1. 01 8月, 2017 1 次提交
  2. 20 7月, 2017 1 次提交
  3. 04 7月, 2017 1 次提交
  4. 02 7月, 2017 4 次提交
  5. 01 7月, 2017 1 次提交
  6. 08 6月, 2017 3 次提交
  7. 03 6月, 2017 1 次提交
  8. 18 5月, 2017 8 次提交
  9. 17 5月, 2017 1 次提交
    • E
      tcp: internal implementation for pacing · 218af599
      Eric Dumazet 提交于
      BBR congestion control depends on pacing, and pacing is
      currently handled by sch_fq packet scheduler for performance reasons,
      and also because implemening pacing with FQ was convenient to truly
      avoid bursts.
      
      However there are many cases where this packet scheduler constraint
      is not practical.
      - Many linux hosts are not focusing on handling thousands of TCP
        flows in the most efficient way.
      - Some routers use fq_codel or other AQM, but still would like
        to use BBR for the few TCP flows they initiate/terminate.
      
      This patch implements an automatic fallback to internal pacing.
      
      Pacing is requested either by BBR or use of SO_MAX_PACING_RATE option.
      
      If sch_fq happens to be in the egress path, pacing is delegated to
      the qdisc, otherwise pacing is done by TCP itself.
      
      One advantage of pacing from TCP stack is to get more precise rtt
      estimations, and less work done from TX completion, since TCP Small
      queue limits are not generally hit. Setups with single TX queue but
      many cpus might even benefit from this.
      
      Note that unlike sch_fq, we do not take into account header sizes.
      Taking care of these headers would add additional complexity for
      no practical differences in behavior.
      
      Some performance numbers using 800 TCP_STREAM flows rate limited to
      ~48 Mbit per second on 40Gbit NIC.
      
      If MQ+pfifo_fast is used on the NIC :
      
      $ sar -n DEV 1 5 | grep eth
      14:48:44         eth0 725743.00 2932134.00  46776.76 4335184.68      0.00      0.00      1.00
      14:48:45         eth0 725349.00 2932112.00  46751.86 4335158.90      0.00      0.00      0.00
      14:48:46         eth0 725101.00 2931153.00  46735.07 4333748.63      0.00      0.00      0.00
      14:48:47         eth0 725099.00 2931161.00  46735.11 4333760.44      0.00      0.00      1.00
      14:48:48         eth0 725160.00 2931731.00  46738.88 4334606.07      0.00      0.00      0.00
      Average:         eth0 725290.40 2931658.20  46747.54 4334491.74      0.00      0.00      0.40
      $ vmstat 1 5
      procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----
       r  b   swpd   free   buff  cache   si   so    bi    bo   in   cs us sy id wa st
       4  0      0 259825920  45644 2708324    0    0    21     2  247   98  0  0 100  0  0
       4  0      0 259823744  45644 2708356    0    0     0     0 2400825 159843  0 19 81  0  0
       0  0      0 259824208  45644 2708072    0    0     0     0 2407351 159929  0 19 81  0  0
       1  0      0 259824592  45644 2708128    0    0     0     0 2405183 160386  0 19 80  0  0
       1  0      0 259824272  45644 2707868    0    0     0    32 2396361 158037  0 19 81  0  0
      
      Now use MQ+FQ :
      
      lpaa23:~# echo fq >/proc/sys/net/core/default_qdisc
      lpaa23:~# tc qdisc replace dev eth0 root mq
      
      $ sar -n DEV 1 5 | grep eth
      14:49:57         eth0 678614.00 2727930.00  43739.13 4033279.14      0.00      0.00      0.00
      14:49:58         eth0 677620.00 2723971.00  43674.69 4027429.62      0.00      0.00      1.00
      14:49:59         eth0 676396.00 2719050.00  43596.83 4020125.02      0.00      0.00      0.00
      14:50:00         eth0 675197.00 2714173.00  43518.62 4012938.90      0.00      0.00      1.00
      14:50:01         eth0 676388.00 2719063.00  43595.47 4020171.64      0.00      0.00      0.00
      Average:         eth0 676843.00 2720837.40  43624.95 4022788.86      0.00      0.00      0.40
      $ vmstat 1 5
      procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----
       r  b   swpd   free   buff  cache   si   so    bi    bo   in   cs us sy id wa st
       2  0      0 259832240  46008 2710912    0    0    21     2  223  192  0  1 99  0  0
       1  0      0 259832896  46008 2710744    0    0     0     0 1702206 198078  0 17 82  0  0
       0  0      0 259830272  46008 2710596    0    0     0     0 1696340 197756  1 17 83  0  0
       4  0      0 259829168  46024 2710584    0    0    16     0 1688472 197158  1 17 82  0  0
       3  0      0 259830224  46024 2710408    0    0     0     0 1692450 197212  0 18 82  0  0
      
      As expected, number of interrupts per second is very different.
      Signed-off-by: NEric Dumazet <edumazet@google.com>
      Acked-by: NSoheil Hassas Yeganeh <soheil@google.com>
      Cc: Neal Cardwell <ncardwell@google.com>
      Cc: Yuchung Cheng <ycheng@google.com>
      Cc: Van Jacobson <vanj@google.com>
      Cc: Jerry Chu <hkchu@google.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      218af599
  10. 09 5月, 2017 1 次提交
  11. 29 4月, 2017 1 次提交
  12. 08 4月, 2017 1 次提交
  13. 05 4月, 2017 1 次提交
  14. 31 3月, 2017 1 次提交
  15. 18 2月, 2017 1 次提交
  16. 08 2月, 2017 1 次提交
  17. 04 2月, 2017 2 次提交
  18. 02 2月, 2017 1 次提交
  19. 30 1月, 2017 1 次提交
  20. 26 1月, 2017 1 次提交
  21. 14 1月, 2017 3 次提交
    • Y
      tcp: remove early retransmit · bec41a11
      Yuchung Cheng 提交于
      This patch removes the support of RFC5827 early retransmit (i.e.,
      fast recovery on small inflight with <3 dupacks) because it is
      subsumed by the new RACK loss detection. More specifically when
      RACK receives DUPACKs, it'll arm a reordering timer to start fast
      recovery after a quarter of (min)RTT, hence it covers the early
      retransmit except RACK does not limit itself to specific inflight
      or dupack numbers.
      Signed-off-by: NYuchung Cheng <ycheng@google.com>
      Signed-off-by: NNeal Cardwell <ncardwell@google.com>
      Acked-by: NEric Dumazet <edumazet@google.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      bec41a11
    • Y
      tcp: remove forward retransmit feature · 840a3cbe
      Yuchung Cheng 提交于
      Forward retransmit is an esoteric feature in RFC3517 (condition(3)
      in the NextSeg()). Basically if a packet is not considered lost by
      the current criteria (# of dupacks etc), but the congestion window
      has room for more packets, then retransmit this packet.
      
      However it actually conflicts with the rest of recovery design. For
      example, when reordering is detected we want to be conservative
      in retransmitting packets but forward-retransmit feature would
      break that to force more retransmission. Also the implementation is
      fairly complicated inside the retransmission logic inducing extra
      iterations in the write queue. With RACK losses are being detected
      timely and this heuristic is no longer necessary. There this patch
      removes the feature.
      Signed-off-by: NYuchung Cheng <ycheng@google.com>
      Signed-off-by: NNeal Cardwell <ncardwell@google.com>
      Acked-by: NEric Dumazet <edumazet@google.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      840a3cbe
    • Y
      tcp: add reordering timer in RACK loss detection · 57dde7f7
      Yuchung Cheng 提交于
      This patch makes RACK install a reordering timer when it suspects
      some packets might be lost, but wants to delay the decision
      a little bit to accomodate reordering.
      
      It does not create a new timer but instead repurposes the existing
      RTO timer, because both are meant to retransmit packets.
      Specifically it arms a timer ICSK_TIME_REO_TIMEOUT when
      the RACK timing check fails. The wait time is set to
      
        RACK.RTT + RACK.reo_wnd - (NOW - Packet.xmit_time) + fudge
      
      This translates to expecting a packet (Packet) should take
      (RACK.RTT + RACK.reo_wnd + fudge) to deliver after it was sent.
      
      When there are multiple packets that need a timer, we use one timer
      with the maximum timeout. Therefore the timer conservatively uses
      the maximum window to expire N packets by one timeout, instead of
      N timeouts to expire N packets sent at different times.
      
      The fudge factor is 2 jiffies to ensure when the timer fires, all
      the suspected packets would exceed the deadline and be marked lost
      by tcp_rack_detect_loss(). It has to be at least 1 jiffy because the
      clock may tick between calling icsk_reset_xmit_timer(timeout) and
      actually hang the timer. The next jiffy is to lower-bound the timeout
      to 2 jiffies when reo_wnd is < 1ms.
      
      When the reordering timer fires (tcp_rack_reo_timeout): If we aren't
      in Recovery we'll enter fast recovery and force fast retransmit.
      This is very similar to the early retransmit (RFC5827) except RACK
      is not constrained to only enter recovery for small outstanding
      flights.
      Signed-off-by: NYuchung Cheng <ycheng@google.com>
      Signed-off-by: NNeal Cardwell <ncardwell@google.com>
      Acked-by: NEric Dumazet <edumazet@google.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      57dde7f7
  22. 26 12月, 2016 1 次提交
    • T
      ktime: Get rid of the union · 2456e855
      Thomas Gleixner 提交于
      ktime is a union because the initial implementation stored the time in
      scalar nanoseconds on 64 bit machine and in a endianess optimized timespec
      variant for 32bit machines. The Y2038 cleanup removed the timespec variant
      and switched everything to scalar nanoseconds. The union remained, but
      become completely pointless.
      
      Get rid of the union and just keep ktime_t as simple typedef of type s64.
      
      The conversion was done with coccinelle and some manual mopping up.
      Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
      Cc: Peter Zijlstra <peterz@infradead.org>
      2456e855
  23. 22 12月, 2016 1 次提交
  24. 06 12月, 2016 2 次提交