- 09 11月, 2019 1 次提交
-
-
由 Tuong Lien 提交于
When user sets RX key for a peer not existing on the own node, a new node entry is needed to which the RX key will be attached. However, since the peer node address (& capabilities) is unknown at that moment, only the node-ID is provided, this commit allows the creation of a node with only the data that we call as “preliminary”. A preliminary node is not the object of the “tipc_node_find()” but the “tipc_node_find_by_id()”. Once the first message i.e. LINK_CONFIG comes from that peer, and is successfully decrypted by the own node, the actual peer node data will be properly updated and the node will function as usual. In addition, the node timer always starts when a node object is created so if a preliminary node is not used, it will be cleaned up. The later encryption functions will also use the node timer and be able to create a preliminary node automatically when needed. Acked-by: NYing Xue <ying.xue@windreiver.com> Acked-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NTuong Lien <tuong.t.lien@dektech.com.au> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 08 11月, 2019 1 次提交
-
-
由 Hoang Le 提交于
Currently, we scan over all network namespaces at each received discovery message in order to check if the sending peer might be present in a host local namespaces. This is unnecessary since we can assume that a peer will not change its location during an established session. We now improve the condition for this testing so that we don't perform any redundant scans. Fixes: f73b1281 ("tipc: improve throughput between nodes in netns") Acked-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NHoang Le <hoang.h.le@dektech.com.au> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 07 11月, 2019 1 次提交
-
-
由 Hoang Le 提交于
There are two improvements when re-calculate cluster capabilities: - When deleting a specific down node, need to re-calculate. - In tipc_node_cleanup(), do not need to re-calculate if node is still existing in cluster. Acked-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NHoang Le <hoang.h.le@dektech.com.au> Acked-by: Jon Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 30 10月, 2019 1 次提交
-
-
由 Hoang Le 提交于
Currently, TIPC transports intra-node user data messages directly socket to socket, hence shortcutting all the lower layers of the communication stack. This gives TIPC very good intra node performance, both regarding throughput and latency. We now introduce a similar mechanism for TIPC data traffic across network namespaces located in the same kernel. On the send path, the call chain is as always accompanied by the sending node's network name space pointer. However, once we have reliably established that the receiving node is represented by a namespace on the same host, we just replace the namespace pointer with the receiving node/namespace's ditto, and follow the regular socket receive patch though the receiving node. This technique gives us a throughput similar to the node internal throughput, several times larger than if we let the traffic go though the full network stacks. As a comparison, max throughput for 64k messages is four times larger than TCP throughput for the same type of traffic. To meet any security concerns, the following should be noted. - All nodes joining a cluster are supposed to have been be certified and authenticated by mechanisms outside TIPC. This is no different for nodes/namespaces on the same host; they have to auto discover each other using the attached interfaces, and establish links which are supervised via the regular link monitoring mechanism. Hence, a kernel local node has no other way to join a cluster than any other node, and have to obey to policies set in the IP or device layers of the stack. - Only when a sender has established with 100% certainty that the peer node is located in a kernel local namespace does it choose to let user data messages, and only those, take the crossover path to the receiving node/namespace. - If the receiving node/namespace is removed, its namespace pointer is invalidated at all peer nodes, and their neighbor link monitoring will eventually note that this node is gone. - To ensure the "100% certainty" criteria, and prevent any possible spoofing, received discovery messages must contain a proof that the sender knows a common secret. We use the hash mix of the sending node/namespace for this purpose, since it can be accessed directly by all other namespaces in the kernel. Upon reception of a discovery message, the receiver checks this proof against all the local namespaces'hash_mix:es. If it finds a match, that, along with a matching node id and cluster id, this is deemed sufficient proof that the peer node in question is in a local namespace, and a wormhole can be opened. - We should also consider that TIPC is intended to be a cluster local IPC mechanism (just like e.g. UNIX sockets) rather than a network protocol, and hence we think it can justified to allow it to shortcut the lower protocol layers. Regarding traceability, we should notice that since commit 6c9081a3 ("tipc: add loopback device tracking") it is possible to follow the node internal packet flow by just activating tcpdump on the loopback interface. This will be true even for this mechanism; by activating tcpdump on the involved nodes' loopback interfaces their inter-name space messaging can easily be tracked. v2: - update 'net' pointer when node left/rejoined v3: - grab read/write lock when using node ref obj v4: - clone traffics between netns to loopback Suggested-by: NJon Maloy <jon.maloy@ericsson.com> Acked-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NHoang Le <hoang.h.le@dektech.com.au> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 06 10月, 2019 1 次提交
-
-
由 Jiri Pirko 提交于
Benefit from the fact that the generic netlink code can parse the attrs for dumpit op and avoid need to parse it in the op callback. Signed-off-by: NJiri Pirko <jiri@mellanox.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 19 8月, 2019 1 次提交
-
-
由 Jon Maloy 提交于
The policy for handling the skb list locks on the send and receive paths is simple. - On the send path we never need to grab the lock on the 'xmitq' list when the destination is an exernal node. - On the receive path we always need to grab the lock on the 'inputq' list, irrespective of source node. However, when transmitting node local messages those will eventually end up on the receive path of a local socket, meaning that the argument 'xmitq' in tipc_node_xmit() will become the 'ínputq' argument in the function tipc_sk_rcv(). This has been handled by always initializing the spinlock of the 'xmitq' list at message creation, just in case it may end up on the receive path later, and despite knowing that the lock in most cases never will be used. This approach is inaccurate and confusing, and has also concealed the fact that the stated 'no lock grabbing' policy for the send path is violated in some cases. We now clean up this by never initializing the lock at message creation, instead doing this at the moment we find that the message actually will enter the receive path. At the same time we fix the four locations where we incorrectly access the spinlock on the send/error path. This patch also reverts commit d12cffe9 ("tipc: ensure head->lock is initialised") which has now become redundant. CC: Eric Dumazet <edumazet@google.com> Reported-by: NChris Packham <chris.packham@alliedtelesis.co.nz> Acked-by: NYing Xue <ying.xue@windriver.com> Signed-off-by: NJon Maloy <jon.maloy@ericsson.com> Reviewed-by: NXin Long <lucien.xin@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 09 8月, 2019 1 次提交
-
-
由 John Rutherford 提交于
Since node internal messages are passed directly to the socket, it is not possible to observe those messages via tcpdump or wireshark. We now remedy this by making it possible to clone such messages and send the clones to the loopback interface. The clones are dropped at reception and have no functional role except making the traffic visible. The feature is enabled if network taps are active for the loopback device. pcap filtering restrictions require the messages to be presented to the receiving side of the loopback device. v3 - Function dev_nit_active used to check for network taps. - Procedure netif_rx_ni used to send cloned messages to loopback device. Signed-off-by: NJohn Rutherford <john.rutherford@dektech.com.au> Acked-by: NJon Maloy <jon.maloy@ericsson.com> Acked-by: NYing Xue <ying.xue@windriver.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 26 7月, 2019 1 次提交
-
-
由 Tuong Lien 提交于
This commit along with the next one are to resolve the issues with the link changeover mechanism. See that commit for details. Basically, for the link synching, from now on, we will send only one single ("dummy") SYNCH message to peer. The SYNCH message does not contain any data, just a header conveying the synch point to the peer. A new node capability flag ("TIPC_TUNNEL_ENHANCED") is introduced for backward compatible! Acked-by: NYing Xue <ying.xue@windriver.com> Acked-by: NJon Maloy <jon.maloy@ericsson.com> Suggested-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NTuong Lien <tuong.t.lien@dektech.com.au> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 18 7月, 2019 1 次提交
-
-
由 Jon Maloy 提交于
The tipc_msg_validate() function leaves a boolean flag 'validated' in the validated buffer's control block, to avoid performing this action more than once. However, at reception of new packets, the position of this field may already have been set by lower layer protocols, so that the packet is erroneously perceived as already validated by TIPC. We fix this by initializing the said field to 'false' before performing the initial validation. Signed-off-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 26 6月, 2019 1 次提交
-
-
由 Jon Maloy 提交于
We rename the inline function msg_get_wrapped() to the more comprehensible msg_inner_hdr(). Signed-off-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 19 6月, 2019 1 次提交
-
-
由 Tuong Lien 提交于
It appears that a FAILOVER_MSG can come from peer even when the failure link is resetting (i.e. just after the 'node_write_unlock()'...). This means the failover procedure on the node has not been started yet. The situation is as follows: node1 node2 linkb linka linka linkb | | | | | | x failure | | | RESETTING | | | | | | x failure RESET | | RESETTING FAILINGOVER | | | (FAILOVER_MSG) | | |<-------------------------------------------------| | *FAILINGOVER | | | | | (dummy FAILOVER_MSG) | | |------------------------------------------------->| | RESET | | FAILOVER_END | FAILINGOVER RESET | . . . . . . . . . . . . Once this happens, the link failover procedure will be triggered wrongly on the receiving node since the node isn't in FAILINGOVER state but then another link failover will be carried out. The consequences are: 1) A peer might get stuck in FAILINGOVER state because the 'sync_point' was set, reset and set incorrectly, the criteria to end the failover would not be met, it could keep waiting for a message that has already received. 2) The early FAILOVER_MSG(s) could be queued in the link failover deferdq but would be purged or not pulled out because the 'drop_point' was not set correctly. 3) The early FAILOVER_MSG(s) could be dropped too. 4) The dummy FAILOVER_MSG could make the peer leaving FAILINGOVER state shortly, but later on it would be restarted. The same situation can also happen when the link is in PEER_RESET state and a FAILOVER_MSG arrives. The commit resolves the issues by forcing the link down immediately, so the failover procedure will be started normally (which is the same as when receiving a FAILOVER_MSG and the link is in up state). Also, the function "tipc_node_link_failover()" is toughen to avoid such a situation from happening. Acked-by: NJon Maloy <jon.maloy@ericsson.se> Signed-off-by: NTuong Lien <tuong.t.lien@dektech.com.au> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 04 5月, 2019 1 次提交
-
-
由 Tuong Lien 提交于
TIPC link can temporarily fall into "half-establish" that only one of the link endpoints is ESTABLISHED and starts to send traffic, PROTOCOL messages, whereas the other link endpoint is not up (e.g. immediately when the endpoint receives ACTIVATE_MSG, the network interface goes down...). This is a normal situation and will be settled because the link endpoint will be eventually brought down after the link tolerance time. However, the situation will become worse when the second link is established before the first link endpoint goes down, For example: 1. Both links <1A-2A>, <1B-2B> down 2. Link endpoint 2A up, but 1A still down (e.g. due to network disturbance, wrong session, etc.) 3. Link <1B-2B> up 4. Link endpoint 2A down (e.g. due to link tolerance timeout) 5. Node B starts failover onto link <1B-2B> ==> Node A does never start link failover. When the "half-failover" situation happens, two consequences have been observed: a) Peer link/node gets stuck in FAILINGOVER state; b) Traffic or user messages that peer node is trying to failover onto the second link can be partially or completely dropped by this node. The consequence a) was actually solved by commit c140eb16 ("tipc: fix failover problem"), but that commit didn't cover the b). It's due to the fact that the tunnel link endpoint has never been prepared for a failover, so the 'l->drop_point' (and the other data...) is not set correctly. When a TUNNEL_MSG from peer node arrives on the link, depending on the inner message's seqno and the current 'l->drop_point' value, the message can be dropped (- treated as a duplicate message) or processed. At this early stage, the traffic messages from peer are likely to be NAME_DISTRIBUTORs, this means some name table entries will be missed on the node forever! The commit resolves the issue by starting the FAILOVER process on this node as well. Another benefit from this solution is that we ensure the link will not be re-established until the failover ends. Acked-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NTuong Lien <tuong.t.lien@dektech.com.au> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 28 4月, 2019 2 次提交
-
-
由 Johannes Berg 提交于
We currently have two levels of strict validation: 1) liberal (default) - undefined (type >= max) & NLA_UNSPEC attributes accepted - attribute length >= expected accepted - garbage at end of message accepted 2) strict (opt-in) - NLA_UNSPEC attributes accepted - attribute length >= expected accepted Split out parsing strictness into four different options: * TRAILING - check that there's no trailing data after parsing attributes (in message or nested) * MAXTYPE - reject attrs > max known type * UNSPEC - reject attributes with NLA_UNSPEC policy entries * STRICT_ATTRS - strictly validate attribute size The default for future things should be *everything*. The current *_strict() is a combination of TRAILING and MAXTYPE, and is renamed to _deprecated_strict(). The current regular parsing has none of this, and is renamed to *_parse_deprecated(). Additionally it allows us to selectively set one of the new flags even on old policies. Notably, the UNSPEC flag could be useful in this case, since it can be arranged (by filling in the policy) to not be an incompatible userspace ABI change, but would then going forward prevent forgetting attribute entries. Similar can apply to the POLICY flag. We end up with the following renames: * nla_parse -> nla_parse_deprecated * nla_parse_strict -> nla_parse_deprecated_strict * nlmsg_parse -> nlmsg_parse_deprecated * nlmsg_parse_strict -> nlmsg_parse_deprecated_strict * nla_parse_nested -> nla_parse_nested_deprecated * nla_validate_nested -> nla_validate_nested_deprecated Using spatch, of course: @@ expression TB, MAX, HEAD, LEN, POL, EXT; @@ -nla_parse(TB, MAX, HEAD, LEN, POL, EXT) +nla_parse_deprecated(TB, MAX, HEAD, LEN, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse_strict(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated_strict(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression TB, MAX, NLA, POL, EXT; @@ -nla_parse_nested(TB, MAX, NLA, POL, EXT) +nla_parse_nested_deprecated(TB, MAX, NLA, POL, EXT) @@ expression START, MAX, POL, EXT; @@ -nla_validate_nested(START, MAX, POL, EXT) +nla_validate_nested_deprecated(START, MAX, POL, EXT) @@ expression NLH, HDRLEN, MAX, POL, EXT; @@ -nlmsg_validate(NLH, HDRLEN, MAX, POL, EXT) +nlmsg_validate_deprecated(NLH, HDRLEN, MAX, POL, EXT) For this patch, don't actually add the strict, non-renamed versions yet so that it breaks compile if I get it wrong. Also, while at it, make nla_validate and nla_parse go down to a common __nla_validate_parse() function to avoid code duplication. Ultimately, this allows us to have very strict validation for every new caller of nla_parse()/nlmsg_parse() etc as re-introduced in the next patch, while existing things will continue to work as is. In effect then, this adds fully strict validation for any new command. Signed-off-by: NJohannes Berg <johannes.berg@intel.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Michal Kubecek 提交于
Even if the NLA_F_NESTED flag was introduced more than 11 years ago, most netlink based interfaces (including recently added ones) are still not setting it in kernel generated messages. Without the flag, message parsers not aware of attribute semantics (e.g. wireshark dissector or libmnl's mnl_nlmsg_fprintf()) cannot recognize nested attributes and won't display the structure of their contents. Unfortunately we cannot just add the flag everywhere as there may be userspace applications which check nlattr::nla_type directly rather than through a helper masking out the flags. Therefore the patch renames nla_nest_start() to nla_nest_start_noflag() and introduces nla_nest_start() as a wrapper adding NLA_F_NESTED. The calls which add NLA_F_NESTED manually are rewritten to use nla_nest_start(). Except for changes in include/net/netlink.h, the patch was generated using this semantic patch: @@ expression E1, E2; @@ -nla_nest_start(E1, E2) +nla_nest_start_noflag(E1, E2) @@ expression E1, E2; @@ -nla_nest_start_noflag(E1, E2 | NLA_F_NESTED) +nla_nest_start(E1, E2) Signed-off-by: NMichal Kubecek <mkubecek@suse.cz> Acked-by: NJiri Pirko <jiri@mellanox.com> Acked-by: NDavid Ahern <dsahern@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 12 4月, 2019 1 次提交
-
-
由 Jon Maloy 提交于
In the function tipc_node_create() we protect the peer capability field by using the node rw_lock. However, we access the lock directly instead of using the dedicated functions for this, as we do everywhere else in node.c. This cosmetic spot is fixed here. Fixes: 40999f11 ("tipc: make link capability update thread safe") Signed-off-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 24 3月, 2019 1 次提交
-
-
由 Jon Maloy 提交于
When checking the code with clang -Wsometimes-uninitialized we get the following warning: if (!tipc_link_is_establishing(l)) { ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~ net/tipc/node.c:847:46: note: uninitialized use occurs here tipc_bearer_xmit(n->net, bearer_id, &xmitq, maddr); net/tipc/node.c:831:2: note: remove the 'if' if its condition is always true if (!tipc_link_is_establishing(l)) { ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ net/tipc/node.c:821:31: note: initialize the variable 'maddr' to silence this warning struct tipc_media_addr *maddr; We fix this by initializing 'maddr' to NULL. For the matter of clarity, we also test if 'xmitq' is non-empty before we use it and 'maddr' further down in the function. It will never happen that 'xmitq' is non- empty at the same time as 'maddr' is NULL, so this is a sufficient test. Fixes: 598411d7 ("tipc: make resetting of links non-atomic") Reported-by: NNathan Chancellor <natechancellor@gmail.com> Signed-off-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 20 3月, 2019 1 次提交
-
-
由 Hoang Le 提交于
As a preparation for introducing a smooth switching between replicast and broadcast method for multicast message, We have to introduce a new capability flag TIPC_MCAST_RBCTL to handle this new feature. During a cluster upgrade a node can come back with this new capabilities which also must be reflected in the cluster capabilities field. The new feature is only applicable if all node in the cluster supports this new capability. Acked-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NHoang Le <hoang.h.le@dektech.com.au> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 12 2月, 2019 1 次提交
-
-
由 Tuong Lien 提交于
When a link endpoint is re-created (e.g. after a node reboot or interface reset), the link session number is varied by random, the peer endpoint will be synced with this new session number before the link is re-established. However, there is a shortcoming in this mechanism that can lead to the link never re-established or faced with a failure then. It happens when the peer endpoint is ready in ESTABLISHING state, the 'peer_session' as well as the 'in_session' flag have been set, but suddenly this link endpoint leaves. When it comes back with a random session number, there are two situations possible: 1/ If the random session number is larger than (or equal to) the previous one, the peer endpoint will be updated with this new session upon receipt of a RESET_MSG from this endpoint, and the link can be re- established as normal. Otherwise, all the RESET_MSGs from this endpoint will be rejected by the peer. In turn, when this link endpoint receives one ACTIVATE_MSG from the peer, it will move to ESTABLISHED and start to send STATE_MSGs, but again these messages will be dropped by the peer due to wrong session. The peer link endpoint can still become ESTABLISHED after receiving a traffic message from this endpoint (e.g. a BCAST_PROTOCOL or NAME_DISTRIBUTOR), but since all the STATE_MSGs are invalid, the link will be forced down sooner or later! Even in case the random session number is larger than the previous one, it can be that the ACTIVATE_MSG from the peer arrives first, and this link endpoint moves quickly to ESTABLISHED without sending out any RESET_MSG yet. Consequently, the peer link will not be updated with the new session number, and the same link failure scenario as above will happen. 2/ Another situation can be that, the peer link endpoint was reset due to any reasons in the meantime, its link state was set to RESET from ESTABLISHING but still in session, i.e. the 'in_session' flag is not reset... Now, if the random session number from this endpoint is less than the previous one, all the RESET_MSGs from this endpoint will be rejected by the peer. In the other direction, when this link endpoint receives a RESET_MSG from the peer, it moves to ESTABLISHING and starts to send ACTIVATE_MSGs, but all these messages will be rejected by the peer too. As a result, the link cannot be re-established but gets stuck with this link endpoint in state ESTABLISHING and the peer in RESET! Solution: =========== This link endpoint should not go directly to ESTABLISHED when getting ACTIVATE_MSG from the peer which may belong to the old session if the link was re-created. To ensure the session to be correct before the link is re-established, the peer endpoint in ESTABLISHING state will send back the last session number in ACTIVATE_MSG for a verification at this endpoint. Then, if needed, a new and more appropriate session number will be regenerated to force a re-synch first. In addition, when a link in ESTABLISHING state is reset, its state will move to RESET according to the link FSM, along with resetting the 'in_session' flag (and the other data) as a normal link reset, it will also be deleted if requested. The solution is backward compatible. Acked-by: NJon Maloy <jon.maloy@ericsson.com> Acked-by: NYing Xue <ying.xue@windriver.com> Signed-off-by: NTuong Lien <tuong.t.lien@dektech.com.au> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 20 12月, 2018 3 次提交
-
-
由 Tuong Lien 提交于
The commit adds the new trace_events for TIPC node object: trace_tipc_node_create() trace_tipc_node_delete() trace_tipc_node_lost_contact() trace_tipc_node_timeout() trace_tipc_node_link_up() trace_tipc_node_link_down() trace_tipc_node_reset_links() trace_tipc_node_fsm_evt() trace_tipc_node_check_state() Also, enables the traces for the following cases: - When a node is created/deleted; - When a node contact is lost; - When a node timer is timed out; - When a node link is up/down; - When all node links are reset; - When node state is changed; - When a skb comes and node state needs to be checked/updated. Acked-by: NYing Xue <ying.xue@windriver.com> Tested-by: NYing Xue <ying.xue@windriver.com> Acked-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NTuong Lien <tuong.t.lien@dektech.com.au> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Tuong Lien 提交于
The commit adds the new trace_events for TIPC link object: trace_tipc_link_timeout() trace_tipc_link_fsm() trace_tipc_link_reset() trace_tipc_link_too_silent() trace_tipc_link_retrans() trace_tipc_link_bc_ack() trace_tipc_link_conges() And the traces for PROTOCOL messages at building and receiving: trace_tipc_proto_build() trace_tipc_proto_rcv() Note: a) The 'tipc_link_too_silent' event will only happen when the 'silent_intv_cnt' is about to reach the 'abort_limit' value (and the event is enabled). The benefit for this kind of event is that we can get an early indication about TIPC link loss issue due to timeout, then can do some necessary actions for troubleshooting. For example: To trigger the 'tipc_proto_rcv' when the 'too_silent' event occurs: echo 'enable_event:tipc:tipc_proto_rcv' > \ events/tipc/tipc_link_too_silent/trigger And disable it when TIPC link is reset: echo 'disable_event:tipc:tipc_proto_rcv' > \ events/tipc/tipc_link_reset/trigger b) The 'tipc_link_retrans' or 'tipc_link_bc_ack' event is useful to trace TIPC retransmission issues. In addition, the commit adds the 'trace_tipc_list/link_dump()' at the 'retransmission failure' case. Then, if the issue occurs, the link 'transmq' along with the link data can be dumped for post-analysis. These dump events should be enabled by default since it will only take effect when the failure happens. The same approach is also applied for the faulty case that the validation of protocol message is failed. Acked-by: NYing Xue <ying.xue@windriver.com> Tested-by: NYing Xue <ying.xue@windriver.com> Acked-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NTuong Lien <tuong.t.lien@dektech.com.au> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Tuong Lien 提交于
As for the sake of debugging/tracing, the commit enables tracepoints in TIPC along with some general trace_events as shown below. It also defines some 'tipc_*_dump()' functions that allow to dump TIPC object data whenever needed, that is, for general debug purposes, ie. not just for the trace_events. The following trace_events are now available: - trace_tipc_skb_dump(): allows to trace and dump TIPC msg & skb data, e.g. message type, user, droppable, skb truesize, cloned skb, etc. - trace_tipc_list_dump(): allows to trace and dump any TIPC buffers or queues, e.g. TIPC link transmq, socket receive queue, etc. - trace_tipc_sk_dump(): allows to trace and dump TIPC socket data, e.g. sk state, sk type, connection type, rmem_alloc, socket queues, etc. - trace_tipc_link_dump(): allows to trace and dump TIPC link data, e.g. link state, silent_intv_cnt, gap, bc_gap, link queues, etc. - trace_tipc_node_dump(): allows to trace and dump TIPC node data, e.g. node state, active links, capabilities, link entries, etc. How to use: Put the trace functions at any places where we want to dump TIPC data or events. Note: a) The dump functions will generate raw data only, that is, to offload the trace event's processing, it can require a tool or script to parse the data but this should be simple. b) The trace_tipc_*_dump() should be reserved for a failure cases only (e.g. the retransmission failure case) or where we do not expect to happen too often, then we can consider enabling these events by default since they will almost not take any effects under normal conditions, but once the rare condition or failure occurs, we get the dumped data fully for post-analysis. For other trace purposes, we can reuse these trace classes as template but different events. c) A trace_event is only effective when we enable it. To enable the TIPC trace_events, echo 1 to 'enable' files in the events/tipc/ directory in the 'debugfs' file system. Normally, they are located at: /sys/kernel/debug/tracing/events/tipc/ For example: To enable the tipc_link_dump event: echo 1 > /sys/kernel/debug/tracing/events/tipc/tipc_link_dump/enable To enable all the TIPC trace_events: echo 1 > /sys/kernel/debug/tracing/events/tipc/enable To collect the trace data: cat trace or cat trace_pipe > /trace.out & To disable all the TIPC trace_events: echo 0 > /sys/kernel/debug/tracing/events/tipc/enable To clear the trace buffer: echo > trace d) Like the other trace_events, the feature like 'filter' or 'trigger' is also usable for the tipc trace_events. For more details, have a look at: Documentation/trace/ftrace.txt MAINTAINERS | add two new files 'trace.h' & 'trace.c' in tipc Acked-by: NYing Xue <ying.xue@windriver.com> Tested-by: NYing Xue <ying.xue@windriver.com> Acked-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NTuong Lien <tuong.t.lien@dektech.com.au> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 19 12月, 2018 1 次提交
-
-
由 Zhenbo Gao 提交于
NAME_DISTRIBUTOR messages are transmitted through unicast link on TIPC 2.0, by contrast, the messages are delivered through broadcast link on TIPC 1.7. But at present, NAME_DISTRIBUTOR messages received by broadcast link cannot be handled in tipc_rcv() until an unicast message arrives, which may lead to a significant delay to update name table. To avoid this delay, we will also deal with broadcast NAME_DISTRIBUTOR message on broadcast receive path. Signed-off-by: NZhenbo Gao <zhenbo.gao@windriver.com> Reviewed-by: NYing Xue <ying.xue@windriver.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 06 12月, 2018 1 次提交
-
-
由 Hoang Le 提交于
When setting LINK tolerance, node timer interval will be calculated base on the LINK with lowest tolerance. But when calculated, the old node timer interval only updated if current setting value (tolerance/4) less than old ones regardless of number of links as well as links' lowest tolerance value. This caused to two cases missing if tolerance changed as following: Case 1: 1.1/ There is one link (L1) available in the system 1.2/ Set L1's tolerance from 1500ms => lower (i.e 500ms) 1.3/ Then, fallback to default (1500ms) or higher (i.e 2000ms) Expected: node timer interval is 1500/4=375ms after 1.3 Result: node timer interval will not being updated after changing tolerance at 1.3 since its value 1500/4=375ms is not less than 500/4=125ms at 1.2. Case 2: 2.1/ There are two links (L1, L2) available in the system 2.2/ L1 and L2 tolerance value are 2000ms as initial 2.3/ Set L2's tolerance from 2000ms => lower 1500ms 2.4/ Disable link L2 (bring down its bearer) Expected: node timer interval is 2000ms/4=500ms after 2.4 Result: node timer interval will not being updated after disabling L2 since its value 2000ms/4=500ms is still not less than 1500/4=375ms at 2.3 although L2 is already not available in the system. To fix this, we start the node interval calculation by initializing it to a value larger than any conceivable calculated value. This way, the link with the lowest tolerance will always determine the calculated value. Acked-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NHoang Le <hoang.h.le@dektech.com.au> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 28 11月, 2018 1 次提交
-
-
由 Jon Maloy 提交于
We see the following lockdep warning: [ 2284.078521] ====================================================== [ 2284.078604] WARNING: possible circular locking dependency detected [ 2284.078604] 4.19.0+ #42 Tainted: G E [ 2284.078604] ------------------------------------------------------ [ 2284.078604] rmmod/254 is trying to acquire lock: [ 2284.078604] 00000000acd94e28 ((&n->timer)#2){+.-.}, at: del_timer_sync+0x5/0xa0 [ 2284.078604] [ 2284.078604] but task is already holding lock: [ 2284.078604] 00000000f997afc0 (&(&tn->node_list_lock)->rlock){+.-.}, at: tipc_node_stop+0xac/0x190 [tipc] [ 2284.078604] [ 2284.078604] which lock already depends on the new lock. [ 2284.078604] [ 2284.078604] [ 2284.078604] the existing dependency chain (in reverse order) is: [ 2284.078604] [ 2284.078604] -> #1 (&(&tn->node_list_lock)->rlock){+.-.}: [ 2284.078604] tipc_node_timeout+0x20a/0x330 [tipc] [ 2284.078604] call_timer_fn+0xa1/0x280 [ 2284.078604] run_timer_softirq+0x1f2/0x4d0 [ 2284.078604] __do_softirq+0xfc/0x413 [ 2284.078604] irq_exit+0xb5/0xc0 [ 2284.078604] smp_apic_timer_interrupt+0xac/0x210 [ 2284.078604] apic_timer_interrupt+0xf/0x20 [ 2284.078604] default_idle+0x1c/0x140 [ 2284.078604] do_idle+0x1bc/0x280 [ 2284.078604] cpu_startup_entry+0x19/0x20 [ 2284.078604] start_secondary+0x187/0x1c0 [ 2284.078604] secondary_startup_64+0xa4/0xb0 [ 2284.078604] [ 2284.078604] -> #0 ((&n->timer)#2){+.-.}: [ 2284.078604] del_timer_sync+0x34/0xa0 [ 2284.078604] tipc_node_delete+0x1a/0x40 [tipc] [ 2284.078604] tipc_node_stop+0xcb/0x190 [tipc] [ 2284.078604] tipc_net_stop+0x154/0x170 [tipc] [ 2284.078604] tipc_exit_net+0x16/0x30 [tipc] [ 2284.078604] ops_exit_list.isra.8+0x36/0x70 [ 2284.078604] unregister_pernet_operations+0x87/0xd0 [ 2284.078604] unregister_pernet_subsys+0x1d/0x30 [ 2284.078604] tipc_exit+0x11/0x6f2 [tipc] [ 2284.078604] __x64_sys_delete_module+0x1df/0x240 [ 2284.078604] do_syscall_64+0x66/0x460 [ 2284.078604] entry_SYSCALL_64_after_hwframe+0x49/0xbe [ 2284.078604] [ 2284.078604] other info that might help us debug this: [ 2284.078604] [ 2284.078604] Possible unsafe locking scenario: [ 2284.078604] [ 2284.078604] CPU0 CPU1 [ 2284.078604] ---- ---- [ 2284.078604] lock(&(&tn->node_list_lock)->rlock); [ 2284.078604] lock((&n->timer)#2); [ 2284.078604] lock(&(&tn->node_list_lock)->rlock); [ 2284.078604] lock((&n->timer)#2); [ 2284.078604] [ 2284.078604] *** DEADLOCK *** [ 2284.078604] [ 2284.078604] 3 locks held by rmmod/254: [ 2284.078604] #0: 000000003368be9b (pernet_ops_rwsem){+.+.}, at: unregister_pernet_subsys+0x15/0x30 [ 2284.078604] #1: 0000000046ed9c86 (rtnl_mutex){+.+.}, at: tipc_net_stop+0x144/0x170 [tipc] [ 2284.078604] #2: 00000000f997afc0 (&(&tn->node_list_lock)->rlock){+.-.}, at: tipc_node_stop+0xac/0x19 [...} The reason is that the node timer handler sometimes needs to delete a node which has been disconnected for too long. To do this, it grabs the lock 'node_list_lock', which may at the same time be held by the generic node cleanup function, tipc_node_stop(), during module removal. Since the latter is calling del_timer_sync() inside the same lock, we have a potential deadlock. We fix this letting the timer cleanup function use spin_trylock() instead of just spin_lock(), and when it fails to grab the lock it just returns so that the timer handler can terminate its execution. This is safe to do, since tipc_node_stop() anyway is about to delete both the timer and the node instance. Fixes: 6a939f36 ("tipc: Auto removal of peer down node instance") Acked-by: NYing Xue <ying.xue@windriver.com> Signed-off-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 02 10月, 2018 1 次提交
-
-
由 LUU Duc Canh 提交于
The initial session number when a link is created is based on a random value, taken from struct tipc_net->random. It is then incremented for each link reset to avoid mixing protocol messages from different link sessions. However, when a bearer is reset all its links are deleted, and will later be re-created using the same random value as the first time. This means that if the link never went down between creation and deletion we will still sometimes have two subsequent sessions with the same session number. In virtual environments with potentially long transmission times this has turned out to be a real problem. We now fix this by randomizing the session number each time a link is created. With a session number size of 16 bits this gives a risk of session collision of 1/64k. To reduce this further, we also introduce a sanity check on the very first STATE message arriving at a link. If this has an acknowledge value differing from 0, which is logically impossible, we ignore the message. The final risk for session collision is hence reduced to 1/4G, which should be sufficient. Signed-off-by: NLUU Duc Canh <canh.d.luu@dektech.com.au> Signed-off-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 30 9月, 2018 1 次提交
-
-
由 LUU Duc Canh 提交于
We see the following scenario: 1) Link endpoint B on node 1 discovers that its peer endpoint is gone. Since there is a second working link, failover procedure is started. 2) Link endpoint A on node 1 sends a FAILOVER message to peer endpoint A on node 2. The node item 1->2 goes to state FAILINGOVER. 3) Linke endpoint A/2 receives the failover, and is supposed to take down its parallell link endpoint B/2, while producing a FAILOVER message to send back to A/1. 4) However, B/2 has already been deleted, so no FAILOVER message can created. 5) Node 1->2 remains in state FAILINGOVER forever, refusing to receive any messages that can bring B/1 up again. We are left with a non- redundant link between node 1 and 2. We fix this with letting endpoint A/2 build a dummy FAILOVER message to send to back to A/1, so that the situation can be resolved. Signed-off-by: NLUU Duc Canh <canh.d.luu@dektech.com.au> Signed-off-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 21 7月, 2018 1 次提交
-
-
由 Jon Maloy 提交于
The commit referred to below introduced an update of the link capabilities field that is not safe. Given the recently added feature to remove idle node and link items after 5 minutes, there is a small risk that the update will happen at the very moment the targeted link is being removed. To avoid this we have to perform the update inside the node item's write lock protection. Fixes: 9012de50 ("tipc: add sequence number check for link STATE messages") Signed-off-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 12 7月, 2018 2 次提交
-
-
由 Jon Maloy 提交于
In some virtual environments we observe a significant higher number of packet reordering and delays than we have been used to traditionally. This makes it necessary with stricter checks on incoming link protocol messages' session number, which until now only has been validated for RESET messages. Since the other two message types, ACTIVATE and STATE messages also carry this number, it is easy to extend the validation check to those messages. We also introduce a flag indicating if a link has a valid peer session number or not. This eliminates the mixing of 32- and 16-bit arithmethics we are currently using to achieve this. Acked-by: NYing Xue <ying.xue@windriver.com> Signed-off-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Jon Maloy 提交于
Some switch infrastructures produce huge amounts of packet duplicates. This becomes a problem if those messages are STATE/NACK protocol messages, causing unnecessary retransmissions of already accepted packets. We now introduce a unique sequence number per STATE protocol message so that duplicates can be identified and ignored. This will also be useful when tracing such cases, and to avert replay attacks when TIPC is encrypted. For compatibility reasons we have to introduce a new capability flag TIPC_LINK_PROTO_SEQNO to handle this new feature. Signed-off-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 07 7月, 2018 1 次提交
-
-
由 Jon Maloy 提交于
The function for checking if there is an node address conflict is supposed to return a suggestion for a new address if it finds a conflict, and zero otherwise. But in case the peer being checked is previously unknown it does instead return a "suggestion" for the checked address itself. This results in a DSC_TRIAL_FAIL_MSG being sent unecessarily to the peer, and sometimes makes the trial period starting over again. Fixes: 25b0b9c4 ("tipc: handle collisions of 32-bit node address hash values") Signed-off-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 30 6月, 2018 2 次提交
-
-
A peer node is considered down if there are no active links (or) lost contact to the node. In current implementation, a peer node instance is deleted either if a) TIPC module is removed (or) b) Application can use a netlink/iproute2 interface to delete a specific down node. Thus, a down node instance lives in the system forever, unless the application explicitly removes it. We fix this by deleting the nodes which are down for a specified amount of time (5 minutes). Existing node supervision timer is used to achieve this. Acked-by: NYing Xue <ying.xue@windriver.com> Acked-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NGhantaKrishnamurthy MohanKrishna <mohan.krishna.ghanta.krishnamurthy@ericsson.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Tung Nguyen 提交于
In single-link usage, the function tipc_node_timeout() still iterates over the whole link array to handle each link. Given that the maximum number of bearers are 3, there are 2 redundant iterations with lock grab/release. Since this function is executing very frequently it makes sense to optimize it. This commit adds conditional checking to exit from the loop if the known number of configured links has already been accessed. Acked-by: NYing Xue <ying.xue@windriver.com> Signed-off-by: NTung Nguyen <tung.q.nguyen@dektech.com.au> Signed-off-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 10 5月, 2018 1 次提交
-
-
由 Ying Xue 提交于
When we get link properties through netlink interface with tipc_nl_node_get_link(), we don't validate TIPC_NLA_LINK_NAME attribute at all, instead we directly use it. As a consequence, KMSAN detected the TIPC_NLA_LINK_NAME attribute was an uninitialized value, and then posted the following complaint: ================================================================== BUG: KMSAN: uninit-value in strcmp+0xf7/0x160 lib/string.c:329 CPU: 1 PID: 4527 Comm: syz-executor655 Not tainted 4.16.0+ #87 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:17 [inline] dump_stack+0x185/0x1d0 lib/dump_stack.c:53 kmsan_report+0x142/0x240 mm/kmsan/kmsan.c:1067 __msan_warning_32+0x6c/0xb0 mm/kmsan/kmsan_instr.c:683 strcmp+0xf7/0x160 lib/string.c:329 tipc_nl_node_get_link+0x220/0x6f0 net/tipc/node.c:1881 genl_family_rcv_msg net/netlink/genetlink.c:599 [inline] genl_rcv_msg+0x1686/0x1810 net/netlink/genetlink.c:624 netlink_rcv_skb+0x378/0x600 net/netlink/af_netlink.c:2447 genl_rcv+0x63/0x80 net/netlink/genetlink.c:635 netlink_unicast_kernel net/netlink/af_netlink.c:1311 [inline] netlink_unicast+0x166b/0x1740 net/netlink/af_netlink.c:1337 netlink_sendmsg+0x1048/0x1310 net/netlink/af_netlink.c:1900 sock_sendmsg_nosec net/socket.c:630 [inline] sock_sendmsg net/socket.c:640 [inline] ___sys_sendmsg+0xec0/0x1310 net/socket.c:2046 __sys_sendmsg net/socket.c:2080 [inline] SYSC_sendmsg+0x2a3/0x3d0 net/socket.c:2091 SyS_sendmsg+0x54/0x80 net/socket.c:2087 do_syscall_64+0x309/0x430 arch/x86/entry/common.c:287 entry_SYSCALL_64_after_hwframe+0x3d/0xa2 RIP: 0033:0x445589 RSP: 002b:00007fb7ee66cdb8 EFLAGS: 00000246 ORIG_RAX: 000000000000002e RAX: ffffffffffffffda RBX: 00000000006dac24 RCX: 0000000000445589 RDX: 0000000000000000 RSI: 0000000020023000 RDI: 0000000000000003 RBP: 00000000006dac20 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 R13: 00007fffa2bf3f3f R14: 00007fb7ee66d9c0 R15: 0000000000000001 Uninit was created at: kmsan_save_stack_with_flags mm/kmsan/kmsan.c:278 [inline] kmsan_internal_poison_shadow+0xb8/0x1b0 mm/kmsan/kmsan.c:188 kmsan_kmalloc+0x94/0x100 mm/kmsan/kmsan.c:314 kmsan_slab_alloc+0x11/0x20 mm/kmsan/kmsan.c:321 slab_post_alloc_hook mm/slab.h:445 [inline] slab_alloc_node mm/slub.c:2737 [inline] __kmalloc_node_track_caller+0xaed/0x11c0 mm/slub.c:4369 __kmalloc_reserve net/core/skbuff.c:138 [inline] __alloc_skb+0x2cf/0x9f0 net/core/skbuff.c:206 alloc_skb include/linux/skbuff.h:984 [inline] netlink_alloc_large_skb net/netlink/af_netlink.c:1183 [inline] netlink_sendmsg+0x9a6/0x1310 net/netlink/af_netlink.c:1875 sock_sendmsg_nosec net/socket.c:630 [inline] sock_sendmsg net/socket.c:640 [inline] ___sys_sendmsg+0xec0/0x1310 net/socket.c:2046 __sys_sendmsg net/socket.c:2080 [inline] SYSC_sendmsg+0x2a3/0x3d0 net/socket.c:2091 SyS_sendmsg+0x54/0x80 net/socket.c:2087 do_syscall_64+0x309/0x430 arch/x86/entry/common.c:287 entry_SYSCALL_64_after_hwframe+0x3d/0xa2 ================================================================== To quiet the complaint, TIPC_NLA_LINK_NAME attribute has been validated in tipc_nl_node_get_link() before it's used. Reported-by: syzbot+df0257c92ffd4fcc58cd@syzkaller.appspotmail.com Signed-off-by: NYing Xue <ying.xue@windriver.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 27 4月, 2018 2 次提交
-
-
由 Jon Maloy 提交于
After the introduction of a 128-bit node identity it may be difficult for a user to correlate between this identity and the generated node hash address. We now try to make this easier by introducing a new ioctl() call for fetching a node identity by using the hash value as key. This will be particularly useful when we extend some of the commands in the 'tipc' tool, but we also expect regular user applications to need this feature. Acked-by: NYing Xue <ying.xue@windriver.com> Signed-off-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Jon Maloy 提交于
Commit 36a50a98 ("tipc: fix infinite loop when dumping link monitor summary") intended to fix a problem with user tool looping when max number of bearers are enabled. Unfortunately, the wrong version of the commit was posted, so the problem was not solved at all. This commit adds the missing part. Fixes: 36a50a98 ("tipc: fix infinite loop when dumping link monitor summary") Signed-off-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 20 4月, 2018 1 次提交
-
-
Currently, we have option to configure MTU of UDP media. The configured MTU takes effect on the links going up after that moment. I.e, a user has to reset bearer to have new value applied across its links. This is confusing and disturbing on a running cluster. We now introduce the functionality to change the default UDP bearer MTU in struct tipc_bearer. Additionally, the links are updated dynamically, without any need for a reset, when bearer value is changed. We leverage the existing per-link functionality and the design being symetrical to the confguration of link tolerance. Acked-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NGhantaKrishnamurthy MohanKrishna <mohan.krishna.ghanta.krishnamurthy@ericsson.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 19 4月, 2018 1 次提交
-
-
由 Tung Nguyen 提交于
When configuring the number of used bearers to MAX_BEARER and issuing command "tipc link monitor summary", the command enters infinite loop in user space. This issue happens because function tipc_nl_node_dump_monitor() returns the wrong 'prev_bearer' value when all potential monitors have been scanned. The correct behavior is to always try to scan all monitors until either the netlink message is full, in which case we return the bearer identity of the affected monitor, or we continue through the whole bearer array until we can return MAX_BEARERS. This solution also caters for the case where there may be gaps in the bearer array. Signed-off-by: NTung Nguyen <tung.q.nguyen@dektech.com.au> Signed-off-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 01 4月, 2018 2 次提交
-
-
由 Jon Maloy 提交于
With the new RB tree structure for service ranges it becomes possible to solve an old problem; - we can now allow overlapping service ranges in the table. When inserting a new service range to the tree, we use 'lower' as primary key, and when necessary 'upper' as secondary key. Since there may now be multiple service ranges matching an indicated 'lower' value, we must also add the 'upper' value to the functions used for removing publications, so that the correct, corresponding range item can be found. These changes guarantee that a well-formed publication/withdrawal item from a peer node never will be rejected, and make it possible to eliminate the problematic backlog functionality we currently have for handling such cases. Signed-off-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Jon Maloy 提交于
The current design of the binding table has an unnecessary memory consuming and complex data structure. It aggregates the service range items into an array, which is expanded by a factor two every time it becomes too small to hold a new item. Furthermore, the arrays never shrink when the number of ranges diminishes. We now replace this array with an RB tree that is holding the range items as tree nodes, each range directly holding a list of bindings. This, along with a few name changes, improves both readability and volume of the code, as well as reducing memory consumption and hopefully improving cache hit rate. Signed-off-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 27 3月, 2018 1 次提交
-
-
由 Wei Yongjun 提交于
Fixes the following sparse warning: net/tipc/node.c:336:18: warning: symbol 'tipc_node_create' was not declared. Should it be static? Signed-off-by: NWei Yongjun <weiyongjun1@huawei.com> Acked-by: NJon Maloy <jon.maloy@ericsson.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-