>
      Tested by: Jacob Pan <jacob.jun.pan@intel.com>
      Cc: stable@vger.kernel.org
      Signed-off-by: NAlex Williamson <alex.williamson@redhat.com>
      29a90b70
  6. 07 11月, 2017 16 次提交
  7. 04 11月, 2017 7 次提交
  8. 02 11月, 2017 1 次提交
    • G
      License cleanup: add SPDX GPL-2.0 license identifier to files with no license · b2441318
      Greg Kroah-Hartman 提交于
      Many source files in the tree are missing licensing information, which
      makes it harder for compliance tools to determine the correct license.
      
      By default all files without license information are under the default
      license of the kernel, which is GPL version 2.
      
      Update the files which contain no license information with the 'GPL-2.0'
      SPDX license identifier.  The SPDX identifier is a legally binding
      shorthand, which can be used instead of the full boiler plate text.
      
      This patch is based on work done by Thomas Gleixner and Kate Stewart and
      Philippe Ombredanne.
      
      How this work was done:
      
      Patches were generated and checked against linux-4.14-rc6 for a subset of
      the use cases:
       - file had no licensing information it it.
       - file was a */uapi/* one with no licensing information in it,
       - file was a */uapi/* one with existing licensing information,
      
      Further patches will be generated in subsequent months to fix up cases
      where non-standard license headers were used, and references to license
      had to be inferred by heuristics based on keywords.
      
      The analysis to determine which SPDX License Identifier to be applied to
      a file was done in a spreadsheet of side by side results from of the
      output of two independent scanners (ScanCode & Windriver) producing SPDX
      tag:value files created by Philippe Ombredanne.  Philippe prepared the
      base worksheet, and did an initial spot review of a few 1000 files.
      
      The 4.13 kernel was the starting point of the analysis with 60,537 files
      assessed.  Kate Stewart did a file by file comparison of the scanner
      results in the spreadsheet to determine which SPDX license identifier(s)
      to be applied to the file. She confirmed any determination that was not
      immediately clear with lawyers working with the Linux Foundation.
      
      Criteria used to select files for SPDX license identifier tagging was:
       - Files considered eligible had to be source code files.
       - Make and config files were included as candidates if they contained >5
         lines of source
       - File already had some variant of a license header in it (even if <5
         lines).
      
      All documentation files were explicitly excluded.
      
      The following heuristics were used to determine which SPDX license
      identifiers to apply.
      
       - when both scanners couldn't find any license traces, file was
         considered to have no license information in it, and the top level
         COPYING file license applied.
      
         For non */uapi/* files that summary was:
      
         SPDX license identifier                            # files
         ---------------------------------------------------|-------
         GPL-2.0                                              11139
      
         and resulted in the first patch in this series.
      
         If that file was a */uapi/* path one, it was "GPL-2.0 WITH
         Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:
      
         SPDX license identifier                            # files
         ---------------------------------------------------|-------
         GPL-2.0 WITH Linux-syscall-note                        930
      
         and resulted in the second patch in this series.
      
       - if a file had some form of licensing information in it, and was one
         of the */uapi/* ones, it was denoted with the Linux-syscall-note if
         any GPL family license was found in the file or had no licensing in
         it (per prior point).  Results summary:
      
         SPDX license identifier                            # files
         ---------------------------------------------------|------
         GPL-2.0 WITH Linux-syscall-note                       270
         GPL-2.0+ WITH Linux-syscall-note                      169
         ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
         ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
         LGPL-2.1+ WITH Linux-syscall-note                      15
         GPL-1.0+ WITH Linux-syscall-note                       14
         ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
         LGPL-2.0+ WITH Linux-syscall-note                       4
         LGPL-2.1 WITH Linux-syscall-note                        3
         ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
         ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1
      
         and that resulted in the third patch in this series.
      
       - when the two scanners agreed on the detected license(s), that became
         the concluded license(s).
      
       - when there was disagreement between the two scanners (one detected a
         license but the other didn't, or they both detected different
         licenses) a manual inspection of the file occurred.
      
       - In most cases a manual inspection of the information in the file
         resulted in a clear resolution of the license that should apply (and
         which scanner probably needed to revisit its heuristics).
      
       - When it was not immediately clear, the license identifier was
         confirmed with lawyers working with the Linux Foundation.
      
       - If there was any question as to the appropriate license identifier,
         the file was flagged for further research and to be revisited later
         in time.
      
      In total, over 70 hours of logged manual review was done on the
      spreadsheet to determine the SPDX license identifiers to apply to the
      source files by Kate, Philippe, Thomas and, in some cases, confirmation
      by lawyers working with the Linux Foundation.
      
      Kate also obtained a third independent scan of the 4.13 code base from
      FOSSology, and compared selected files where the other two scanners
      disagreed against that SPDX file, to see if there was new insights.  The
      Windriver scanner is based on an older version of FOSSology in part, so
      they are related.
      
      Thomas did random spot checks in about 500 files from the spreadsheets
      for the uapi headers and agreed with SPDX license identifier in the
      files he inspected. For the non-uapi files Thomas did random spot checks
      in about 15000 files.
      
      In initial set of patches against 4.14-rc6, 3 files were found to have
      copy/paste license identifier errors, and have been fixed to reflect the
      correct identifier.
      
      Additionally Philippe spent 10 hours this week doing a detailed manual
      inspection and review of the 12,461 patched files from the initial patch
      version early this week with:
       - a full scancode scan run, collecting the matched texts, detected
         license ids and scores
       - reviewing anything where there was a license detected (about 500+
         files) to ensure that the applied SPDX license was correct
       - reviewing anything where there was no detection but the patch license
         was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
         SPDX license was correct
      
      This produced a worksheet with 20 files needing minor correction.  This
      worksheet was then exported into 3 different .csv files for the
      different types of files to be modified.
      
      These .csv files were then reviewed by Greg.  Thomas wrote a script to
      parse the csv files and add the proper SPDX tag to the file, in the
      format that the file expected.  This script was further refined by Greg
      based on the output to detect more types of files automatically and to
      distinguish between header and source .c files (which need different
      comment types.)  Finally Greg ran the script using the .csv files to
      generate the patches.
      Reviewed-by: NKate Stewart <kstewart@linuxfoundation.org>
      Reviewed-by: NPhilippe Ombredanne <pombredanne@nexb.com>
      Reviewed-by: NThomas Gleixner <tglx@linutronix.de>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
      b2441318
  9. 20 10月, 2017 10 次提交
    • R
      iommu/arm-smmu-v3: Use burst-polling for sync completion · 8ff0f723
      Robin Murphy 提交于
      While CMD_SYNC is unlikely to complete immediately such that we never go
      round the polling loop, with a lightly-loaded queue it may still do so
      long before the delay period is up. If we have no better completion
      notifier, use similar logic as we have for SMMUv2 to spin a number of
      times before each backoff, so that we have more chance of catching syncs
      which complete relatively quickly and avoid delaying unnecessarily.
      Signed-off-by: NRobin Murphy <robin.murphy@arm.com>
      Signed-off-by: NWill Deacon <will.deacon@arm.com>
      8ff0f723
    • W
      iommu/arm-smmu-v3: Consolidate identical timeouts · a529ea19
      Will Deacon 提交于
      We have separate (identical) timeout values for polling for a queue to
      drain and waiting for an MSI to signal CMD_SYNC completion. In reality,
      we only wait for the command queue to drain if we're waiting on a sync,
      so just merged these two timeouts into a single constant.
      Signed-off-by: NWill Deacon <will.deacon@arm.com>
      a529ea19
    • W
      iommu/arm-smmu-v3: Split arm_smmu_cmdq_issue_sync in half · 49806599
      Will Deacon 提交于
      arm_smmu_cmdq_issue_sync is a little unwieldy now that it supports both
      MSI and event-based polling, so split it into two functions to make things
      easier to follow.
      Signed-off-by: NWill Deacon <will.deacon@arm.com>
      49806599
    • R
      iommu/arm-smmu-v3: Use CMD_SYNC completion MSI · 37de98f8
      Robin Murphy 提交于
      As an IRQ, the CMD_SYNC interrupt is not particularly useful, not least
      because we often need to wait for sync completion within someone else's
      IRQ handler anyway. However, when the SMMU is both coherent and supports
      MSIs, we can have a lot more fun by not using it as an interrupt at all.
      Following the example suggested in the architecture and using a write
      targeting normal memory, we can let callers wait on a status variable
      outside the lock instead of having to stall the entire queue or even
      touch MMIO registers. Since multiple sync commands are guaranteed to
      complete in order, a simple incrementing sequence count is all we need
      to unambiguously support any realistic number of overlapping waiters.
      Signed-off-by: NRobin Murphy <robin.murphy@arm.com>
      Signed-off-by: NWill Deacon <will.deacon@arm.com>
      37de98f8
    • R
      iommu/arm-smmu-v3: Forget about cmdq-sync interrupt · dce032a1
      Robin Murphy 提交于
      The cmdq-sync interrupt is never going to be particularly useful, since
      for stage 1 DMA at least we'll often need to wait for sync completion
      within someone else's IRQ handler, thus have to implement polling
      anyway. Beyond that, the overhead of taking an interrupt, then still
      having to grovel around in the queue to figure out *which* sync command
      completed, doesn't seem much more attractive than simple polling either.
      
      Furthermore, if an implementation both has wired interrupts and supports
      MSIs, then we don't want to be taking the IRQ unnecessarily if we're
      using the MSI write to update memory. Let's just make life simpler by
      not even bothering to claim it in the first place.
      Signed-off-by: NRobin Murphy <robin.murphy@arm.com>
      Signed-off-by: NWill Deacon <will.deacon@arm.com>
      dce032a1
    • R
      iommu/arm-smmu-v3: Specialise CMD_SYNC handling · 2f657add
      Robin Murphy 提交于
      CMD_SYNC already has a bit of special treatment here and there, but as
      we're about to extend it with more functionality for completing outside
      the CMDQ lock, things are going to get rather messy if we keep trying to
      cram everything into a single generic command interface. Instead, let's
      break out the issuing of CMD_SYNC into its own specific helper where
      upcoming changes will have room to breathe.
      Signed-off-by: NRobin Murphy <robin.murphy@arm.com>
      Signed-off-by: NWill Deacon <will.deacon@arm.com>
      2f657add
    • R
      iommu/arm-smmu-v3: Correct COHACC override message · 2a22baa2
      Robin Murphy 提交于
      Slightly confusingly, when reporting a mismatch of the ID register
      value, we still refer to the IORT COHACC override flag as the
      "dma-coherent property" if we booted with ACPI. Update the message
      to be firmware-agnostic in line with SMMUv2.
      Acked-by: NLorenzo Pieralisi <lorenzo.pieralisi@arm.com>
      Reported-by: NWill Deacon <will.deacon@arm.com>
      Signed-off-by: NRobin Murphy <robin.murphy@arm.com>
      Signed-off-by: NWill Deacon <will.deacon@arm.com>
      2a22baa2
    • Y
      iommu/arm-smmu-v3: Avoid ILLEGAL setting of STE.S1STALLD and CD.S · 9cff86fd
      Yisheng Xie 提交于
      According to Spec, it is ILLEGAL to set STE.S1STALLD if STALL_MODEL
      is not 0b00, which means we should not disable stall mode if stall
      or terminate mode is not configuable.
      
      Meanwhile, it is also ILLEGAL when STALL_MODEL==0b10 && CD.S==0 which
      means if stall mode is force we should always set CD.S.
      
      As Jean-Philippe's suggestion, this patch introduce a feature bit
      ARM_SMMU_FEAT_STALL_FORCE, which means smmu only supports stall force.
      Therefore, we can avoid the ILLEGAL setting of STE.S1STALLD.by checking
      ARM_SMMU_FEAT_STALL_FORCE.
      
      This patch keeps the ARM_SMMU_FEAT_STALLS as the meaning of stall supported
      (force or configuable) to easy to expand the future function, i.e. we can
      only use ARM_SMMU_FEAT_STALLS to check whether we should register fault
      handle or enable master can_stall, etc to supporte platform SVM.
      
      The feature bit, STE.S1STALLD and CD.S setting will be like:
      
      STALL_MODEL  FEATURE                                         S1STALLD CD.S
      0b00         ARM_SMMU_FEAT_STALLS                                 0b1 0b0
      0b01         !ARM_SMMU_FEAT_STALLS && !ARM_SMMU_FEAT_STALL_FORCE  0b0 0b0
      0b10         ARM_SMMU_FEAT_STALLS && ARM_SMMU_FEAT_STALL_FORCE    0b0 0b1
      
      after apply this patch.
      Signed-off-by: NYisheng Xie <xieyisheng1@huawei.com>
      Signed-off-by: NWill Deacon <will.deacon@arm.com>
      9cff86fd
    • F
      iommu/arm-smmu: Enable bypass transaction caching for ARM SMMU 500 · 74f55d34
      Feng Kan 提交于
      The ARM SMMU identity mapping performance was poor compared with the
      DMA mode. It was found that enable caching would restore the performance
      back to normal. The S2CRB_TLBEN bit in the ACR register would allow for
      caching of the stream to context register bypass transaction information.
      Reviewed-by: NRobin Murphy <robin.murphy@arm.com>
      Signed-off-by: NFeng Kan <fkan@apm.com>
      Signed-off-by: NWill Deacon <will.deacon@arm.com>
      74f55d34
    • W
      iommu/arm-smmu-v3: Ensure we sync STE when only changing config field · 704c0382
      Will Deacon 提交于
      The SMMUv3 architecture permits caching of data structures deemed to be
      "reachable" by the SMU, which includes STEs marked as invalid. When
      transitioning an STE to a bypass/fault configuration at init or detach
      time, we mistakenly elide the CMDQ_OP_CFGI_STE operation in some cases,
      therefore potentially leaving the old STE state cached in the SMMU.
      
      This patch fixes the problem by ensuring that we perform the
      CMDQ_OP_CFGI_STE operation irrespective of the validity of the previous
      STE.
      Reviewed-by: NRobin Murphy <robin.murphy@arm.com>
      Reported-by: NEric Auger <eric.auger@redhat.com>
      Reviewed-by: NEric Auger <eric.auger@redhat.com>
      Signed-off-by: NWill Deacon <will.deacon@arm.com>
      704c0382