1. 11 7月, 2017 5 次提交
    • M
      hugetlb, memory_hotplug: prefer to use reserved pages for migration · 4db9b2ef
      Michal Hocko 提交于
      new_node_page will try to use the origin's next NUMA node as the
      migration destination for hugetlb pages.  If such a node doesn't have
      any preallocated pool it falls back to __alloc_buddy_huge_page_no_mpol
      to allocate a surplus page instead.  This is quite subotpimal for any
      configuration when hugetlb pages are no distributed to all NUMA nodes
      evenly.  Say we have a hotplugable node 4 and spare hugetlb pages are
      node 0
      
        /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages:10000
        /sys/devices/system/node/node1/hugepages/hugepages-2048kB/nr_hugepages:0
        /sys/devices/system/node/node2/hugepages/hugepages-2048kB/nr_hugepages:0
        /sys/devices/system/node/node3/hugepages/hugepages-2048kB/nr_hugepages:0
        /sys/devices/system/node/node4/hugepages/hugepages-2048kB/nr_hugepages:10000
        /sys/devices/system/node/node5/hugepages/hugepages-2048kB/nr_hugepages:0
        /sys/devices/system/node/node6/hugepages/hugepages-2048kB/nr_hugepages:0
        /sys/devices/system/node/node7/hugepages/hugepages-2048kB/nr_hugepages:0
      
      Now we consume the whole pool on node 4 and try to offline this node.
      All the allocated pages should be moved to node0 which has enough
      preallocated pages to hold them.  With the current implementation
      offlining very likely fails because hugetlb allocations during runtime
      are much less reliable.
      
      Fix this by reusing the nodemask which excludes migration source and try
      to find a first node which has a page in the preallocated pool first and
      fall back to __alloc_buddy_huge_page_no_mpol only when the whole pool is
      consumed.
      
      [akpm@linux-foundation.org: remove bogus arg from alloc_huge_page_nodemask() stub]
      Link: http://lkml.kernel.org/r/20170608074553.22152-3-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com>
      Acked-by: NVlastimil Babka <vbabka@suse.cz>
      Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
      Cc: Xishi Qiu <qiuxishi@huawei.com>
      Cc: zhong jiang <zhongjiang@huawei.com>
      Cc: Joonsoo Kim <js1304@gmail.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      4db9b2ef
    • L
      mm/hugetlb.c: warn the user when issues arise on boot due to hugepages · d715cf80
      Liam R. Howlett 提交于
      When the user specifies too many hugepages or an invalid
      default_hugepagesz the communication to the user is implicit in the
      allocation message.  This patch adds a warning when the desired page
      count is not allocated and prints an error when the default_hugepagesz
      is invalid on boot.
      
      During boot hugepages will allocate until there is a fraction of the
      hugepage size left.  That is, we allocate until either the request is
      satisfied or memory for the pages is exhausted.  When memory for the
      pages is exhausted, it will most likely lead to the system failing with
      the OOM manager not finding enough (or anything) to kill (unless you're
      using really big hugepages in the order of 100s of MB or in the GBs).
      The user will most likely see the OOM messages much later in the boot
      sequence than the implicitly stated message.  Worse yet, you may even
      get an OOM for each processor which causes many pages of OOMs on modern
      systems.  Although these messages will be printed earlier than the OOM
      messages, at least giving the user errors and warnings will highlight
      the configuration as an issue.  I'm trying to point the user in the
      right direction by providing a more robust statement of what is failing.
      
      During the sysctl or echo command, the user can check the results much
      easier than if the system hangs during boot and the scenario of having
      nothing to OOM for kernel memory is highly unlikely.
      
      Mike said:
       "Before sending out this patch, I asked Liam off list why he was doing
        it. Was it something he just thought would be useful? Or, was there
        some type of user situation/need. He said that he had been called in
        to assist on several occasions when a system OOMed during boot. In
        almost all of these situations, the user had grossly misconfigured
        huge pages.
      
        DB users want to pre-allocate just the right amount of huge pages, but
        sometimes they can be really off. In such situations, the huge page
        init code just allocates as many huge pages as it can and reports the
        number allocated. There is no indication that it quit allocating
        because it ran out of memory. Of course, a user could compare the
        number in the message to what they requested on the command line to
        determine if they got all the huge pages they requested. The thought
        was that it would be useful to at least flag this situation. That way,
        the user might be able to better relate the huge page allocation
        failure to the OOM.
      
        I'm not sure if the e-mail discussion made it obvious that this is
        something he has seen on several occasions.
      
        I see Michal's point that this will only flag the situation where
        someone configures huge pages very badly. And, a more extensive look
        at the situation of misconfiguring huge pages might be in order. But,
        this has happened on several occasions which led to the creation of
        this patch"
      
      [akpm@linux-foundation.org: reposition memfmt() to avoid forward declaration]
      Link: http://lkml.kernel.org/r/20170603005413.10380-1-Liam.Howlett@Oracle.comSigned-off-by: NLiam R. Howlett <Liam.Howlett@Oracle.com>
      Cc: Michal Hocko <mhocko@suse.com>
      Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
      Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
      Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
      Cc: zhongjiang <zhongjiang@huawei.com>
      Cc: Andrea Arcangeli <aarcange@redhat.com>
      Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
      Cc: Mike Kravetz <mike.kravetz@oracle.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      d715cf80
    • N
      ddd40d8a
    • A
      mm: hugetlb: soft-offline: dissolve source hugepage after successful migration · c3114a84
      Anshuman Khandual 提交于
      Currently hugepage migrated by soft-offline (i.e.  due to correctable
      memory errors) is contained as a hugepage, which means many non-error
      pages in it are unreusable, i.e.  wasted.
      
      This patch solves this issue by dissolving source hugepages into buddy.
      As done in previous patch, PageHWPoison is set only on a head page of
      the error hugepage.  Then in dissoliving we move the PageHWPoison flag
      to the raw error page so that all healthy subpages return back to buddy.
      
      [arnd@arndb.de: fix warnings: replace some macros with inline functions]
        Link: http://lkml.kernel.org/r/20170609102544.2947326-1-arnd@arndb.de
      Link: http://lkml.kernel.org/r/1496305019-5493-5-git-send-email-n-horiguchi@ah.jp.nec.comSigned-off-by: NAnshuman Khandual <khandual@linux.vnet.ibm.com>
      Signed-off-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com>
      Signed-off-by: NArnd Bergmann <arnd@arndb.de>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      c3114a84
    • N
      mm: hugetlb: prevent reuse of hwpoisoned free hugepages · 243abd5b
      Naoya Horiguchi 提交于
      Patch series "mm: hwpoison: fixlet for hugetlb migration".
      
      This patchset updates the hwpoison/hugetlb code to address 2 reported
      issues.
      
      One is madvise(MADV_HWPOISON) failure reported by Intel's lkp robot (see
      http://lkml.kernel.org/r/20170417055948.GM31394@yexl-desktop.) First
      half was already fixed in mainline, and another half about hugetlb cases
      are solved in this series.
      
      Another issue is "narrow-down error affected region into a single 4kB
      page instead of a whole hugetlb page" issue, which was tried by Anshuman
      (http://lkml.kernel.org/r/20170420110627.12307-1-khandual@linux.vnet.ibm.com)
      and I updated it to apply it more widely.
      
      This patch (of 9):
      
      We no longer use MIGRATE_ISOLATE to prevent reuse of hwpoison hugepages
      as we did before.  So current dequeue_huge_page_node() doesn't work as
      intended because it still uses is_migrate_isolate_page() for this check.
      This patch fixes it with PageHWPoison flag.
      
      Link: http://lkml.kernel.org/r/1496305019-5493-2-git-send-email-n-horiguchi@ah.jp.nec.comSigned-off-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com>
      Cc: Michal Hocko <mhocko@kernel.org>
      Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
      Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      243abd5b
  2. 07 7月, 2017 9 次提交
  3. 03 6月, 2017 1 次提交
  4. 01 4月, 2017 2 次提交
    • M
      mm/hugetlb.c: don't call region_abort if region_chg fails · ff8c0c53
      Mike Kravetz 提交于
      Changes to hugetlbfs reservation maps is a two step process.  The first
      step is a call to region_chg to determine what needs to be changed, and
      prepare that change.  This should be followed by a call to call to
      region_add to commit the change, or region_abort to abort the change.
      
      The error path in hugetlb_reserve_pages called region_abort after a
      failed call to region_chg.  As a result, the adds_in_progress counter in
      the reservation map is off by 1.  This is caught by a VM_BUG_ON in
      resv_map_release when the reservation map is freed.
      
      syzkaller fuzzer (when using an injected kmalloc failure) found this
      bug, that resulted in the following:
      
       kernel BUG at mm/hugetlb.c:742!
       Call Trace:
        hugetlbfs_evict_inode+0x7b/0xa0 fs/hugetlbfs/inode.c:493
        evict+0x481/0x920 fs/inode.c:553
        iput_final fs/inode.c:1515 [inline]
        iput+0x62b/0xa20 fs/inode.c:1542
        hugetlb_file_setup+0x593/0x9f0 fs/hugetlbfs/inode.c:1306
        newseg+0x422/0xd30 ipc/shm.c:575
        ipcget_new ipc/util.c:285 [inline]
        ipcget+0x21e/0x580 ipc/util.c:639
        SYSC_shmget ipc/shm.c:673 [inline]
        SyS_shmget+0x158/0x230 ipc/shm.c:657
        entry_SYSCALL_64_fastpath+0x1f/0xc2
       RIP: resv_map_release+0x265/0x330 mm/hugetlb.c:742
      
      Link: http://lkml.kernel.org/r/1490821682-23228-1-git-send-email-mike.kravetz@oracle.comSigned-off-by: NMike Kravetz <mike.kravetz@oracle.com>
      Reported-by: NDmitry Vyukov <dvyukov@google.com>
      Acked-by: NHillf Danton <hillf.zj@alibaba-inc.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      ff8c0c53
    • N
      mm, hugetlb: use pte_present() instead of pmd_present() in follow_huge_pmd() · c9d398fa
      Naoya Horiguchi 提交于
      I found the race condition which triggers the following bug when
      move_pages() and soft offline are called on a single hugetlb page
      concurrently.
      
          Soft offlining page 0x119400 at 0x700000000000
          BUG: unable to handle kernel paging request at ffffea0011943820
          IP: follow_huge_pmd+0x143/0x190
          PGD 7ffd2067
          PUD 7ffd1067
          PMD 0
              [61163.582052] Oops: 0000 [#1] SMP
          Modules linked in: binfmt_misc ppdev virtio_balloon parport_pc pcspkr i2c_piix4 parport i2c_core acpi_cpufreq ip_tables xfs libcrc32c ata_generic pata_acpi virtio_blk 8139too crc32c_intel ata_piix serio_raw libata virtio_pci 8139cp virtio_ring virtio mii floppy dm_mirror dm_region_hash dm_log dm_mod [last unloaded: cap_check]
          CPU: 0 PID: 22573 Comm: iterate_numa_mo Tainted: P           OE   4.11.0-rc2-mm1+ #2
          Hardware name: Red Hat KVM, BIOS 0.5.1 01/01/2011
          RIP: 0010:follow_huge_pmd+0x143/0x190
          RSP: 0018:ffffc90004bdbcd0 EFLAGS: 00010202
          RAX: 0000000465003e80 RBX: ffffea0004e34d30 RCX: 00003ffffffff000
          RDX: 0000000011943800 RSI: 0000000000080001 RDI: 0000000465003e80
          RBP: ffffc90004bdbd18 R08: 0000000000000000 R09: ffff880138d34000
          R10: ffffea0004650000 R11: 0000000000c363b0 R12: ffffea0011943800
          R13: ffff8801b8d34000 R14: ffffea0000000000 R15: 000077ff80000000
          FS:  00007fc977710740(0000) GS:ffff88007dc00000(0000) knlGS:0000000000000000
          CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
          CR2: ffffea0011943820 CR3: 000000007a746000 CR4: 00000000001406f0
          Call Trace:
           follow_page_mask+0x270/0x550
           SYSC_move_pages+0x4ea/0x8f0
           SyS_move_pages+0xe/0x10
           do_syscall_64+0x67/0x180
           entry_SYSCALL64_slow_path+0x25/0x25
          RIP: 0033:0x7fc976e03949
          RSP: 002b:00007ffe72221d88 EFLAGS: 00000246 ORIG_RAX: 0000000000000117
          RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007fc976e03949
          RDX: 0000000000c22390 RSI: 0000000000001400 RDI: 0000000000005827
          RBP: 00007ffe72221e00 R08: 0000000000c2c3a0 R09: 0000000000000004
          R10: 0000000000c363b0 R11: 0000000000000246 R12: 0000000000400650
          R13: 00007ffe72221ee0 R14: 0000000000000000 R15: 0000000000000000
          Code: 81 e4 ff ff 1f 00 48 21 c2 49 c1 ec 0c 48 c1 ea 0c 4c 01 e2 49 bc 00 00 00 00 00 ea ff ff 48 c1 e2 06 49 01 d4 f6 45 bc 04 74 90 <49> 8b 7c 24 20 40 f6 c7 01 75 2b 4c 89 e7 8b 47 1c 85 c0 7e 2a
          RIP: follow_huge_pmd+0x143/0x190 RSP: ffffc90004bdbcd0
          CR2: ffffea0011943820
          ---[ end trace e4f81353a2d23232 ]---
          Kernel panic - not syncing: Fatal exception
          Kernel Offset: disabled
      
      This bug is triggered when pmd_present() returns true for non-present
      hugetlb, so fixing the present check in follow_huge_pmd() prevents it.
      Using pmd_present() to determine present/non-present for hugetlb is not
      correct, because pmd_present() checks multiple bits (not only
      _PAGE_PRESENT) for historical reason and it can misjudge hugetlb state.
      
      Fixes: e66f17ff ("mm/hugetlb: take page table lock in follow_huge_pmd()")
      Link: http://lkml.kernel.org/r/1490149898-20231-1-git-send-email-n-horiguchi@ah.jp.nec.comSigned-off-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com>
      Acked-by: NHillf Danton <hillf.zj@alibaba-inc.com>
      Cc: Hugh Dickins <hughd@google.com>
      Cc: Michal Hocko <mhocko@kernel.org>
      Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
      Cc: Mike Kravetz <mike.kravetz@oracle.com>
      Cc: Christian Borntraeger <borntraeger@de.ibm.com>
      Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
      Cc: <stable@vger.kernel.org>        [4.0+]
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      c9d398fa
  5. 10 3月, 2017 1 次提交
  6. 02 3月, 2017 1 次提交
  7. 25 2月, 2017 2 次提交
  8. 23 2月, 2017 5 次提交
  9. 11 1月, 2017 1 次提交
  10. 13 12月, 2016 4 次提交
  11. 12 11月, 2016 1 次提交
  12. 08 10月, 2016 5 次提交
  13. 12 8月, 2016 1 次提交
  14. 03 8月, 2016 2 次提交