- 01 12月, 2022 7 次提交
-
-
由 Hugh Dickins 提交于
Can the lock_compound_mapcount() bit_spin_lock apparatus be removed now? Yes. Not by atomic64_t or cmpxchg games, those get difficult on 32-bit; but if we slightly abuse subpages_mapcount by additionally demanding that one bit be set there when the compound page is PMD-mapped, then a cascade of two atomic ops is able to maintain the stats without bit_spin_lock. This is harder to reason about than when bit_spin_locked, but I believe safe; and no drift in stats detected when testing. When there are racing removes and adds, of course the sequence of operations is less well- defined; but each operation on subpages_mapcount is atomically good. What might be disastrous, is if subpages_mapcount could ever fleetingly appear negative: but the pte lock (or pmd lock) these rmap functions are called under, ensures that a last remove cannot race ahead of a first add. Continue to make an exception for hugetlb (PageHuge) pages, though that exception can be easily removed by a further commit if necessary: leave subpages_mapcount 0, don't bother with COMPOUND_MAPPED in its case, just carry on checking compound_mapcount too in folio_mapped(), page_mapped(). Evidence is that this way goes slightly faster than the previous implementation in all cases (pmds after ptes now taking around 103ms); and relieves us of worrying about contention on the bit_spin_lock. Link: https://lkml.kernel.org/r/3978f3ca-5473-55a7-4e14-efea5968d892@google.comSigned-off-by: NHugh Dickins <hughd@google.com> Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Dan Carpenter <error27@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: James Houghton <jthoughton@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Peter Xu <peterx@redhat.com> Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zach O'Keefe <zokeefe@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
-
由 Hugh Dickins 提交于
Patch series "mm,thp,rmap: rework the use of subpages_mapcount", v2. This patch (of 3): Following suggestion from Linus, instead of counting every PTE map of a compound page in subpages_mapcount, just count how many of its subpages are PTE-mapped: this yields the exact number needed for NR_ANON_MAPPED and NR_FILE_MAPPED stats, without any need for a locked scan of subpages; and requires updating the count less often. This does then revert total_mapcount() and folio_mapcount() to needing a scan of subpages; but they are inherently racy, and need no locking, so Linus is right that the scans are much better done there. Plus (unlike in 6.1 and previous) subpages_mapcount lets us avoid the scan in the common case of no PTE maps. And page_mapped() and folio_mapped() remain scanless and just as efficient with the new meaning of subpages_mapcount: those are the functions which I most wanted to remove the scan from. The updated page_dup_compound_rmap() is no longer suitable for use by anon THP's __split_huge_pmd_locked(); but page_add_anon_rmap() can be used for that, so long as its VM_BUG_ON_PAGE(!PageLocked) is deleted. Evidence is that this way goes slightly faster than the previous implementation for most cases; but significantly faster in the (now scanless) pmds after ptes case, which started out at 870ms and was brought down to 495ms by the previous series, now takes around 105ms. Link: https://lkml.kernel.org/r/a5849eca-22f1-3517-bf29-95d982242742@google.com Link: https://lkml.kernel.org/r/eec17e16-4e1-7c59-f1bc-5bca90dac919@google.comSigned-off-by: NHugh Dickins <hughd@google.com> Suggested-by: NLinus Torvalds <torvalds@linux-foundation.org> Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Dan Carpenter <error27@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: James Houghton <jthoughton@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Peter Xu <peterx@redhat.com> Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zach O'Keefe <zokeefe@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
-
由 Hugh Dickins 提交于
Compound page (folio) mapcount calculations have been different for anon and file (or shmem) THPs, and involved the obscure PageDoubleMap flag. And each huge mapping and unmapping of a file (or shmem) THP involved atomically incrementing and decrementing the mapcount of every subpage of that huge page, dirtying many struct page cachelines. Add subpages_mapcount field to the struct folio and first tail page, so that the total of subpage mapcounts is available in one place near the head: then page_mapcount() and total_mapcount() and page_mapped(), and their folio equivalents, are so quick that anon and file and hugetlb don't need to be optimized differently. Delete the unloved PageDoubleMap. page_add and page_remove rmap functions must now maintain the subpages_mapcount as well as the subpage _mapcount, when dealing with pte mappings of huge pages; and correct maintenance of NR_ANON_MAPPED and NR_FILE_MAPPED statistics still needs reading through the subpages, using nr_subpages_unmapped() - but only when first or last pmd mapping finds subpages_mapcount raised (double-map case, not the common case). But are those counts (used to decide when to split an anon THP, and in vmscan's pagecache_reclaimable heuristic) correctly maintained? Not quite: since page_remove_rmap() (and also split_huge_pmd()) is often called without page lock, there can be races when a subpage pte mapcount 0<->1 while compound pmd mapcount 0<->1 is scanning - races which the previous implementation had prevented. The statistics might become inaccurate, and even drift down until they underflow through 0. That is not good enough, but is better dealt with in a followup patch. Update a few comments on first and second tail page overlaid fields. hugepage_add_new_anon_rmap() has to "increment" compound_mapcount, but subpages_mapcount and compound_pincount are already correctly at 0, so delete its reinitialization of compound_pincount. A simple 100 X munmap(mmap(2GB, MAP_SHARED|MAP_POPULATE, tmpfs), 2GB) took 18 seconds on small pages, and used to take 1 second on huge pages, but now takes 119 milliseconds on huge pages. Mapping by pmds a second time used to take 860ms and now takes 92ms; mapping by pmds after mapping by ptes (when the scan is needed) used to take 870ms and now takes 495ms. But there might be some benchmarks which would show a slowdown, because tail struct pages now fall out of cache until final freeing checks them. Link: https://lkml.kernel.org/r/47ad693-717-79c8-e1ba-46c3a6602e48@google.comSigned-off-by: NHugh Dickins <hughd@google.com> Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: James Houghton <jthoughton@google.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Peter Xu <peterx@redhat.com> Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Cc: Zach O'Keefe <zokeefe@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
-
由 Tony Luck 提交于
Cannot call memory_failure() directly from the fault handler because mmap_lock (and others) are held. It is important, but not urgent, to mark the source page as h/w poisoned and unmap it from other tasks. Use memory_failure_queue() to request a call to memory_failure() for the page with the error. Also provide a stub version for CONFIG_MEMORY_FAILURE=n Link: https://lkml.kernel.org/r/20221021200120.175753-3-tony.luck@intel.comSigned-off-by: NTony Luck <tony.luck@intel.com> Reviewed-by: NMiaohe Lin <linmiaohe@huawei.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Shuai Xue <xueshuai@linux.alibaba.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
-
由 Shakeel Butt 提交于
Currently mm_struct maintains rss_stats which are updated on page fault and the unmapping codepaths. For page fault codepath the updates are cached per thread with the batch of TASK_RSS_EVENTS_THRESH which is 64. The reason for caching is performance for multithreaded applications otherwise the rss_stats updates may become hotspot for such applications. However this optimization comes with the cost of error margin in the rss stats. The rss_stats for applications with large number of threads can be very skewed. At worst the error margin is (nr_threads * 64) and we have a lot of applications with 100s of threads, so the error margin can be very high. Internally we had to reduce TASK_RSS_EVENTS_THRESH to 32. Recently we started seeing the unbounded errors for rss_stats for specific applications which use TCP rx0cp. It seems like vm_insert_pages() codepath does not sync rss_stats at all. This patch converts the rss_stats into percpu_counter to convert the error margin from (nr_threads * 64) to approximately (nr_cpus ^ 2). However this conversion enable us to get the accurate stats for situations where accuracy is more important than the cpu cost. This patch does not make such tradeoffs - we can just use percpu_counter_add_local() for the updates and percpu_counter_sum() (or percpu_counter_sync() + percpu_counter_read) for the readers. At the moment the readers are either procfs interface, oom_killer and memory reclaim which I think are not performance critical and should be ok with slow read. However I think we can make that change in a separate patch. Link: https://lkml.kernel.org/r/20221024052841.3291983-1-shakeelb@google.comSigned-off-by: NShakeel Butt <shakeelb@google.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
-
由 Mike Kravetz 提交于
madvise(MADV_DONTNEED) ends up calling zap_page_range() to clear page tables associated with the address range. For hugetlb vmas, zap_page_range will call __unmap_hugepage_range_final. However, __unmap_hugepage_range_final assumes the passed vma is about to be removed and deletes the vma_lock to prevent pmd sharing as the vma is on the way out. In the case of madvise(MADV_DONTNEED) the vma remains, but the missing vma_lock prevents pmd sharing and could potentially lead to issues with truncation/fault races. This issue was originally reported here [1] as a BUG triggered in page_try_dup_anon_rmap. Prior to the introduction of the hugetlb vma_lock, __unmap_hugepage_range_final cleared the VM_MAYSHARE flag to prevent pmd sharing. Subsequent faults on this vma were confused as VM_MAYSHARE indicates a sharable vma, but was not set so page_mapping was not set in new pages added to the page table. This resulted in pages that appeared anonymous in a VM_SHARED vma and triggered the BUG. Address issue by adding a new zap flag ZAP_FLAG_UNMAP to indicate an unmap call from unmap_vmas(). This is used to indicate the 'final' unmapping of a hugetlb vma. When called via MADV_DONTNEED, this flag is not set and the vm_lock is not deleted. [1] https://lore.kernel.org/lkml/CAO4mrfdLMXsao9RF4fUE8-Wfde8xmjsKrTNMNC9wjUb6JudD0g@mail.gmail.com/ Link: https://lkml.kernel.org/r/20221114235507.294320-3-mike.kravetz@oracle.com Fixes: 90e7e7f5 ("mm: enable MADV_DONTNEED for hugetlb mappings") Signed-off-by: NMike Kravetz <mike.kravetz@oracle.com> Reported-by: NWei Chen <harperchen1110@gmail.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mina Almasry <almasrymina@google.com> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Peter Xu <peterx@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
-
由 Mike Kravetz 提交于
This series addresses the issue first reported in [1], and fully described in patch 2. Patches 1 and 2 address the user visible issue and are tagged for stable backports. While exploring solutions to this issue, related problems with mmu notification calls were discovered. This is addressed in the patch "hugetlb: remove duplicate mmu notifications:". Since there are no user visible effects, this third is not tagged for stable backports. Previous discussions suggested further cleanup by removing the routine zap_page_range. This is possible because zap_page_range_single is now exported, and all callers of zap_page_range pass ranges entirely within a single vma. This work will be done in a later patch so as not to distract from this bug fix. [1] https://lore.kernel.org/lkml/CAO4mrfdLMXsao9RF4fUE8-Wfde8xmjsKrTNMNC9wjUb6JudD0g@mail.gmail.com/ This patch (of 2): Expose the routine zap_page_range_single to zap a range within a single vma. The madvise routine madvise_dontneed_single_vma can use this routine as it explicitly operates on a single vma. Also, update the mmu notification range in zap_page_range_single to take hugetlb pmd sharing into account. This is required as MADV_DONTNEED supports hugetlb vmas. Link: https://lkml.kernel.org/r/20221114235507.294320-1-mike.kravetz@oracle.com Link: https://lkml.kernel.org/r/20221114235507.294320-2-mike.kravetz@oracle.com Fixes: 90e7e7f5 ("mm: enable MADV_DONTNEED for hugetlb mappings") Signed-off-by: NMike Kravetz <mike.kravetz@oracle.com> Reported-by: NWei Chen <harperchen1110@gmail.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mina Almasry <almasrymina@google.com> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Peter Xu <peterx@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
-
- 09 11月, 2022 6 次提交
-
-
由 Kairui Song 提交于
Currenty there is no upper limit for /proc/sys/vm/page-cluster, and it's a bit shift value, so it could result in overflow of the 32-bit integer. Add a reasonable upper limit for it, read-in at most 2**31 pages, which is a large enough value for readahead. Link: https://lkml.kernel.org/r/20221023162533.81561-1-ryncsn@gmail.comSigned-off-by: NKairui Song <kasong@tencent.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
-
由 Naoya Horiguchi 提交于
Currently PageHWPoison flag does not behave well when experiencing memory hotremove/hotplug. Any data field in struct page is unreliable when the associated memory is offlined, and the current mechanism can't tell whether a memory block is onlined because a new memory devices is installed or because previous failed offline operations are undone. Especially if there's a hwpoisoned memory, it's unclear what the best option is. So introduce a new mechanism to make struct memory_block remember that a memory block has hwpoisoned memory inside it. And make any online event fail if the onlining memory block contains hwpoison. struct memory_block is freed and reallocated over ACPI-based hotremove/hotplug, but not over sysfs-based hotremove/hotplug. So the new counter can distinguish these cases. Link: https://lkml.kernel.org/r/20221024062012.1520887-5-naoya.horiguchi@linux.devSigned-off-by: NNaoya Horiguchi <naoya.horiguchi@nec.com> Reported-by: Nkernel test robot <lkp@intel.com> Reviewed-by: NMiaohe Lin <linmiaohe@huawei.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jane Chu <jane.chu@oracle.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
-
由 Naoya Horiguchi 提交于
No functional change. Link: https://lkml.kernel.org/r/20221024062012.1520887-4-naoya.horiguchi@linux.devSigned-off-by: NNaoya Horiguchi <naoya.horiguchi@nec.com> Reviewed-by: NMiaohe Lin <linmiaohe@huawei.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jane Chu <jane.chu@oracle.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
-
由 Naoya Horiguchi 提交于
These interfaces will be used by drivers/base/memory.c by later patch, so as a preparatory work move them to more common header file visible to the file. Link: https://lkml.kernel.org/r/20221024062012.1520887-3-naoya.horiguchi@linux.devSigned-off-by: NNaoya Horiguchi <naoya.horiguchi@nec.com> Reviewed-by: NMiaohe Lin <linmiaohe@huawei.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jane Chu <jane.chu@oracle.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
-
由 Naoya Horiguchi 提交于
Patch series "mm, hwpoison: improve handling workload related to hugetlb and memory_hotplug", v7. This patchset tries to solve the issue among memory_hotplug, hugetlb and hwpoison. In this patchset, memory hotplug handles hwpoison pages like below: - hwpoison pages should not prevent memory hotremove, - memory block with hwpoison pages should not be onlined. This patch (of 4): HWPoisoned page is not supposed to be accessed once marked, but currently such accesses can happen during memory hotremove because do_migrate_range() can be called before dissolve_free_huge_pages() is called. Clear HPageMigratable for hwpoisoned hugepages to prevent them from being migrated. This should be done in hugetlb_lock to avoid race against isolate_hugetlb(). get_hwpoison_huge_page() needs to have a flag to show it's called from unpoison to take refcount of hwpoisoned hugepages, so add it. [naoya.horiguchi@linux.dev: remove TestClearHPageMigratable and reduce to test and clear separately] Link: https://lkml.kernel.org/r/20221025053559.GA2104800@ik1-406-35019.vs.sakura.ne.jp Link: https://lkml.kernel.org/r/20221024062012.1520887-1-naoya.horiguchi@linux.dev Link: https://lkml.kernel.org/r/20221024062012.1520887-2-naoya.horiguchi@linux.devSigned-off-by: NNaoya Horiguchi <naoya.horiguchi@nec.com> Reported-by: NMiaohe Lin <linmiaohe@huawei.com> Reviewed-by: NOscar Salvador <osalvador@suse.de> Reviewed-by: NMiaohe Lin <linmiaohe@huawei.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jane Chu <jane.chu@oracle.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
-
由 Rolf Eike Beer 提交于
There is no eprotect(), so I assume this is about mprotect(). Link: https://lkml.kernel.org/r/2385684.8vm7BOzihM@mobilepool36.emlix.comSigned-off-by: NRolf Eike Beer <eb@emlix.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
-
- 04 10月, 2022 2 次提交
-
-
由 Miaohe Lin 提交于
It's only called by mm_init(). Add __init annotations to it. Link: https://lkml.kernel.org/r/20220916072257.9639-6-linmiaohe@huawei.comSigned-off-by: NMiaohe Lin <linmiaohe@huawei.com> Reviewed-by: NDavid Hildenbrand <david@redhat.com> Reviewed-by: NAnshuman Khandual <anshuman.khandual@arm.com> Reviewed-by: NOscar Salvador <osalvador@suse.de> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
-
由 Matthew Wilcox (Oracle) 提交于
Instead of calling compound_order() and compound_nr_pages(), use the folio directly. Saves 1905 bytes from mm/filemap.o due to folio_test_large() now being a cheaper check than PageHead(). Link: https://lkml.kernel.org/r/20220902194653.1739778-4-willy@infradead.orgSigned-off-by: NMatthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
-
- 27 9月, 2022 12 次提交
-
-
由 Michal Hocko 提交于
While discussing early DMA pool pre-allocation failure with Christoph [1] I have realized that the allocation failure warning is rather noisy for constrained allocations like GFP_DMA{32}. Those zones are usually not populated on all nodes very often as their memory ranges are constrained. This is an attempt to reduce the ballast that doesn't provide any relevant information for those allocation failures investigation. Please note that I have only compile tested it (in my default config setup) and I am throwing it mostly to see what people think about it. [1] http://lkml.kernel.org/r/20220817060647.1032426-1-hch@lst.de [mhocko@suse.com: update] Link: https://lkml.kernel.org/r/Yw29bmJTIkKogTiW@dhcp22.suse.cz [mhocko@suse.com: fix build] [akpm@linux-foundation.org: fix it for mapletree] [akpm@linux-foundation.org: update it for Michal's update] [mhocko@suse.com: fix arch/powerpc/xmon/xmon.c] Link: https://lkml.kernel.org/r/Ywh3C4dKB9B93jIy@dhcp22.suse.cz [akpm@linux-foundation.org: fix arch/sparc/kernel/setup_32.c] Link: https://lkml.kernel.org/r/YwScVmVofIZkopkF@dhcp22.suse.czSigned-off-by: NMichal Hocko <mhocko@suse.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NVlastimil Babka <vbabka@suse.cz> Cc: Christoph Hellwig <hch@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> -
由 David Hildenbrand 提交于
Patch series "mm: minor cleanups around NUMA hinting". Working on some GUP cleanups (e.g., getting rid of some FOLL_ flags) and preparing for other GUP changes (getting rid of FOLL_FORCE|FOLL_WRITE for for taking a R/O longterm pin), this is something I can easily send out independently. Get rid of FOLL_NUMA, allow FOLL_FORCE access to PROT_NONE mapped pages in GUP-fast, and fixup some documentation around NUMA hinting. This patch (of 3): No need for a special flag that is not even properly documented to be internal-only. Let's just factor this check out and get rid of this flag. The separate function has the nice benefit that we can centralize comments. Link: https://lkml.kernel.org/r/20220825164659.89824-2-david@redhat.com Link: https://lkml.kernel.org/r/20220825164659.89824-1-david@redhat.comSigned-off-by: NDavid Hildenbrand <david@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Peter Xu <peterx@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
-
由 Liam R. Howlett 提交于
Replace any vm_next use with vma_find(). Update free_pgtables(), unmap_vmas(), and zap_page_range() to use the maple tree. Use the new free_pgtables() and unmap_vmas() in do_mas_align_munmap(). At the same time, alter the loop to be more compact. Now that free_pgtables() and unmap_vmas() take a maple tree as an argument, rearrange do_mas_align_munmap() to use the new tree to hold the vmas to remove. Remove __vma_link_list() and __vma_unlink_list() as they are exclusively used to update the linked list. Drop linked list update from __insert_vm_struct(). Rework validation of tree as it was depending on the linked list. [yang.lee@linux.alibaba.com: fix one kernel-doc comment] Link: https://bugzilla.openanolis.cn/show_bug.cgi?id=1949 Link: https://lkml.kernel.org/r/20220824021918.94116-1-yang.lee@linux.alibaba.comLink: https://lkml.kernel.org/r/20220906194824.2110408-69-Liam.Howlett@oracle.comSigned-off-by: NLiam R. Howlett <Liam.Howlett@Oracle.com> Signed-off-by: NYang Li <yang.lee@linux.alibaba.com> Tested-by: NYu Zhao <yuzhao@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: SeongJae Park <sj@kernel.org> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
-
由 Liam R. Howlett 提交于
Remove __do_munmap() in favour of do_munmap(), do_mas_munmap(), and do_mas_align_munmap(). do_munmap() is a wrapper to create a maple state for any callers that have not been converted to the maple tree. do_mas_munmap() takes a maple state to mumap a range. This is just a small function which checks for error conditions and aligns the end of the range. do_mas_align_munmap() uses the aligned range to mumap a range. do_mas_align_munmap() starts with the first VMA in the range, then finds the last VMA in the range. Both start and end are split if necessary. Then the VMAs are removed from the linked list and the mm mlock count is updated at the same time. Followed by a single tree operation of overwriting the area in with a NULL. Finally, the detached list is unmapped and freed. By reorganizing the munmap calls as outlined, it is now possible to avoid extra work of aligning pre-aligned callers which are known to be safe, avoid extra VMA lookups or tree walks for modifications. detach_vmas_to_be_unmapped() is no longer used, so drop this code. vm_brk_flags() can just call the do_mas_munmap() as it checks for intersecting VMAs directly. Link: https://lkml.kernel.org/r/20220906194824.2110408-29-Liam.Howlett@oracle.comSigned-off-by: NLiam R. Howlett <Liam.Howlett@Oracle.com> Tested-by: NYu Zhao <yuzhao@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: SeongJae Park <sj@kernel.org> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
-
由 Liam R. Howlett 提交于
Unlike the rbtree, the Maple Tree will return a NULL if there's nothing at a particular address. Since the previous commit dropped the vmacache, it is now possible to consult the tree directly. Link: https://lkml.kernel.org/r/20220906194824.2110408-27-Liam.Howlett@oracle.comSigned-off-by: NLiam R. Howlett <Liam.Howlett@Oracle.com> Signed-off-by: NMatthew Wilcox (Oracle) <willy@infradead.org> Acked-by: NVlastimil Babka <vbabka@suse.cz> Tested-by: NYu Zhao <yuzhao@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: SeongJae Park <sj@kernel.org> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
-
由 Liam R. Howlett 提交于
Move find_vma_intersection() to mmap.c and change implementation to maple tree. When searching for a vma within a range, it is easier to use the maple tree interface. Exported find_vma_intersection() for kvm module. Link: https://lkml.kernel.org/r/20220906194824.2110408-24-Liam.Howlett@oracle.comSigned-off-by: NLiam R. Howlett <Liam.Howlett@Oracle.com> Tested-by: NYu Zhao <yuzhao@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: SeongJae Park <sj@kernel.org> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
-
由 Liam R. Howlett 提交于
Use vma_lookup() to walk the tree to the start value requested. If the vma at the start does not match, then the answer is NULL and there is no need to look at the next vma the way that find_vma() would. Link: https://lkml.kernel.org/r/20220906194824.2110408-21-Liam.Howlett@oracle.comSigned-off-by: NLiam R. Howlett <Liam.Howlett@Oracle.com> Reviewed-by: NVlastimil Babka <vbabka@suse.cz> Tested-by: NYu Zhao <yuzhao@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: SeongJae Park <sj@kernel.org> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
-
由 Liam R. Howlett 提交于
Remove the RB tree and start using the maple tree for vm_area_struct tracking. Drop validate_mm() calls in expand_upwards() and expand_downwards() as the lock is not held. Link: https://lkml.kernel.org/r/20220906194824.2110408-18-Liam.Howlett@oracle.comSigned-off-by: NLiam R. Howlett <Liam.Howlett@Oracle.com> Tested-by: NYu Zhao <yuzhao@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: SeongJae Park <sj@kernel.org> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
-
由 Liam R. Howlett 提交于
The maple tree was already tracking VMAs in this function by an earlier commit, but the rbtree iterator was being used to iterate the list. Change the iterator to use a maple tree native iterator and switch to the maple tree advanced API to avoid multiple walks of the tree during insert operations. Unexport the now-unused vma_store() function. For performance reasons we bulk allocate the maple tree nodes. The node calculations are done internally to the tree and use the VMA count and assume the worst-case node requirements. The VM_DONT_COPY flag does not allow for the most efficient copy method of the tree and so a bulk loading algorithm is used. Link: https://lkml.kernel.org/r/20220906194824.2110408-15-Liam.Howlett@oracle.comSigned-off-by: NLiam R. Howlett <Liam.Howlett@Oracle.com> Signed-off-by: NMatthew Wilcox (Oracle) <willy@infradead.org> Acked-by: NVlastimil Babka <vbabka@suse.cz> Tested-by: NYu Zhao <yuzhao@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: SeongJae Park <sj@kernel.org> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
-
由 Matthew Wilcox (Oracle) 提交于
This thin layer of abstraction over the maple tree state is for iterating over VMAs. You can go forwards, go backwards or ask where the iterator is. Rename the existing vma_next() to __vma_next() -- it will be removed by the end of this series. Link: https://lkml.kernel.org/r/20220906194824.2110408-10-Liam.Howlett@oracle.comSigned-off-by: NMatthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: NLiam R. Howlett <Liam.Howlett@Oracle.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Reviewed-by: NDavid Hildenbrand <david@redhat.com> Reviewed-by: NDavidlohr Bueso <dave@stgolabs.net> Tested-by: NYu Zhao <yuzhao@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Howells <dhowells@redhat.com> Cc: SeongJae Park <sj@kernel.org> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
-
由 Liam R. Howlett 提交于
Start tracking the VMAs with the new maple tree structure in parallel with the rb_tree. Add debug and trace events for maple tree operations and duplicate the rb_tree that is created on forks into the maple tree. The maple tree is added to the mm_struct including the mm_init struct, added support in required mm/mmap functions, added tracking in kernel/fork for process forking, and used to find the unmapped_area and checked against what the rbtree finds. This also moves the mmap_lock() in exit_mmap() since the oom reaper call does walk the VMAs. Otherwise lockdep will be unhappy if oom happens. When splitting a vma fails due to allocations of the maple tree nodes, the error path in __split_vma() calls new->vm_ops->close(new). The page accounting for hugetlb is actually in the close() operation, so it accounts for the removal of 1/2 of the VMA which was not adjusted. This results in a negative exit value. To avoid the negative charge, set vm_start = vm_end and vm_pgoff = 0. There is also a potential accounting issue in special mappings from insert_vm_struct() failing to allocate, so reverse the charge there in the failure scenario. Link: https://lkml.kernel.org/r/20220906194824.2110408-9-Liam.Howlett@oracle.comSigned-off-by: NLiam R. Howlett <Liam.Howlett@Oracle.com> Signed-off-by: NMatthew Wilcox (Oracle) <willy@infradead.org> Tested-by: NYu Zhao <yuzhao@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: SeongJae Park <sj@kernel.org> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
-
由 Yu Zhao 提交于
Searching the rmap for PTEs mapping each page on an LRU list (to test and clear the accessed bit) can be expensive because pages from different VMAs (PA space) are not cache friendly to the rmap (VA space). For workloads mostly using mapped pages, searching the rmap can incur the highest CPU cost in the reclaim path. This patch exploits spatial locality to reduce the trips into the rmap. When shrink_page_list() walks the rmap and finds a young PTE, a new function lru_gen_look_around() scans at most BITS_PER_LONG-1 adjacent PTEs. On finding another young PTE, it clears the accessed bit and updates the gen counter of the page mapped by this PTE to (max_seq%MAX_NR_GENS)+1. Server benchmark results: Single workload: fio (buffered I/O): no change Single workload: memcached (anon): +[3, 5]% Ops/sec KB/sec patch1-6: 1106168.46 43025.04 patch1-7: 1147696.57 44640.29 Configurations: no change Client benchmark results: kswapd profiles: patch1-6 39.03% lzo1x_1_do_compress (real work) 18.47% page_vma_mapped_walk (overhead) 6.74% _raw_spin_unlock_irq 3.97% do_raw_spin_lock 2.49% ptep_clear_flush 2.48% anon_vma_interval_tree_iter_first 1.92% folio_referenced_one 1.88% __zram_bvec_write 1.48% memmove 1.31% vma_interval_tree_iter_next patch1-7 48.16% lzo1x_1_do_compress (real work) 8.20% page_vma_mapped_walk (overhead) 7.06% _raw_spin_unlock_irq 2.92% ptep_clear_flush 2.53% __zram_bvec_write 2.11% do_raw_spin_lock 2.02% memmove 1.93% lru_gen_look_around 1.56% free_unref_page_list 1.40% memset Configurations: no change Link: https://lkml.kernel.org/r/20220918080010.2920238-8-yuzhao@google.comSigned-off-by: NYu Zhao <yuzhao@google.com> Acked-by: NBarry Song <baohua@kernel.org> Acked-by: NBrian Geffon <bgeffon@google.com> Acked-by: NJan Alexander Steffens (heftig) <heftig@archlinux.org> Acked-by: NOleksandr Natalenko <oleksandr@natalenko.name> Acked-by: NSteven Barrett <steven@liquorix.net> Acked-by: NSuleiman Souhlal <suleiman@google.com> Tested-by: NDaniel Byrne <djbyrne@mtu.edu> Tested-by: NDonald Carr <d@chaos-reins.com> Tested-by: NHolger Hoffstätte <holger@applied-asynchrony.com> Tested-by: NKonstantin Kharlamov <Hi-Angel@yandex.ru> Tested-by: NShuang Zhai <szhai2@cs.rochester.edu> Tested-by: NSofia Trinh <sofia.trinh@edi.works> Tested-by: NVaibhav Jain <vaibhav@linux.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Larabel <Michael@MichaelLarabel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
-
- 12 9月, 2022 3 次提交
-
-
由 David Hildenbrand 提交于
commit 6c287605 ("mm: remember exclusively mapped anonymous pages with PG_anon_exclusive") made sure that when PageAnonExclusive() has to be cleared during temporary unmapping of a page, that the PTE is cleared/invalidated and that the TLB is flushed. What we want to achieve in all cases is that we cannot end up with a pin on an anonymous page that may be shared, because such pins would be unreliable and could result in memory corruptions when the mapped page and the pin go out of sync due to a write fault. That TLB flush handling was inspired by an outdated comment in mm/ksm.c:write_protect_page(), which similarly required the TLB flush in the past to synchronize with GUP-fast. However, ever since general RCU GUP fast was introduced in commit 2667f50e ("mm: introduce a general RCU get_user_pages_fast()"), a TLB flush is no longer sufficient to handle concurrent GUP-fast in all cases -- it only handles traditional IPI-based GUP-fast correctly. Peter Xu (thankfully) questioned whether that TLB flush is really required. On architectures that send an IPI broadcast on TLB flush, it works as expected. To synchronize with RCU GUP-fast properly, we're conceptually fine, however, we have to enforce a certain memory order and are missing memory barriers. Let's document that, avoid the TLB flush where possible and use proper explicit memory barriers where required. We shouldn't really care about the additional memory barriers here, as we're not on extremely hot paths -- and we're getting rid of some TLB flushes. We use a smp_mb() pair for handling concurrent pinning and a smp_rmb()/smp_wmb() pair for handling the corner case of only temporary PTE changes but permanent PageAnonExclusive changes. One extreme example, whereby GUP-fast takes a R/O pin and KSM wants to convert an exclusive anonymous page to a KSM page, and that page is already mapped write-protected (-> no PTE change) would be: Thread 0 (KSM) Thread 1 (GUP-fast) (B1) Read the PTE # (B2) skipped without FOLL_WRITE (A1) Clear PTE smp_mb() (A2) Check pinned (B3) Pin the mapped page smp_mb() (A3) Clear PageAnonExclusive smp_wmb() (A4) Restore PTE (B4) Check if the PTE changed smp_rmb() (B5) Check PageAnonExclusive Thread 1 will properly detect that PageAnonExclusive was cleared and back off. Note that we don't need a memory barrier between checking if the page is pinned and clearing PageAnonExclusive, because stores are not speculated. The possible issues due to reordering are of theoretical nature so far and attempts to reproduce the race failed. Especially the "no PTE change" case isn't the common case, because we'd need an exclusive anonymous page that's mapped R/O and the PTE is clean in KSM code -- and using KSM with page pinning isn't extremely common. Further, the clear+TLB flush we used for now implies a memory barrier. So the problematic missing part should be the missing memory barrier after pinning but before checking if the PTE changed. Link: https://lkml.kernel.org/r/20220901083559.67446-1-david@redhat.com Fixes: 6c287605 ("mm: remember exclusively mapped anonymous pages with PG_anon_exclusive") Signed-off-by: NDavid Hildenbrand <david@redhat.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Peter Xu <peterx@redhat.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Nadav Amit <namit@vmware.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Andrea Parri <parri.andrea@gmail.com> Cc: Will Deacon <will@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: "Paul E. McKenney" <paulmck@kernel.org> Cc: Christoph von Recklinghausen <crecklin@redhat.com> Cc: Don Dutile <ddutile@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
-
由 Kefeng Wang 提交于
find_min_pfn_with_active_regions() is only called from free_area_init(). Open-code the PHYS_PFN(memblock_start_of_DRAM()) into free_area_init(), and kill find_min_pfn_with_active_regions(). Link: https://lkml.kernel.org/r/20220815111017.39341-1-wangkefeng.wang@huawei.comSigned-off-by: NKefeng Wang <wangkefeng.wang@huawei.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
-
由 Huang Ying 提交于
Patch series "memory tiering: hot page selection", v4. To optimize page placement in a memory tiering system with NUMA balancing, the hot pages in the slow memory nodes need to be identified. Essentially, the original NUMA balancing implementation selects the mostly recently accessed (MRU) pages to promote. But this isn't a perfect algorithm to identify the hot pages. Because the pages with quite low access frequency may be accessed eventually given the NUMA balancing page table scanning period could be quite long (e.g. 60 seconds). So in this patchset, we implement a new hot page identification algorithm based on the latency between NUMA balancing page table scanning and hint page fault. Which is a kind of mostly frequently accessed (MFU) algorithm. In NUMA balancing memory tiering mode, if there are hot pages in slow memory node and cold pages in fast memory node, we need to promote/demote hot/cold pages between the fast and cold memory nodes. A choice is to promote/demote as fast as possible. But the CPU cycles and memory bandwidth consumed by the high promoting/demoting throughput will hurt the latency of some workload because of accessing inflating and slow memory bandwidth contention. A way to resolve this issue is to restrict the max promoting/demoting throughput. It will take longer to finish the promoting/demoting. But the workload latency will be better. This is implemented in this patchset as the page promotion rate limit mechanism. The promotion hot threshold is workload and system configuration dependent. So in this patchset, a method to adjust the hot threshold automatically is implemented. The basic idea is to control the number of the candidate promotion pages to match the promotion rate limit. We used the pmbench memory accessing benchmark tested the patchset on a 2-socket server system with DRAM and PMEM installed. The test results are as follows, pmbench score promote rate (accesses/s) MB/s ------------- ------------ base 146887704.1 725.6 hot selection 165695601.2 544.0 rate limit 162814569.8 165.2 auto adjustment 170495294.0 136.9 From the results above, With hot page selection patch [1/3], the pmbench score increases about 12.8%, and promote rate (overhead) decreases about 25.0%, compared with base kernel. With rate limit patch [2/3], pmbench score decreases about 1.7%, and promote rate decreases about 69.6%, compared with hot page selection patch. With threshold auto adjustment patch [3/3], pmbench score increases about 4.7%, and promote rate decrease about 17.1%, compared with rate limit patch. Baolin helped to test the patchset with MySQL on a machine which contains 1 DRAM node (30G) and 1 PMEM node (126G). sysbench /usr/share/sysbench/oltp_read_write.lua \ ...... --tables=200 \ --table-size=1000000 \ --report-interval=10 \ --threads=16 \ --time=120 The tps can be improved about 5%. This patch (of 3): To optimize page placement in a memory tiering system with NUMA balancing, the hot pages in the slow memory node need to be identified. Essentially, the original NUMA balancing implementation selects the mostly recently accessed (MRU) pages to promote. But this isn't a perfect algorithm to identify the hot pages. Because the pages with quite low access frequency may be accessed eventually given the NUMA balancing page table scanning period could be quite long (e.g. 60 seconds). The most frequently accessed (MFU) algorithm is better. So, in this patch we implemented a better hot page selection algorithm. Which is based on NUMA balancing page table scanning and hint page fault as follows, - When the page tables of the processes are scanned to change PTE/PMD to be PROT_NONE, the current time is recorded in struct page as scan time. - When the page is accessed, hint page fault will occur. The scan time is gotten from the struct page. And The hint page fault latency is defined as hint page fault time - scan time The shorter the hint page fault latency of a page is, the higher the probability of their access frequency to be higher. So the hint page fault latency is a better estimation of the page hot/cold. It's hard to find some extra space in struct page to hold the scan time. Fortunately, we can reuse some bits used by the original NUMA balancing. NUMA balancing uses some bits in struct page to store the page accessing CPU and PID (referring to page_cpupid_xchg_last()). Which is used by the multi-stage node selection algorithm to avoid to migrate pages shared accessed by the NUMA nodes back and forth. But for pages in the slow memory node, even if they are shared accessed by multiple NUMA nodes, as long as the pages are hot, they need to be promoted to the fast memory node. So the accessing CPU and PID information are unnecessary for the slow memory pages. We can reuse these bits in struct page to record the scan time. For the fast memory pages, these bits are used as before. For the hot threshold, the default value is 1 second, which works well in our performance test. All pages with hint page fault latency < hot threshold will be considered hot. It's hard for users to determine the hot threshold. So we don't provide a kernel ABI to set it, just provide a debugfs interface for advanced users to experiment. We will continue to work on a hot threshold automatic adjustment mechanism. The downside of the above method is that the response time to the workload hot spot changing may be much longer. For example, - A previous cold memory area becomes hot - The hint page fault will be triggered. But the hint page fault latency isn't shorter than the hot threshold. So the pages will not be promoted. - When the memory area is scanned again, maybe after a scan period, the hint page fault latency measured will be shorter than the hot threshold and the pages will be promoted. To mitigate this, if there are enough free space in the fast memory node, the hot threshold will not be used, all pages will be promoted upon the hint page fault for fast response. Thanks Zhong Jiang reported and tested the fix for a bug when disabling memory tiering mode dynamically. Link: https://lkml.kernel.org/r/20220713083954.34196-1-ying.huang@intel.com Link: https://lkml.kernel.org/r/20220713083954.34196-2-ying.huang@intel.comSigned-off-by: N"Huang, Ying" <ying.huang@intel.com> Reviewed-by: NBaolin Wang <baolin.wang@linux.alibaba.com> Tested-by: NBaolin Wang <baolin.wang@linux.alibaba.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Rik van Riel <riel@surriel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Wei Xu <weixugc@google.com> Cc: osalvador <osalvador@suse.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Zhong Jiang <zhongjiang-ali@linux.alibaba.com> Cc: Oscar Salvador <osalvador@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
-
- 29 8月, 2022 1 次提交
-
-
由 Alex Williamson 提交于
The below referenced commit makes the same error as 1c563432 ("mm: fix is_pinnable_page against a cma page"), re-interpreting the logic to exclude pinning of the zero page, which breaks device assignment with vfio. To avoid further subtle mistakes, split the logic into discrete tests. [akpm@linux-foundation.org: simplify comment, per John] Link: https://lkml.kernel.org/r/166015037385.760108.16881097713975517242.stgit@omen Link: https://lore.kernel.org/all/165490039431.944052.12458624139225785964.stgit@omen Fixes: f25cbb7a ("mm: add zone device coherent type memory support") Signed-off-by: NAlex Williamson <alex.williamson@redhat.com> Suggested-by: NMatthew Wilcox <willy@infradead.org> Suggested-by: NFelix Kuehling <felix.kuehling@amd.com> Tested-by: NSlawomir Laba <slawomirx.laba@intel.com> Reviewed-by: NJohn Hubbard <jhubbard@nvidia.com> Cc: Alex Sierra <alex.sierra@amd.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Alistair Popple <apopple@nvidia.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
-
- 21 8月, 2022 1 次提交
-
-
由 David Hildenbrand 提交于
Ever since the Dirty COW (CVE-2016-5195) security issue happened, we know that FOLL_FORCE can be possibly dangerous, especially if there are races that can be exploited by user space. Right now, it would be sufficient to have some code that sets a PTE of a R/O-mapped shared page dirty, in order for it to erroneously become writable by FOLL_FORCE. The implications of setting a write-protected PTE dirty might not be immediately obvious to everyone. And in fact ever since commit 9ae0f87d ("mm/shmem: unconditionally set pte dirty in mfill_atomic_install_pte"), we can use UFFDIO_CONTINUE to map a shmem page R/O while marking the pte dirty. This can be used by unprivileged user space to modify tmpfs/shmem file content even if the user does not have write permissions to the file, and to bypass memfd write sealing -- Dirty COW restricted to tmpfs/shmem (CVE-2022-2590). To fix such security issues for good, the insight is that we really only need that fancy retry logic (FOLL_COW) for COW mappings that are not writable (!VM_WRITE). And in a COW mapping, we really only broke COW if we have an exclusive anonymous page mapped. If we have something else mapped, or the mapped anonymous page might be shared (!PageAnonExclusive), we have to trigger a write fault to break COW. If we don't find an exclusive anonymous page when we retry, we have to trigger COW breaking once again because something intervened. Let's move away from this mandatory-retry + dirty handling and rely on our PageAnonExclusive() flag for making a similar decision, to use the same COW logic as in other kernel parts here as well. In case we stumble over a PTE in a COW mapping that does not map an exclusive anonymous page, COW was not properly broken and we have to trigger a fake write-fault to break COW. Just like we do in can_change_pte_writable() added via commit 64fe24a3 ("mm/mprotect: try avoiding write faults for exclusive anonymous pages when changing protection") and commit 76aefad6 ("mm/mprotect: fix soft-dirty check in can_change_pte_writable()"), take care of softdirty and uffd-wp manually. For example, a write() via /proc/self/mem to a uffd-wp-protected range has to fail instead of silently granting write access and bypassing the userspace fault handler. Note that FOLL_FORCE is not only used for debug access, but also triggered by applications without debug intentions, for example, when pinning pages via RDMA. This fixes CVE-2022-2590. Note that only x86_64 and aarch64 are affected, because only those support CONFIG_HAVE_ARCH_USERFAULTFD_MINOR. Fortunately, FOLL_COW is no longer required to handle FOLL_FORCE. So let's just get rid of it. Thanks to Nadav Amit for pointing out that the pte_dirty() check in FOLL_FORCE code is problematic and might be exploitable. Note 1: We don't check for the PTE being dirty because it doesn't matter for making a "was COWed" decision anymore, and whoever modifies the page has to set the page dirty either way. Note 2: Kernels before extended uffd-wp support and before PageAnonExclusive (< 5.19) can simply revert the problematic commit instead and be safe regarding UFFDIO_CONTINUE. A backport to v5.19 requires minor adjustments due to lack of vma_soft_dirty_enabled(). Link: https://lkml.kernel.org/r/20220809205640.70916-1-david@redhat.com Fixes: 9ae0f87d ("mm/shmem: unconditionally set pte dirty in mfill_atomic_install_pte") Signed-off-by: NDavid Hildenbrand <david@redhat.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: David Laight <David.Laight@ACULAB.COM> Cc: <stable@vger.kernel.org> [5.16] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
-
- 09 8月, 2022 3 次提交
-
-
由 Naoya Horiguchi 提交于
Now error handling code is prepared, so remove the blocking code and enable memory error handling on 1GB hugepage. Link: https://lkml.kernel.org/r/20220714042420.1847125-9-naoya.horiguchi@linux.devSigned-off-by: NNaoya Horiguchi <naoya.horiguchi@nec.com> Reviewed-by: NMiaohe Lin <linmiaohe@huawei.com> Cc: David Hildenbrand <david@redhat.com> Cc: kernel test robot <lkp@intel.com> Cc: Liu Shixin <liushixin2@huawei.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
-
由 Naoya Horiguchi 提交于
If memory_failure() fails to grab page refcount on a hugetlb page because it's busy, it returns without setting PG_hwpoison on it. This not only loses a chance of error containment, but breaks the rule that action_result() should be called only when memory_failure() do any of handling work (even if that's just setting PG_hwpoison). This inconsistency could harm code maintainability. So set PG_hwpoison and call hugetlb_set_page_hwpoison() for such a case. Link: https://lkml.kernel.org/r/20220714042420.1847125-6-naoya.horiguchi@linux.dev Fixes: 405ce051 ("mm/hwpoison: fix race between hugetlb free/demotion and memory_failure_hugetlb()") Signed-off-by: NNaoya Horiguchi <naoya.horiguchi@nec.com> Reviewed-by: NMiaohe Lin <linmiaohe@huawei.com> Cc: David Hildenbrand <david@redhat.com> Cc: kernel test robot <lkp@intel.com> Cc: Liu Shixin <liushixin2@huawei.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
-
由 Muchun Song 提交于
When I first introduced vmemmap manipulation functions related to HugeTLB, I thought those functions may be reused by other modules (e.g. using similar approach to optimize vmemmap pages, unfortunately, the DAX used the same approach but does not use those functions). After two years, we didn't see any other users. So move those functions to hugetlb_vmemmap.c. Code movement without any functional change. Link: https://lkml.kernel.org/r/20220628092235.91270-5-songmuchun@bytedance.comSigned-off-by: NMuchun Song <songmuchun@bytedance.com> Reviewed-by: NOscar Salvador <osalvador@suse.de> Reviewed-by: NMike Kravetz <mike.kravetz@oracle.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Will Deacon <will@kernel.org> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
-
- 19 7月, 2022 1 次提交
-
-
由 Muchun Song 提交于
FSDAX page refcounts are 1-based, rather than 0-based: if refcount is 1, then the page is freed. The FSDAX pages can be pinned through GUP, then they will be unpinned via unpin_user_page() using a folio variant to put the page, however, folio variants did not consider this special case, the result will be to miss a wakeup event (like the user of __fuse_dax_break_layouts()). This results in a task being permanently stuck in TASK_INTERRUPTIBLE state. Since FSDAX pages are only possibly obtained by GUP users, so fix GUP instead of folio_put() to lower overhead. Link: https://lkml.kernel.org/r/20220705123532.283-1-songmuchun@bytedance.com Fixes: d8ddc099 ("mm/gup: Add gup_put_folio()") Signed-off-by: NMuchun Song <songmuchun@bytedance.com> Suggested-by: NMatthew Wilcox <willy@infradead.org> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: John Hubbard <jhubbard@nvidia.com> Cc: William Kucharski <william.kucharski@oracle.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
-
- 18 7月, 2022 4 次提交
-
-
由 Anshuman Khandual 提交于
Now all the platforms enable ARCH_HAS_GET_PAGE_PROT. They define and export own vm_get_page_prot() whether custom or standard DECLARE_VM_GET_PAGE_PROT. Hence there is no need for default generic fallback for vm_get_page_prot(). Just drop this fallback and also ARCH_HAS_GET_PAGE_PROT mechanism. Link: https://lkml.kernel.org/r/20220711070600.2378316-27-anshuman.khandual@arm.comSigned-off-by: NAnshuman Khandual <anshuman.khandual@arm.com> Reviewed-by: NGeert Uytterhoeven <geert@linux-m68k.org> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NChristophe Leroy <christophe.leroy@csgroup.eu> Acked-by: NGeert Uytterhoeven <geert@linux-m68k.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Brian Cain <bcain@quicinc.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Chris Zankel <chris@zankel.net> Cc: "David S. Miller" <davem@davemloft.net> Cc: Dinh Nguyen <dinguyen@kernel.org> Cc: Guo Ren <guoren@kernel.org> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huacai Chen <chenhuacai@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com> Cc: Jeff Dike <jdike@addtoit.com> Cc: Jonas Bonn <jonas@southpole.se> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Richard Henderson <rth@twiddle.net> Cc: Rich Felker <dalias@libc.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Sam Ravnborg <sam@ravnborg.org> Cc: Stafford Horne <shorne@gmail.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vineet Gupta <vgupta@kernel.org> Cc: WANG Xuerui <kernel@xen0n.name> Cc: Will Deacon <will@kernel.org> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
-
由 Anshuman Khandual 提交于
Now that protection_map[] has been moved inside those platforms that enable ARCH_HAS_VM_GET_PAGE_PROT. Hence generic protection_map[] array now can be protected with CONFIG_ARCH_HAS_VM_GET_PAGE_PROT intead of __P000. Link: https://lkml.kernel.org/r/20220711070600.2378316-8-anshuman.khandual@arm.comSigned-off-by: NAnshuman Khandual <anshuman.khandual@arm.com> Reviewed-by: NChristophe Leroy <christophe.leroy@csgroup.eu> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Brian Cain <bcain@quicinc.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Chris Zankel <chris@zankel.net> Cc: "David S. Miller" <davem@davemloft.net> Cc: Dinh Nguyen <dinguyen@kernel.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Guo Ren <guoren@kernel.org> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huacai Chen <chenhuacai@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com> Cc: Jeff Dike <jdike@addtoit.com> Cc: Jonas Bonn <jonas@southpole.se> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Richard Henderson <rth@twiddle.net> Cc: Rich Felker <dalias@libc.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Sam Ravnborg <sam@ravnborg.org> Cc: Stafford Horne <shorne@gmail.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vineet Gupta <vgupta@kernel.org> Cc: WANG Xuerui <kernel@xen0n.name> Cc: Will Deacon <will@kernel.org> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
-
由 Anshuman Khandual 提交于
Patch series "mm/mmap: Drop __SXXX/__PXXX macros from across platforms", v7. __SXXX/__PXXX macros are unnecessary abstraction layer in creating the generic protection_map[] array which is used for vm_get_page_prot(). This abstraction layer can be avoided, if the platforms just define the array protection_map[] for all possible vm_flags access permission combinations and also export vm_get_page_prot() implementation. This series drops __SXXX/__PXXX macros from across platforms in the tree. First it build protects generic protection_map[] array with '#ifdef __P000' and moves it inside platforms which enable ARCH_HAS_VM_GET_PAGE_PROT. Later this build protects same array with '#ifdef ARCH_HAS_VM_GET_PAGE_PROT' and moves inside remaining platforms while enabling ARCH_HAS_VM_GET_PAGE_PROT. This adds a new macro DECLARE_VM_GET_PAGE_PROT defining the current generic vm_get_page_prot(), in order for it to be reused on platforms that do not require custom implementation. Finally, ARCH_HAS_VM_GET_PAGE_PROT can just be dropped, as all platforms now define and export vm_get_page_prot(), via looking up a private and static protection_map[] array. protection_map[] data type has been changed as 'static const' on all platforms that do not change it during boot. This patch (of 26): Build protect generic protection_map[] array with __P000, so that it can be moved inside all the platforms one after the other. Otherwise there will be build failures during this process. CONFIG_ARCH_HAS_VM_GET_PAGE_PROT cannot be used for this purpose as only certain platforms enable this config now. Link: https://lkml.kernel.org/r/20220711070600.2378316-1-anshuman.khandual@arm.com Link: https://lkml.kernel.org/r/20220711070600.2378316-2-anshuman.khandual@arm.comSigned-off-by: NAnshuman Khandual <anshuman.khandual@arm.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NChristophe Leroy <christophe.leroy@csgroup.eu> Suggested-by: NChristophe Leroy <christophe.leroy@csgroup.eu> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Brian Cain <bcain@quicinc.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Chris Zankel <chris@zankel.net> Cc: "David S. Miller" <davem@davemloft.net> Cc: Dinh Nguyen <dinguyen@kernel.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Guo Ren <guoren@kernel.org> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huacai Chen <chenhuacai@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com> Cc: Jeff Dike <jdike@addtoit.com> Cc: Jonas Bonn <jonas@southpole.se> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Richard Henderson <rth@twiddle.net> Cc: Rich Felker <dalias@libc.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Sam Ravnborg <sam@ravnborg.org> Cc: Stafford Horne <shorne@gmail.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vineet Gupta <vgupta@kernel.org> Cc: WANG Xuerui <kernel@xen0n.name> Cc: Will Deacon <will@kernel.org> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
-
由 Shiyang Ruan 提交于
This new function is a variant of mf_generic_kill_procs that accepts a file, offset pair instead of a struct to support multiple files sharing a DAX mapping. It is intended to be called by the file systems as part of the memory_failure handler after the file system performed a reverse mapping from the storage address to the file and file offset. Link: https://lkml.kernel.org/r/20220603053738.1218681-6-ruansy.fnst@fujitsu.comSigned-off-by: NShiyang Ruan <ruansy.fnst@fujitsu.com> Reviewed-by: NDan Williams <dan.j.williams@intel.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NMiaohe Lin <linmiaohe@huawei.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Dan Williams <dan.j.wiliams@intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Goldwyn Rodrigues <rgoldwyn@suse.com> Cc: Goldwyn Rodrigues <rgoldwyn@suse.de> Cc: Jane Chu <jane.chu@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Ritesh Harjani <riteshh@linux.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
-