- 02 2月, 2021 3 次提交
-
-
由 Vitaly Kuznetsov 提交于
Commit 7a873e45 ("KVM: selftests: Verify supported CR4 bits can be set before KVM_SET_CPUID2") reveals that KVM allows to set X86_CR4_PCIDE even when PCID support is missing: ==== Test Assertion Failure ==== x86_64/set_sregs_test.c:41: rc pid=6956 tid=6956 - Invalid argument 1 0x000000000040177d: test_cr4_feature_bit at set_sregs_test.c:41 2 0x00000000004014fc: main at set_sregs_test.c:119 3 0x00007f2d9346d041: ?? ??:0 4 0x000000000040164d: _start at ??:? KVM allowed unsupported CR4 bit (0x20000) Add X86_FEATURE_PCID feature check to __cr4_reserved_bits() to make kvm_is_valid_cr4() fail. Signed-off-by: NVitaly Kuznetsov <vkuznets@redhat.com> Message-Id: <20210201142843.108190-1-vkuznets@redhat.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Zheng Zhan Liang 提交于
Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Wanpeng Li <wanpengli@tencent.com> Cc: kvm@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: NZheng Zhan Liang <zhengzhanliang@huorong.cn> Message-Id: <20210201055310.267029-1-zhengzhanliang@huorong.cn> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Paolo Bonzini 提交于
Userspace that does not know about KVM_GET_MSR_FEATURE_INDEX_LIST will generally use the default value for MSR_IA32_ARCH_CAPABILITIES. When this happens and the host has tsx=on, it is possible to end up with virtual machines that have HLE and RTM disabled, but TSX_CTRL available. If the fleet is then switched to tsx=off, kvm_get_arch_capabilities() will clear the ARCH_CAP_TSX_CTRL_MSR bit and it will not be possible to use the tsx=off hosts as migration destinations, even though the guests do not have TSX enabled. To allow this migration, allow guests to write to their TSX_CTRL MSR, while keeping the host MSR unchanged for the entire life of the guests. This ensures that TSX remains disabled and also saves MSR reads and writes, and it's okay to do because with tsx=off we know that guests will not have the HLE and RTM features in their CPUID. (If userspace sets bogus CPUID data, we do not expect HLE and RTM to work in guests anyway). Cc: stable@vger.kernel.org Fixes: cbbaa272 ("KVM: x86: fix presentation of TSX feature in ARCH_CAPABILITIES") Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 29 1月, 2021 1 次提交
-
-
由 Peter Gonda 提交于
Grab kvm->lock before pinning memory when registering an encrypted region; sev_pin_memory() relies on kvm->lock being held to ensure correctness when checking and updating the number of pinned pages. Add a lockdep assertion to help prevent future regressions. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Joerg Roedel <joro@8bytes.org> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Brijesh Singh <brijesh.singh@amd.com> Cc: Sean Christopherson <seanjc@google.com> Cc: x86@kernel.org Cc: kvm@vger.kernel.org Cc: stable@vger.kernel.org Cc: linux-kernel@vger.kernel.org Fixes: 1e80fdc0 ("KVM: SVM: Pin guest memory when SEV is active") Signed-off-by: NPeter Gonda <pgonda@google.com> V2 - Fix up patch description - Correct file paths svm.c -> sev.c - Add unlock of kvm->lock on sev_pin_memory error V1 - https://lore.kernel.org/kvm/20210126185431.1824530-1-pgonda@google.com/ Message-Id: <20210127161524.2832400-1-pgonda@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 28 1月, 2021 1 次提交
-
-
由 Michael Roth 提交于
Recent commit 255cbecf modified struct kvm_vcpu_arch to make 'cpuid_entries' a pointer to an array of kvm_cpuid_entry2 entries rather than embedding the array in the struct. KVM_SET_CPUID and KVM_SET_CPUID2 were updated accordingly, but KVM_GET_CPUID2 was missed. As a result, KVM_GET_CPUID2 currently returns random fields from struct kvm_vcpu_arch to userspace rather than the expected CPUID values. Fix this by treating 'cpuid_entries' as a pointer when copying its contents to userspace buffer. Fixes: 255cbecf ("KVM: x86: allocate vcpu->arch.cpuid_entries dynamically") Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: NMichael Roth <michael.roth@amd.com.com> Message-Id: <20210128024451.1816770-1-michael.roth@amd.com> Cc: stable@vger.kernel.org Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 26 1月, 2021 9 次提交
-
-
由 Paolo Bonzini 提交于
VMX also uses KVM_REQ_GET_NESTED_STATE_PAGES for the Hyper-V eVMCS, which may need to be loaded outside guest mode. Therefore we cannot WARN in that case. However, that part of nested_get_vmcs12_pages is _not_ needed at vmentry time. Split it out of KVM_REQ_GET_NESTED_STATE_PAGES handling, so that both vmentry and migration (and in the latter case, independent of is_guest_mode) do the parts that are needed. Cc: <stable@vger.kernel.org> # 5.10.x: f2c7ef3b: KVM: nSVM: cancel KVM_REQ_GET_NESTED_STATE_PAGES Cc: <stable@vger.kernel.org> # 5.10.x Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
Revert the dirty/available tracking of GPRs now that KVM copies the GPRs to the GHCB on any post-VMGEXIT VMRUN, even if a GPR is not dirty. Per commit de3cd117 ("KVM: x86: Omit caching logic for always-available GPRs"), tracking for GPRs noticeably impacts KVM's code footprint. This reverts commit 1c04d8c9. Signed-off-by: NSean Christopherson <seanjc@google.com> Message-Id: <20210122235049.3107620-3-seanjc@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
Drop the per-GPR dirty checks when synchronizing GPRs to the GHCB, the GRPs' dirty bits are set from time zero and never cleared, i.e. will always be seen as dirty. The obvious alternative would be to clear the dirty bits when appropriate, but removing the dirty checks is desirable as it allows reverting GPR dirty+available tracking, which adds overhead to all flavors of x86 VMs. Note, unconditionally writing the GPRs in the GHCB is tacitly allowed by the GHCB spec, which allows the hypervisor (or guest) to provide unnecessary info; it's the guest's responsibility to consume only what it needs (the hypervisor is untrusted after all). The guest and hypervisor can supply additional state if desired but must not rely on that additional state being provided. Cc: Brijesh Singh <brijesh.singh@amd.com> Cc: Tom Lendacky <thomas.lendacky@amd.com> Fixes: 291bd20d ("KVM: SVM: Add initial support for a VMGEXIT VMEXIT") Signed-off-by: NSean Christopherson <seanjc@google.com> Message-Id: <20210122235049.3107620-2-seanjc@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Maxim Levitsky 提交于
Even when we are outside the nested guest, some vmcs02 fields may not be in sync vs vmcs12. This is intentional, even across nested VM-exit, because the sync can be delayed until the nested hypervisor performs a VMCLEAR or a VMREAD/VMWRITE that affects those rarely accessed fields. However, during KVM_GET_NESTED_STATE, the vmcs12 has to be up to date to be able to restore it. To fix that, call copy_vmcs02_to_vmcs12_rare() before the vmcs12 contents are copied to userspace. Fixes: 7952d769 ("KVM: nVMX: Sync rarely accessed guest fields only when needed") Reviewed-by: NSean Christopherson <seanjc@google.com> Signed-off-by: NMaxim Levitsky <mlevitsk@redhat.com> Message-Id: <20210114205449.8715-2-mlevitsk@redhat.com> Cc: stable@vger.kernel.org Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Lorenzo Brescia 提交于
On VMX, if we exit and then re-enter immediately without leaving the vmx_vcpu_run() function, the kvm_entry event is not logged. That means we will see one (or more) kvm_exit, without its (their) corresponding kvm_entry, as shown here: CPU-1979 [002] 89.871187: kvm_entry: vcpu 1 CPU-1979 [002] 89.871218: kvm_exit: reason MSR_WRITE CPU-1979 [002] 89.871259: kvm_exit: reason MSR_WRITE It also seems possible for a kvm_entry event to be logged, but then we leave vmx_vcpu_run() right away (if vmx->emulation_required is true). In this case, we will have a spurious kvm_entry event in the trace. Fix these situations by moving trace_kvm_entry() inside vmx_vcpu_run() (where trace_kvm_exit() already is). A trace obtained with this patch applied looks like this: CPU-14295 [000] 8388.395387: kvm_entry: vcpu 0 CPU-14295 [000] 8388.395392: kvm_exit: reason MSR_WRITE CPU-14295 [000] 8388.395393: kvm_entry: vcpu 0 CPU-14295 [000] 8388.395503: kvm_exit: reason EXTERNAL_INTERRUPT Of course, not calling trace_kvm_entry() in common x86 code any longer means that we need to adjust the SVM side of things too. Signed-off-by: NLorenzo Brescia <lorenzo.brescia@edu.unito.it> Signed-off-by: NDario Faggioli <dfaggioli@suse.com> Message-Id: <160873470698.11652.13483635328769030605.stgit@Wayrath> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Jay Zhou 提交于
The injection process of smi has two steps: Qemu KVM Step1: cpu->interrupt_request &= \ ~CPU_INTERRUPT_SMI; kvm_vcpu_ioctl(cpu, KVM_SMI) call kvm_vcpu_ioctl_smi() and kvm_make_request(KVM_REQ_SMI, vcpu); Step2: kvm_vcpu_ioctl(cpu, KVM_RUN, 0) call process_smi() if kvm_check_request(KVM_REQ_SMI, vcpu) is true, mark vcpu->arch.smi_pending = true; The vcpu->arch.smi_pending will be set true in step2, unfortunately if vcpu paused between step1 and step2, the kvm_run->immediate_exit will be set and vcpu has to exit to Qemu immediately during step2 before mark vcpu->arch.smi_pending true. During VM migration, Qemu will get the smi pending status from KVM using KVM_GET_VCPU_EVENTS ioctl at the downtime, then the smi pending status will be lost. Signed-off-by: NJay Zhou <jianjay.zhou@huawei.com> Signed-off-by: NShengen Zhuang <zhuangshengen@huawei.com> Message-Id: <20210118084720.1585-1-jianjay.zhou@huawei.com> Cc: stable@vger.kernel.org Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Like Xu 提交于
The HW_REF_CPU_CYCLES event on the fixed counter 2 is pseudo-encoded as 0x0300 in the intel_perfmon_event_map[]. Correct its usage. Fixes: 62079d8a ("KVM: PMU: add proper support for fixed counter 2") Signed-off-by: NLike Xu <like.xu@linux.intel.com> Message-Id: <20201230081916.63417-1-like.xu@linux.intel.com> Reviewed-by: NSean Christopherson <seanjc@google.com> Cc: stable@vger.kernel.org Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Like Xu 提交于
Since we know vPMU will not work properly when (1) the guest bit_width(s) of the [gp|fixed] counters are greater than the host ones, or (2) guest requested architectural events exceeds the range supported by the host, so we can setup a smaller left shift value and refresh the guest cpuid entry, thus fixing the following UBSAN shift-out-of-bounds warning: shift exponent 197 is too large for 64-bit type 'long long unsigned int' Call Trace: __dump_stack lib/dump_stack.c:79 [inline] dump_stack+0x107/0x163 lib/dump_stack.c:120 ubsan_epilogue+0xb/0x5a lib/ubsan.c:148 __ubsan_handle_shift_out_of_bounds.cold+0xb1/0x181 lib/ubsan.c:395 intel_pmu_refresh.cold+0x75/0x99 arch/x86/kvm/vmx/pmu_intel.c:348 kvm_vcpu_after_set_cpuid+0x65a/0xf80 arch/x86/kvm/cpuid.c:177 kvm_vcpu_ioctl_set_cpuid2+0x160/0x440 arch/x86/kvm/cpuid.c:308 kvm_arch_vcpu_ioctl+0x11b6/0x2d70 arch/x86/kvm/x86.c:4709 kvm_vcpu_ioctl+0x7b9/0xdb0 arch/x86/kvm/../../../virt/kvm/kvm_main.c:3386 vfs_ioctl fs/ioctl.c:48 [inline] __do_sys_ioctl fs/ioctl.c:753 [inline] __se_sys_ioctl fs/ioctl.c:739 [inline] __x64_sys_ioctl+0x193/0x200 fs/ioctl.c:739 do_syscall_64+0x2d/0x70 arch/x86/entry/common.c:46 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Reported-by: syzbot+ae488dc136a4cc6ba32b@syzkaller.appspotmail.com Signed-off-by: NLike Xu <like.xu@linux.intel.com> Message-Id: <20210118025800.34620-1-like.xu@linux.intel.com> Cc: stable@vger.kernel.org Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
Add compile-time asserts in rsvd_bits() to guard against KVM passing in garbage hardcoded values, and cap the upper bound at '63' for dynamic values to prevent generating a mask that would overflow a u64. Suggested-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NSean Christopherson <seanjc@google.com> Message-Id: <20210113204515.3473079-1-seanjc@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 08 1月, 2021 14 次提交
-
-
由 Paolo Bonzini 提交于
Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Tom Lendacky 提交于
Typically under KVM, an AP is booted using the INIT-SIPI-SIPI sequence, where the guest vCPU register state is updated and then the vCPU is VMRUN to begin execution of the AP. For an SEV-ES guest, this won't work because the guest register state is encrypted. Following the GHCB specification, the hypervisor must not alter the guest register state, so KVM must track an AP/vCPU boot. Should the guest want to park the AP, it must use the AP Reset Hold exit event in place of, for example, a HLT loop. First AP boot (first INIT-SIPI-SIPI sequence): Execute the AP (vCPU) as it was initialized and measured by the SEV-ES support. It is up to the guest to transfer control of the AP to the proper location. Subsequent AP boot: KVM will expect to receive an AP Reset Hold exit event indicating that the vCPU is being parked and will require an INIT-SIPI-SIPI sequence to awaken it. When the AP Reset Hold exit event is received, KVM will place the vCPU into a simulated HLT mode. Upon receiving the INIT-SIPI-SIPI sequence, KVM will make the vCPU runnable. It is again up to the guest to then transfer control of the AP to the proper location. To differentiate between an actual HLT and an AP Reset Hold, a new MP state is introduced, KVM_MP_STATE_AP_RESET_HOLD, which the vCPU is placed in upon receiving the AP Reset Hold exit event. Additionally, to communicate the AP Reset Hold exit event up to userspace (if needed), a new exit reason is introduced, KVM_EXIT_AP_RESET_HOLD. A new x86 ops function is introduced, vcpu_deliver_sipi_vector, in order to accomplish AP booting. For VMX, vcpu_deliver_sipi_vector is set to the original SIPI delivery function, kvm_vcpu_deliver_sipi_vector(). SVM adds a new function that, for non SEV-ES guests, invokes the original SIPI delivery function, kvm_vcpu_deliver_sipi_vector(), but for SEV-ES guests, implements the logic above. Signed-off-by: NTom Lendacky <thomas.lendacky@amd.com> Message-Id: <e8fbebe8eb161ceaabdad7c01a5859a78b424d5e.1609791600.git.thomas.lendacky@amd.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Maxim Levitsky 提交于
It is possible to exit the nested guest mode, entered by svm_set_nested_state prior to first vm entry to it (e.g due to pending event) if the nested run was not pending during the migration. In this case we must not switch to the nested msr permission bitmap. Also add a warning to catch similar cases in the future. Fixes: a7d5c7ce ("KVM: nSVM: delay MSR permission processing to first nested VM run") Signed-off-by: NMaxim Levitsky <mlevitsk@redhat.com> Message-Id: <20210107093854.882483-2-mlevitsk@redhat.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Maxim Levitsky 提交于
We overwrite most of vmcb fields while doing so, so we must mark it as dirty. Signed-off-by: NMaxim Levitsky <mlevitsk@redhat.com> Message-Id: <20210107093854.882483-5-mlevitsk@redhat.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Maxim Levitsky 提交于
The code to store it on the migration exists, but no code was restoring it. One of the side effects of fixing this is that L1->L2 injected events are no longer lost when migration happens with nested run pending. Signed-off-by: NMaxim Levitsky <mlevitsk@redhat.com> Message-Id: <20210107093854.882483-3-mlevitsk@redhat.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Ben Gardon 提交于
Many TDP MMU functions which need to perform some action on all TDP MMU roots hold a reference on that root so that they can safely drop the MMU lock in order to yield to other threads. However, when releasing the reference on the root, there is a bug: the root will not be freed even if its reference count (root_count) is reduced to 0. To simplify acquiring and releasing references on TDP MMU root pages, and to ensure that these roots are properly freed, move the get/put operations into another TDP MMU root iterator macro. Moving the get/put operations into an iterator macro also helps simplify control flow when a root does need to be freed. Note that using the list_for_each_entry_safe macro would not have been appropriate in this situation because it could keep a pointer to the next root across an MMU lock release + reacquire, during which time that root could be freed. Reported-by: NMaciej S. Szmigiero <maciej.szmigiero@oracle.com> Suggested-by: NPaolo Bonzini <pbonzini@redhat.com> Fixes: faaf05b0 ("kvm: x86/mmu: Support zapping SPTEs in the TDP MMU") Fixes: 063afacd ("kvm: x86/mmu: Support invalidate range MMU notifier for TDP MMU") Fixes: a6a0b05d ("kvm: x86/mmu: Support dirty logging for the TDP MMU") Fixes: 14881998 ("kvm: x86/mmu: Support disabling dirty logging for the tdp MMU") Signed-off-by: NBen Gardon <bgardon@google.com> Message-Id: <20210107001935.3732070-1-bgardon@google.com> Cc: stable@vger.kernel.org Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Stephen Zhang 提交于
Signed-off-by: NStephen Zhang <stephenzhangzsd@gmail.com> Message-Id: <1608277897-1932-1-git-send-email-stephenzhangzsd@gmail.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Paolo Bonzini 提交于
Since we know that e >= s, we can reassociate the left shift, changing the shifted number from 1 to 2 in exchange for decreasing the right hand side by 1. Reported-by: syzbot+e87846c48bf72bc85311@syzkaller.appspotmail.com Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Uros Bizjak 提交于
Commit 16809ecd moved __svm_vcpu_run the prototype to svm.h, but forgot to remove the original from svm.c. Fixes: 16809ecd ("KVM: SVM: Provide an updated VMRUN invocation for SEV-ES guests") Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: NUros Bizjak <ubizjak@gmail.com> Message-Id: <20201220200339.65115-1-ubizjak@gmail.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Nathan Chancellor 提交于
When using LLVM's integrated assembler (LLVM_IAS=1) while building x86_64_defconfig + CONFIG_KVM=y + CONFIG_KVM_AMD=y, the following build error occurs: $ make LLVM=1 LLVM_IAS=1 arch/x86/kvm/svm/sev.o arch/x86/kvm/svm/sev.c:2004:15: error: too few operands for instruction asm volatile(__ex("vmsave") : : "a" (__sme_page_pa(sd->save_area)) : "memory"); ^ arch/x86/kvm/svm/sev.c:28:17: note: expanded from macro '__ex' #define __ex(x) __kvm_handle_fault_on_reboot(x) ^ ./arch/x86/include/asm/kvm_host.h:1646:10: note: expanded from macro '__kvm_handle_fault_on_reboot' "666: \n\t" \ ^ <inline asm>:2:2: note: instantiated into assembly here vmsave ^ 1 error generated. This happens because LLVM currently does not support calling vmsave without the fixed register operand (%rax for 64-bit and %eax for 32-bit). This will be fixed in LLVM 12 but the kernel currently supports LLVM 10.0.1 and newer so this needs to be handled. Add the proper register using the _ASM_AX macro, which matches the vmsave call in vmenter.S. Fixes: 86137773 ("KVM: SVM: Provide support for SEV-ES vCPU loading") Link: https://reviews.llvm.org/D93524 Link: https://github.com/ClangBuiltLinux/linux/issues/1216Signed-off-by: NNathan Chancellor <natechancellor@gmail.com> Message-Id: <20201219063711.3526947-1-natechancellor@gmail.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
Check only the terminal leaf for a "!PRESENT || MMIO" SPTE when looking for reserved bits on valid, non-MMIO SPTEs. The get_walk() helpers terminate their walks if a not-present or MMIO SPTE is encountered, i.e. the non-terminal SPTEs have already been verified to be regular SPTEs. This eliminates an extra check-and-branch in a relatively hot loop. Signed-off-by: NSean Christopherson <seanjc@google.com> Message-Id: <20201218003139.2167891-5-seanjc@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
Bump the size of the sptes array by one and use the raw level of the SPTE to index into the sptes array. Using the SPTE level directly improves readability by eliminating the need to reason out why the level is being adjusted when indexing the array. The array is on the stack and is not explicitly initialized; bumping its size is nothing more than a superficial adjustment to the stack frame. Signed-off-by: NSean Christopherson <seanjc@google.com> Message-Id: <20201218003139.2167891-4-seanjc@google.com> Reviewed-by: NVitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
Get the so called "root" level from the low level shadow page table walkers instead of manually attempting to calculate it higher up the stack, e.g. in get_mmio_spte(). When KVM is using PAE shadow paging, the starting level of the walk, from the callers perspective, is not the CR3 root but rather the PDPTR "root". Checking for reserved bits from the CR3 root causes get_mmio_spte() to consume uninitialized stack data due to indexing into sptes[] for a level that was not filled by get_walk(). This can result in false positives and/or negatives depending on what garbage happens to be on the stack. Opportunistically nuke a few extra newlines. Fixes: 95fb5b02 ("kvm: x86/mmu: Support MMIO in the TDP MMU") Reported-by: NRichard Herbert <rherbert@sympatico.ca> Cc: Ben Gardon <bgardon@google.com> Cc: stable@vger.kernel.org Signed-off-by: NSean Christopherson <seanjc@google.com> Message-Id: <20201218003139.2167891-3-seanjc@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Sean Christopherson 提交于
Return -1 from the get_walk() helpers if the shadow walk doesn't fill at least one spte, which can theoretically happen if the walk hits a not-present PDPTR. Returning the root level in such a case will cause get_mmio_spte() to return garbage (uninitialized stack data). In practice, such a scenario should be impossible as KVM shouldn't get a reserved-bit page fault with a not-present PDPTR. Note, using mmu->root_level in get_walk() is wrong for other reasons, too, but that's now a moot point. Fixes: 95fb5b02 ("kvm: x86/mmu: Support MMIO in the TDP MMU") Cc: Ben Gardon <bgardon@google.com> Cc: stable@vger.kernel.org Signed-off-by: NSean Christopherson <seanjc@google.com> Message-Id: <20201218003139.2167891-2-seanjc@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 20 12月, 2020 1 次提交
-
-
由 Shakeel Butt 提交于
A VCPU of a VM can allocate couple of pages which can be mmap'ed by the user space application. At the moment this memory is not charged to the memcg of the VMM. On a large machine running large number of VMs or small number of VMs having large number of VCPUs, this unaccounted memory can be very significant. So, charge this memory to the memcg of the VMM. Please note that lifetime of these allocations corresponds to the lifetime of the VMM. Link: https://lkml.kernel.org/r/20201106202923.2087414-1-shakeelb@google.comSigned-off-by: NShakeel Butt <shakeelb@google.com> Acked-by: NRoman Gushchin <guro@fb.com> Acked-by: NPaolo Bonzini <pbonzini@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 17 12月, 2020 1 次提交
-
-
由 Paolo Bonzini 提交于
VCPU_REGS_R8...VCPU_REGS_R15 are not defined on 32-bit x86, so cull them from the synchronization of the VMSA. Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 16 12月, 2020 1 次提交
-
-
由 Tom Lendacky 提交于
The GHCB specification requires the hypervisor to save the address of an AP Jump Table so that, for example, vCPUs that have been parked by UEFI can be started by the OS. Provide support for the AP Jump Table set/get exit code. Signed-off-by: NTom Lendacky <thomas.lendacky@amd.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 15 12月, 2020 9 次提交
-
-
由 Tom Lendacky 提交于
An SEV-ES guest is started by invoking a new SEV initialization ioctl, KVM_SEV_ES_INIT. This identifies the guest as an SEV-ES guest, which is used to drive the appropriate ASID allocation, VMSA encryption, etc. Before being able to run an SEV-ES vCPU, the vCPU VMSA must be encrypted and measured. This is done using the LAUNCH_UPDATE_VMSA command after all calls to LAUNCH_UPDATE_DATA have been performed, but before LAUNCH_MEASURE has been performed. In order to establish the encrypted VMSA, the current (traditional) VMSA and the GPRs are synced to the page that will hold the encrypted VMSA and then LAUNCH_UPDATE_VMSA is invoked. The vCPU is then marked as having protected guest state. Signed-off-by: NTom Lendacky <thomas.lendacky@amd.com> Message-Id: <e9643245adb809caf3a87c09997926d2f3d6ff41.1607620209.git.thomas.lendacky@amd.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Tom Lendacky 提交于
The run sequence is different for an SEV-ES guest compared to a legacy or even an SEV guest. The guest vCPU register state of an SEV-ES guest will be restored on VMRUN and saved on VMEXIT. There is no need to restore the guest registers directly and through VMLOAD before VMRUN and no need to save the guest registers directly and through VMSAVE on VMEXIT. Update the svm_vcpu_run() function to skip register state saving and restoring and provide an alternative function for running an SEV-ES guest in vmenter.S Additionally, certain host state is restored across an SEV-ES VMRUN. As a result certain register states are not required to be restored upon VMEXIT (e.g. FS, GS, etc.), so only do that if the guest is not an SEV-ES guest. Signed-off-by: NTom Lendacky <thomas.lendacky@amd.com> Message-Id: <fb1c66d32f2194e171b95fc1a8affd6d326e10c1.1607620209.git.thomas.lendacky@amd.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Tom Lendacky 提交于
An SEV-ES vCPU requires additional VMCB vCPU load/put requirements. SEV-ES hardware will restore certain registers on VMEXIT, but not save them on VMRUN (see Table B-3 and Table B-4 of the AMD64 APM Volume 2), so make the following changes: General vCPU load changes: - During vCPU loading, perform a VMSAVE to the per-CPU SVM save area and save the current values of XCR0, XSS and PKRU to the per-CPU SVM save area as these registers will be restored on VMEXIT. General vCPU put changes: - Do not attempt to restore registers that SEV-ES hardware has already restored on VMEXIT. Signed-off-by: NTom Lendacky <thomas.lendacky@amd.com> Message-Id: <019390e9cb5e93cd73014fa5a040c17d42588733.1607620209.git.thomas.lendacky@amd.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Tom Lendacky 提交于
An SEV-ES vCPU requires additional VMCB initialization requirements for vCPU creation and vCPU load/put requirements. This includes: General VMCB initialization changes: - Set a VMCB control bit to enable SEV-ES support on the vCPU. - Set the VMCB encrypted VM save area address. - CRx registers are part of the encrypted register state and cannot be updated. Remove the CRx register read and write intercepts and replace them with CRx register write traps to track the CRx register values. - Certain MSR values are part of the encrypted register state and cannot be updated. Remove certain MSR intercepts (EFER, CR_PAT, etc.). - Remove the #GP intercept (no support for "enable_vmware_backdoor"). - Remove the XSETBV intercept since the hypervisor cannot modify XCR0. General vCPU creation changes: - Set the initial GHCB gpa value as per the GHCB specification. Signed-off-by: NTom Lendacky <thomas.lendacky@amd.com> Message-Id: <3a8aef366416eddd5556dfa3fdc212aafa1ad0a2.1607620209.git.thomas.lendacky@amd.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Tom Lendacky 提交于
SEV and SEV-ES guests each have dedicated ASID ranges. Update the ASID allocation routine to return an ASID in the respective range. Signed-off-by: NTom Lendacky <thomas.lendacky@amd.com> Message-Id: <d7aed505e31e3954268b2015bb60a1486269c780.1607620209.git.thomas.lendacky@amd.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Tom Lendacky 提交于
The SVM host save area is used to restore some host state on VMEXIT of an SEV-ES guest. After allocating the save area, clear it and add the encryption mask to the SVM host save area physical address that is programmed into the VM_HSAVE_PA MSR. Signed-off-by: NTom Lendacky <thomas.lendacky@amd.com> Message-Id: <b77aa28af6d7f1a0cb545959e08d6dc75e0c3cba.1607620209.git.thomas.lendacky@amd.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Tom Lendacky 提交于
The GHCB specification defines how NMIs are to be handled for an SEV-ES guest. To detect the completion of an NMI the hypervisor must not intercept the IRET instruction (because a #VC while running the NMI will issue an IRET) and, instead, must receive an NMI Complete exit event from the guest. Update the KVM support for detecting the completion of NMIs in the guest to follow the GHCB specification. When an SEV-ES guest is active, the IRET instruction will no longer be intercepted. Now, when the NMI Complete exit event is received, the iret_interception() function will be called to simulate the completion of the NMI. Signed-off-by: NTom Lendacky <thomas.lendacky@amd.com> Message-Id: <5ea3dd69b8d4396cefdc9048ebc1ab7caa70a847.1607620209.git.thomas.lendacky@amd.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Tom Lendacky 提交于
The guest FPU state is automatically restored on VMRUN and saved on VMEXIT by the hardware, so there is no reason to do this in KVM. Eliminate the allocation of the guest_fpu save area and key off that to skip operations related to the guest FPU state. Signed-off-by: NTom Lendacky <thomas.lendacky@amd.com> Message-Id: <173e429b4d0d962c6a443c4553ffdaf31b7665a4.1607620209.git.thomas.lendacky@amd.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Tom Lendacky 提交于
SEV-ES guests do not currently support SMM. Update the has_emulated_msr() kvm_x86_ops function to take a struct kvm parameter so that the capability can be reported at a VM level. Since this op is also called during KVM initialization and before a struct kvm instance is available, comments will be added to each implementation of has_emulated_msr() to indicate the kvm parameter can be null. Signed-off-by: NTom Lendacky <thomas.lendacky@amd.com> Message-Id: <75de5138e33b945d2fb17f81ae507bda381808e3.1607620209.git.thomas.lendacky@amd.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-