- 31 12月, 2015 4 次提交
-
-
由 Al Viro 提交于
Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk> Tested-by: NJoshua Schmid <jschmid@suse.com> Tested-by: NEric Wheeler <bcache@linux.ewheeler.net> Cc: Kent Overstreet <kmo@daterainc.com> Cc: stable@vger.kernel.org Signed-off-by: NJens Axboe <axboe@fb.com>
-
由 Zheng Liu 提交于
This bug can be reproduced by the following script: #!/bin/bash bcache_sysfs="/sys/fs/bcache" function clear_cache() { if [ ! -e $bcache_sysfs ]; then echo "no bcache sysfs" exit fi cset_uuid=$(ls -l $bcache_sysfs|head -n 2|tail -n 1|awk '{print $9}') sudo sh -c "echo $cset_uuid > /sys/block/sdb/sdb1/bcache/detach" sleep 5 sudo sh -c "echo $cset_uuid > /sys/block/sdb/sdb1/bcache/attach" } for ((i=0;i<10;i++)); do clear_cache done The warning messages look like below: [ 275.948611] ------------[ cut here ]------------ [ 275.963840] WARNING: at fs/sysfs/dir.c:512 sysfs_add_one+0xb8/0xd0() (Tainted: P W --------------- ) [ 275.979253] Hardware name: Tecal RH2285 [ 275.994106] sysfs: cannot create duplicate filename '/devices/pci0000:00/0000:00:09.0/0000:08:00.0/host4/target4:2:1/4:2:1:0/block/sdb/sdb1/bcache/cache' [ 276.024105] Modules linked in: bcache tcp_diag inet_diag ipmi_devintf ipmi_si ipmi_msghandler bonding 8021q garp stp llc ipv6 ext3 jbd loop sg iomemory_vsl(P) bnx2 microcode serio_raw i2c_i801 i2c_core iTCO_wdt iTCO_vendor_support i7core_edac edac_core shpchp ext4 jbd2 mbcache megaraid_sas pata_acpi ata_generic ata_piix dm_mod [last unloaded: scsi_wait_scan] [ 276.072643] Pid: 2765, comm: sh Tainted: P W --------------- 2.6.32 #1 [ 276.089315] Call Trace: [ 276.105801] [<ffffffff81070fe7>] ? warn_slowpath_common+0x87/0xc0 [ 276.122650] [<ffffffff810710d6>] ? warn_slowpath_fmt+0x46/0x50 [ 276.139361] [<ffffffff81205c08>] ? sysfs_add_one+0xb8/0xd0 [ 276.156012] [<ffffffff8120609b>] ? sysfs_do_create_link+0x12b/0x170 [ 276.172682] [<ffffffff81206113>] ? sysfs_create_link+0x13/0x20 [ 276.189282] [<ffffffffa03bda21>] ? bcache_device_link+0xc1/0x110 [bcache] [ 276.205993] [<ffffffffa03bfa08>] ? bch_cached_dev_attach+0x478/0x4f0 [bcache] [ 276.222794] [<ffffffffa03c4a17>] ? bch_cached_dev_store+0x627/0x780 [bcache] [ 276.239680] [<ffffffff8116783a>] ? alloc_pages_current+0xaa/0x110 [ 276.256594] [<ffffffff81203b15>] ? sysfs_write_file+0xe5/0x170 [ 276.273364] [<ffffffff811887b8>] ? vfs_write+0xb8/0x1a0 [ 276.290133] [<ffffffff811890b1>] ? sys_write+0x51/0x90 [ 276.306368] [<ffffffff8100c072>] ? system_call_fastpath+0x16/0x1b [ 276.322301] ---[ end trace 9f5d4fcdd0c3edfb ]--- [ 276.338241] ------------[ cut here ]------------ [ 276.354109] WARNING: at /home/wenqing.lz/bcache/bcache/super.c:720 bcache_device_link+0xdf/0x110 [bcache]() (Tainted: P W --------------- ) [ 276.386017] Hardware name: Tecal RH2285 [ 276.401430] Couldn't create device <-> cache set symlinks [ 276.401759] Modules linked in: bcache tcp_diag inet_diag ipmi_devintf ipmi_si ipmi_msghandler bonding 8021q garp stp llc ipv6 ext3 jbd loop sg iomemory_vsl(P) bnx2 microcode serio_raw i2c_i801 i2c_core iTCO_wdt iTCO_vendor_support i7core_edac edac_core shpchp ext4 jbd2 mbcache megaraid_sas pata_acpi ata_generic ata_piix dm_mod [last unloaded: scsi_wait_scan] [ 276.465477] Pid: 2765, comm: sh Tainted: P W --------------- 2.6.32 #1 [ 276.482169] Call Trace: [ 276.498610] [<ffffffff81070fe7>] ? warn_slowpath_common+0x87/0xc0 [ 276.515405] [<ffffffff810710d6>] ? warn_slowpath_fmt+0x46/0x50 [ 276.532059] [<ffffffffa03bda3f>] ? bcache_device_link+0xdf/0x110 [bcache] [ 276.548808] [<ffffffffa03bfa08>] ? bch_cached_dev_attach+0x478/0x4f0 [bcache] [ 276.565569] [<ffffffffa03c4a17>] ? bch_cached_dev_store+0x627/0x780 [bcache] [ 276.582418] [<ffffffff8116783a>] ? alloc_pages_current+0xaa/0x110 [ 276.599341] [<ffffffff81203b15>] ? sysfs_write_file+0xe5/0x170 [ 276.616142] [<ffffffff811887b8>] ? vfs_write+0xb8/0x1a0 [ 276.632607] [<ffffffff811890b1>] ? sys_write+0x51/0x90 [ 276.648671] [<ffffffff8100c072>] ? system_call_fastpath+0x16/0x1b [ 276.664756] ---[ end trace 9f5d4fcdd0c3edfc ]--- We forget to clear BCACHE_DEV_UNLINK_DONE flag in bcache_device_attach() function when we attach a backing device first time. After detaching this backing device, this flag will be true and sysfs_remove_link() isn't called in bcache_device_unlink(). Then when we attach this backing device again, sysfs_create_link() will return EEXIST error in bcache_device_link(). So the fix is trival and we clear this flag in bcache_device_link(). Signed-off-by: NZheng Liu <wenqing.lz@taobao.com> Tested-by: NJoshua Schmid <jschmid@suse.com> Tested-by: NEric Wheeler <bcache@linux.ewheeler.net> Cc: Kent Overstreet <kmo@daterainc.com> Cc: stable@vger.kernel.org Signed-off-by: NJens Axboe <axboe@fb.com>
-
由 Kent Overstreet 提交于
Signed-off-by: NTakashi Iwai <tiwai@suse.de> Tested-by: NEric Wheeler <bcache@linux.ewheeler.net> Cc: Kent Overstreet <kmo@daterainc.com> Cc: stable@vger.kernel.org Signed-off-by: NJens Axboe <axboe@fb.com>
-
由 Zheng Liu 提交于
Subject : [PATCH v2] bcache: fix a livelock in btree lock Date : Wed, 25 Feb 2015 20:32:09 +0800 (02/25/2015 04:32:09 AM) This commit tries to fix a livelock in bcache. This livelock might happen when we causes a huge number of cache misses simultaneously. When we get a cache miss, bcache will execute the following path. ->cached_dev_make_request() ->cached_dev_read() ->cached_lookup() ->bch->btree_map_keys() ->btree_root() <------------------------ ->bch_btree_map_keys_recurse() | ->cache_lookup_fn() | ->cached_dev_cache_miss() | ->bch_btree_insert_check_key() -| [If btree->seq is not equal to seq + 1, we should return EINTR and traverse btree again.] In bch_btree_insert_check_key() function we first need to check upgrade flag (op->lock == -1), and when this flag is true we need to release read btree->lock and try to take write btree->lock. During taking and releasing this write lock, btree->seq will be monotone increased in order to prevent other threads modify this in cache miss (see btree.h:74). But if there are some cache misses caused by some requested, we could meet a livelock because btree->seq is always changed by others. Thus no one can make progress. This commit will try to take write btree->lock if it encounters a race when we traverse btree. Although it sacrifice the scalability but we can ensure that only one can modify the btree. Signed-off-by: NZheng Liu <wenqing.lz@taobao.com> Tested-by: NJoshua Schmid <jschmid@suse.com> Tested-by: NEric Wheeler <bcache@linux.ewheeler.net> Cc: Joshua Schmid <jschmid@suse.com> Cc: Zhu Yanhai <zhu.yanhai@gmail.com> Cc: Kent Overstreet <kmo@daterainc.com> Cc: stable@vger.kernel.org Signed-off-by: NJens Axboe <axboe@fb.com>
-
- 24 11月, 2015 1 次提交
-
-
由 Mike Snitzer 提交于
When establishing a thin device's discard limits we cannot rely on the underlying thin-pool device's discard capabilities (which are inherited from the thin-pool's underlying data device) given that DM thin devices must provide discard support even when the thin-pool's underlying data device doesn't support discards. Users were exposed to this thin device discard limits regression if their thin-pool's underlying data device does _not_ support discards. This regression caused all upper-layers that called the blkdev_issue_discard() interface to not be able to issue discards to thin devices (because discard_granularity was 0). This regression wasn't caught earlier because the device-mapper-test-suite's extensive 'thin-provisioning' discard tests are only ever performed against thin-pool's with data devices that support discards. Fix is to have thin_io_hints() test the pool's 'discard_enabled' feature rather than inferring whether or not a thin device's discard support should be enabled by looking at the thin-pool's discard_granularity. Fixes: 21607670 ("dm thin: disable discard support for thin devices if pool's is disabled") Reported-by: NMike Gerber <mike@sprachgewalt.de> Signed-off-by: NMike Snitzer <snitzer@redhat.com> Cc: stable@vger.kernel.org # 4.1+
-
- 20 11月, 2015 1 次提交
-
-
由 Mikulas Patocka 提交于
A kernel thread executes __set_current_state(TASK_INTERRUPTIBLE), __add_wait_queue, spin_unlock_irq and then tests kthread_should_stop(). It is possible that the processor reorders memory accesses so that kthread_should_stop() is executed before __set_current_state(). If such reordering happens, there is a possible race on thread termination: CPU 0: calls kthread_should_stop() it tests KTHREAD_SHOULD_STOP bit, returns false CPU 1: calls kthread_stop(cc->write_thread) sets the KTHREAD_SHOULD_STOP bit calls wake_up_process on the kernel thread, that sets the thread state to TASK_RUNNING CPU 0: sets __set_current_state(TASK_INTERRUPTIBLE) spin_unlock_irq(&cc->write_thread_wait.lock) schedule() - and the process is stuck and never terminates, because the state is TASK_INTERRUPTIBLE and wake_up_process on CPU 1 already terminated Fix this race condition by using a new flag DM_CRYPT_EXIT_THREAD to signal that the kernel thread should exit. The flag is set and tested while holding cc->write_thread_wait.lock, so there is no possibility of racy access to the flag. Also, remove the unnecessary set_task_state(current, TASK_RUNNING) following the schedule() call. When the process was woken up, its state was already set to TASK_RUNNING. Other kernel code also doesn't set the state to TASK_RUNNING following schedule() (for example, do_wait_for_common in completion.c doesn't do it). Fixes: dc267621 ("dm crypt: offload writes to thread") Signed-off-by: NMikulas Patocka <mpatocka@redhat.com> Cc: stable@vger.kernel.org # v4.0+ Signed-off-by: NMike Snitzer <snitzer@redhat.com>
-
- 18 11月, 2015 3 次提交
-
-
由 Junichi Nomura 提交于
In multipath_prepare_ioctl(), - pgpath is a path selected from available paths - m->queue_io is true if we cannot send a request immediately to paths, either because: * there is no available path * the path group needs activation (pg_init) - pg_init is not started - pg_init is still running - m->queue_if_no_path is true if the device is configured to queue I/O if there are no available paths If !pgpath && !m->queue_if_no_path, the handler should return -EIO. However in the course of refactoring the condition check has broken and returns success in that case. Since bdev points to the dm device itself, dm_blk_ioctl() calls __blk_dev_driver_ioctl() for itself and recurses until crash. You could reproduce the problem like this: # dmsetup create mp --table '0 1024 multipath 0 0 0 0' # sg_inq /dev/mapper/mp <crash> [ 172.648615] BUG: unable to handle kernel paging request at fffffffc81b10268 [ 172.662843] PGD 19dd067 PUD 0 [ 172.666269] Thread overran stack, or stack corrupted [ 172.671808] Oops: 0000 [#1] SMP ... Fix the condition check with some clarifications. Fixes: e56f81e0 ("dm: refactor ioctl handling") Signed-off-by: NJun'ichi Nomura <j-nomura@ce.jp.nec.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Mike Snitzer <snitzer@redhat.com> Signed-off-by: NMike Snitzer <snitzer@redhat.com>
-
由 Mike Snitzer 提交于
(Ab)using the @bdev passed to dm_blk_ioctl() opens the potential for targets' .prepare_ioctl to fail if they go on to check the bdev for !NULL. Fixes: e56f81e0 ("dm: refactor ioctl handling") Reported-by: NJunichi Nomura <j-nomura@ce.jp.nec.com> Signed-off-by: NMike Snitzer <snitzer@redhat.com>
-
由 Junichi Nomura 提交于
dm-mpath retries ioctl, when no path is readily available and the device is configured to queue I/O in such a case. If you want to stop the retry before multipathd decides to turn off queueing mode, you could send signal for the process to exit from the loop. However the check of fatal signal has not carried along when commit 6c182cd8 ("dm mpath: fix ioctl deadlock when no paths") moved the loop from dm-mpath to dm core. As a result, we can't terminate such a process in the retry loop. Easy reproducer of the situation is: # dmsetup create mp --table '0 1024 multipath 0 0 0 0' # dmsetup message mp 0 'queue_if_no_path' # sg_inq /dev/mapper/mp then you should be able to terminate sg_inq by pressing Ctrl+C. Fixes: 6c182cd8 ("dm mpath: fix ioctl deadlock when no paths") Signed-off-by: NJun'ichi Nomura <j-nomura@ce.jp.nec.com> Cc: Hannes Reinecke <hare@suse.de> Cc: Mikulas Patocka <mpatocka@redhat.com> Signed-off-by: NMike Snitzer <snitzer@redhat.com> Cc: stable@vger.kernel.org
-
- 16 11月, 2015 1 次提交
-
-
由 Mike Snitzer 提交于
A thin-pool that is in out-of-data-space (OODS) mode may transition back to write mode -- without the admin adding more space to the thin-pool -- if/when blocks are released (either by deleting thin devices or discarding provisioned blocks). But as part of the thin-pool's earlier transition to out-of-data-space mode the thin-pool may have set the 'error_if_no_space' flag to true if the no_space_timeout expires without more space having been made available. That implementation detail, of changing the pool's error_if_no_space setting, needs to be reset back to the default that the user specified when the thin-pool's table was loaded. Otherwise we'll drop the user requested behaviour on the floor when this out-of-data-space to write mode transition occurs. Reported-by: NVivek Goyal <vgoyal@redhat.com> Signed-off-by: NMike Snitzer <snitzer@redhat.com> Acked-by: NJoe Thornber <ejt@redhat.com> Fixes: 2c43fd26 ("dm thin: fix missing out-of-data-space to write mode transition if blocks are released") Cc: stable@vger.kernel.org
-
- 09 11月, 2015 1 次提交
-
-
由 Arnd Bergmann 提交于
The recent change of the raid5-cache code to use crc32c instead of crc32 causes link errors when CONFIG_LIBCRC32C is disabled: drivers/built-in.o: In function crc32c' core.c:(.text+0x1c6060): undefined reference to `crc32c' This adds an explicit 'select' statement like all other users of this function do. Signed-off-by: NArnd Bergmann <arnd@arndb.de> Fixes: 5cb2fbd6 ("raid5-cache: use crc32c checksum") Signed-off-by: NNeilBrown <neilb@suse.com>
-
- 08 11月, 2015 1 次提交
-
-
由 Jens Axboe 提交于
No functional changes in this patch, but it prepares us for returning a more useful cookie related to the IO that was queued up. Signed-off-by: NJens Axboe <axboe@fb.com> Acked-by: NChristoph Hellwig <hch@lst.de> Acked-by: NKeith Busch <keith.busch@intel.com>
-
- 07 11月, 2015 1 次提交
-
-
由 Mel Gorman 提交于
mm, page_alloc: distinguish between being unable to sleep, unwilling to sleep and avoiding waking kswapd __GFP_WAIT has been used to identify atomic context in callers that hold spinlocks or are in interrupts. They are expected to be high priority and have access one of two watermarks lower than "min" which can be referred to as the "atomic reserve". __GFP_HIGH users get access to the first lower watermark and can be called the "high priority reserve". Over time, callers had a requirement to not block when fallback options were available. Some have abused __GFP_WAIT leading to a situation where an optimisitic allocation with a fallback option can access atomic reserves. This patch uses __GFP_ATOMIC to identify callers that are truely atomic, cannot sleep and have no alternative. High priority users continue to use __GFP_HIGH. __GFP_DIRECT_RECLAIM identifies callers that can sleep and are willing to enter direct reclaim. __GFP_KSWAPD_RECLAIM to identify callers that want to wake kswapd for background reclaim. __GFP_WAIT is redefined as a caller that is willing to enter direct reclaim and wake kswapd for background reclaim. This patch then converts a number of sites o __GFP_ATOMIC is used by callers that are high priority and have memory pools for those requests. GFP_ATOMIC uses this flag. o Callers that have a limited mempool to guarantee forward progress clear __GFP_DIRECT_RECLAIM but keep __GFP_KSWAPD_RECLAIM. bio allocations fall into this category where kswapd will still be woken but atomic reserves are not used as there is a one-entry mempool to guarantee progress. o Callers that are checking if they are non-blocking should use the helper gfpflags_allow_blocking() where possible. This is because checking for __GFP_WAIT as was done historically now can trigger false positives. Some exceptions like dm-crypt.c exist where the code intent is clearer if __GFP_DIRECT_RECLAIM is used instead of the helper due to flag manipulations. o Callers that built their own GFP flags instead of starting with GFP_KERNEL and friends now also need to specify __GFP_KSWAPD_RECLAIM. The first key hazard to watch out for is callers that removed __GFP_WAIT and was depending on access to atomic reserves for inconspicuous reasons. In some cases it may be appropriate for them to use __GFP_HIGH. The second key hazard is callers that assembled their own combination of GFP flags instead of starting with something like GFP_KERNEL. They may now wish to specify __GFP_KSWAPD_RECLAIM. It's almost certainly harmless if it's missed in most cases as other activity will wake kswapd. Signed-off-by: NMel Gorman <mgorman@techsingularity.net> Acked-by: NVlastimil Babka <vbabka@suse.cz> Acked-by: NMichal Hocko <mhocko@suse.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Vitaly Wool <vitalywool@gmail.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 06 11月, 2015 1 次提交
-
-
由 Petr Mladek 提交于
WORK_STRUCT_PENDING is a mask for testing the pending bit. test_bit() expects the number of the bit and we need to use WORK_STRUCT_PENDING_BIT there. Also work_data_bits() is defined in workqueues.h now. I have noticed this just by chance when looking how WORK_STRUCT_PENDING_BIT is used. The change is compile tested. Signed-off-by: NPetr Mladek <pmladek@suse.com> Signed-off-by: NJiri Kosina <jkosina@suse.cz>
-
- 01 11月, 2015 26 次提交
-
-
由 Song Liu 提交于
When RAID-4/5/6 array suffers from missing journal device, we put the array in read only state. We should not allow trasition to read-write states (clean and active) before replacing journal device. Signed-off-by: NSong Liu <songliubraving@fb.com> Signed-off-by: NShaohua Li <shli@fb.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Shaohua Li 提交于
Set journal disk ->raid_disk to >=0, I choose raid_disks + 1 instead of 0, because we already have a disk with ->raid_disk 0 and this causes sysfs entry creation conflict. A lot of places assumes disk with ->raid_disk >=0 is normal raid disk, so we add check for journal disk. Signed-off-by: NShaohua Li <shli@fb.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Song Liu 提交于
When journal disk is faulty and we are reassemabling the raid array, the journal disk is old. We don't allow the journal disk added to the raid array. Since journal disk is missing in the array, the raid5 will mark the array readonly. Signed-off-by: NSong Liu <songliubraving@fb.com> Signed-off-by: NShaohua Li <shli@fb.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Shaohua Li 提交于
If raid array is expected to have journal (eg, journal is set in MD superblock feature map) and the array is started without journal disk, start the array readonly. Signed-off-by: NShaohua Li <shli@fb.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Song Liu 提交于
If a raid array has journal feature bit set, add a new bit to indicate this. If the array is started without journal disk existing, we know there is something wrong. Signed-off-by: NSong Liu <songliubraving@fb.com> Signed-off-by: NShaohua Li <shli@fb.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Shaohua Li 提交于
There are 3 places the raid5-cache dispatches IO. The discard IO error doesn't matter, so we ignore it. The superblock write IO error can be handled in MD core. The remaining are log write and flush. When the IO error happens, we mark log disk faulty and fail all write IO. Read IO is still allowed to run. Userspace will get a notification too and corresponding daemon can choose setting raid array readonly for example. Signed-off-by: NShaohua Li <shli@fb.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Shaohua Li 提交于
raid5-cache uses journal disk rdev->bdev, rdev->mddev in several places. Don't allow journal disk disappear magically. On the other hand, we do need to update superblock for other disks to bump up ->events, so next time journal disk will be identified as stale. Signed-off-by: NShaohua Li <shli@fb.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Shaohua Li 提交于
Since superblock is updated infrequently, we do a simple trim of log disk (a synchronous trim) Signed-off-by: NShaohua Li <shli@fb.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Shaohua Li 提交于
journal disk can be faulty. The Journal and Faulty aren't exclusive with each other. Signed-off-by: NShaohua Li <shli@fb.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Christoph Hellwig 提交于
Simplify the bio completion handler by using bio chaining and submitting bios as soon as they are full. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NShaohua Li <shli@fb.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Christoph Hellwig 提交于
Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NShaohua Li <shli@fb.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Christoph Hellwig 提交于
Factor out code to reserve log space. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NShaohua Li <shli@fb.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Christoph Hellwig 提交于
This is the only user, and keeping all code initializing the io_unit structure together improves readbility. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NShaohua Li <shli@fb.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Christoph Hellwig 提交于
Set up bi_sector properly when we allocate an bio instead of updating it at submission time. Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Christoph Hellwig 提交于
Split out a helper to allocate a bio for log writes. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NShaohua Li <shli@fb.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Christoph Hellwig 提交于
Remove the only partially used local 'io' variable to simplify the code flow. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NShaohua Li <shli@fb.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Christoph Hellwig 提交于
For devices without a volatile write cache we don't need to send a FLUSH command to ensure writes are stable on disk, and thus can avoid the whole step of batching up bios for processing by the MD thread. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NShaohua Li <shli@fb.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Christoph Hellwig 提交于
Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NShaohua Li <shli@fb.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Christoph Hellwig 提交于
After this series we won't nessecarily have flushed the cache for these I/Os, so give the list a more neutral name. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NShaohua Li <shli@fb.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Christoph Hellwig 提交于
There is no good reason to keep the I/O unit structures around after the stripe has been written back to the RAID array. The only information we need is the log sequence number, and the checkpoint offset of the highest successfull writeback. Store those in the log structure, and free the IO units from __r5l_stripe_write_finished. Besides simplifying the code this also avoid having to keep the allocation for the I/O unit around for a potentially long time as superblock updates that checkpoint the log do not happen very often. This also fixes the previously incorrect calculation of 'free' in r5l_do_reclaim as a side effect: previous if took the last unit which isn't checkpointed into account. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NShaohua Li <shli@fb.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Shaohua Li 提交于
Move reclaim stop to quiesce handling, where is safer for this stuff. Signed-off-by: NShaohua Li <shli@fb.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Shaohua Li 提交于
Journal disk state sysfs entry should indicate it's journal Signed-off-by: NShaohua Li <shli@fb.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Song Liu 提交于
match_mddev_units is used to check whether 2 RAID arrays share same disk(s). Arrays that share disk(s) will not do resync at the same time for better performance (fewer HDD seek). However, this check should not apply to Spare, Faulty, and Journal disks, as they do not paticipate in resync. In this patch, match_mddev_units skips check for disks with flag "Faulty" or "Journal" or raid_disk < 0. Signed-off-by: NSong Liu <songliubraving@fb.com> Signed-off-by: NShaohua Li <shli@fb.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Shaohua Li 提交于
There is a case a stripe gets delayed forever. 1. a stripe finishes construction 2. a new bio hits the stripe 3. handle_stripe runs for the stripe. The stripe gets DELAYED bit set since construction can't run for new bio (the stripe is locked since step 1) Without log, handle_stripe will call ops_run_io. After IO finishes, the stripe gets unlocked and the stripe will restart and run construction for the new bio. With log, ops_run_io need to run two times. If the DELAYED bit set, the stripe can't enter into the handle_list, so the second ops_run_io doesn't run, which leaves the stripe stalled. Signed-off-by: NShaohua Li <shli@fb.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Shaohua Li 提交于
stripes could finish out of order. Hence r5l_move_io_unit_list() of __r5l_stripe_write_finished might not move any entry and leave stripe_end_ios list empty. This applies on top of http://marc.info/?l=linux-raid&m=144122700510667Signed-off-by: NShaohua Li <shli@fb.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-
由 Shaohua Li 提交于
If a raid array has journal, the journal can guarantee the consistency, we can skip resync after a unclean shutdown. The exception is raid creation or user initiated resync, which we still do a raid resync. Signed-off-by: NShaohua Li <shli@fb.com> Signed-off-by: NNeilBrown <neilb@suse.com>
-