1. 13 6月, 2017 1 次提交
    • M
      s390/kvm: avoid global config of vm.alloc_pgste=1 · 23fefe11
      Martin Schwidefsky 提交于
      The system control vm.alloc_pgste is used to control the size of the
      page tables, either 2K or 4K. The idea is that a KVM host sets the
      vm.alloc_pgste control to 1 which causes *all* new processes to run
      with 4K page tables. For a non-kvm system the control should stay off
      to save on memory used for page tables.
      
      Trouble is that distributions choose to set the control globally to
      be able to run KVM guests. This wastes memory on non-KVM systems.
      
      Introduce the PT_S390_PGSTE ELF segment type to "mark" the qemu
      executable with it. All executables with this (empty) segment in
      its ELF phdr array will be started with 4K page tables. Any executable
      without PT_S390_PGSTE will run with the default 2K page tables.
      
      This removes the need to set vm.alloc_pgste=1 for a KVM host and
      minimizes the waste of memory for page tables.
      Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
      23fefe11
  2. 20 4月, 2017 1 次提交
  3. 18 3月, 2017 1 次提交
  4. 02 3月, 2017 1 次提交
  5. 23 2月, 2017 1 次提交
  6. 25 12月, 2016 1 次提交
  7. 24 8月, 2016 1 次提交
  8. 20 6月, 2016 1 次提交
  9. 13 6月, 2016 1 次提交
    • M
      s390/mm: simplify the TLB flushing code · 64f31d58
      Martin Schwidefsky 提交于
      ptep_flush_lazy and pmdp_flush_lazy use mm->context.attach_count to
      decide between a lazy TLB flush vs an immediate TLB flush. The field
      contains two 16-bit counters, the number of CPUs that have the mm
      attached and can create TLB entries for it and the number of CPUs in
      the middle of a page table update.
      
      The __tlb_flush_asce, ptep_flush_direct and pmdp_flush_direct functions
      use the attach counter and a mask check with mm_cpumask(mm) to decide
      between a local flush local of the current CPU and a global flush.
      
      For all these functions the decision between lazy vs immediate and
      local vs global TLB flush can be based on CPU masks. There are two
      masks:  the mm->context.cpu_attach_mask with the CPUs that are actively
      using the mm, and the mm_cpumask(mm) with the CPUs that have used the
      mm since the last full flush. The decision between lazy vs immediate
      flush is based on the mm->context.cpu_attach_mask, to decide between
      local vs global flush the mm_cpumask(mm) is used.
      
      With this patch all checks will use the CPU masks, the old counter
      mm->context.attach_count with its two 16-bit values is turned into a
      single counter mm->context.flush_count that keeps track of the number
      of CPUs with incomplete page table updates. The sole user of this
      counter is finish_arch_post_lock_switch() which waits for the end of
      all page table updates.
      Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
      64f31d58
  10. 21 4月, 2016 1 次提交
    • G
      s390/mm: fix asce_bits handling with dynamic pagetable levels · 723cacbd
      Gerald Schaefer 提交于
      There is a race with multi-threaded applications between context switch and
      pagetable upgrade. In switch_mm() a new user_asce is built from mm->pgd and
      mm->context.asce_bits, w/o holding any locks. A concurrent mmap with a
      pagetable upgrade on another thread in crst_table_upgrade() could already
      have set new asce_bits, but not yet the new mm->pgd. This would result in a
      corrupt user_asce in switch_mm(), and eventually in a kernel panic from a
      translation exception.
      
      Fix this by storing the complete asce instead of just the asce_bits, which
      can then be read atomically from switch_mm(), so that it either sees the
      old value or the new value, but no mixture. Both cases are OK. Having the
      old value would result in a page fault on access to the higher level memory,
      but the fault handler would see the new mm->pgd, if it was a valid access
      after the mmap on the other thread has completed. So as worst-case scenario
      we would have a page fault loop for the racing thread until the next time
      slice.
      
      Also remove dead code and simplify the upgrade/downgrade path, there are no
      upgrades from 2 levels, and only downgrades from 3 levels for compat tasks.
      There are also no concurrent upgrades, because the mmap_sem is held with
      down_write() in do_mmap, so the flush and table checks during upgrade can
      be removed.
      Reported-by: NMichael Munday <munday@ca.ibm.com>
      Reviewed-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
      Signed-off-by: NGerald Schaefer <gerald.schaefer@de.ibm.com>
      Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
      723cacbd
  11. 10 3月, 2016 1 次提交
    • M
      s390/mm: four page table levels vs. fork · 3446c13b
      Martin Schwidefsky 提交于
      The fork of a process with four page table levels is broken since
      git commit 6252d702 "[S390] dynamic page tables."
      
      All new mm contexts are created with three page table levels and
      an asce limit of 4TB. If the parent has four levels dup_mmap will
      add vmas to the new context which are outside of the asce limit.
      The subsequent call to copy_page_range will walk the three level
      page table structure of the new process with non-zero pgd and pud
      indexes. This leads to memory clobbers as the pgd_index *and* the
      pud_index is added to the mm->pgd pointer without a pgd_deref
      in between.
      
      The init_new_context() function is selecting the number of page
      table levels for a new context. The function is used by mm_init()
      which in turn is called by dup_mm() and mm_alloc(). These two are
      used by fork() and exec(). The init_new_context() function can
      distinguish the two cases by looking at mm->context.asce_limit,
      for fork() the mm struct has been copied and the number of page
      table levels may not change. For exec() the mm_alloc() function
      set the new mm structure to zero, in this case a three-level page
      table is created as the temporary stack space is located at
      STACK_TOP_MAX = 4TB.
      
      This fixes CVE-2016-2143.
      Reported-by: NMarcin Kościelnicki <koriakin@0x04.net>
      Reviewed-by: NHeiko Carstens <heiko.carstens@de.ibm.com>
      Cc: stable@vger.kernel.org
      Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
      3446c13b
  12. 19 2月, 2016 2 次提交
    • D
      mm/core, x86/mm/pkeys: Differentiate instruction fetches · d61172b4
      Dave Hansen 提交于
      As discussed earlier, we attempt to enforce protection keys in
      software.
      
      However, the code checks all faults to ensure that they are not
      violating protection key permissions.  It was assumed that all
      faults are either write faults where we check PKRU[key].WD (write
      disable) or read faults where we check the AD (access disable)
      bit.
      
      But, there is a third category of faults for protection keys:
      instruction faults.  Instruction faults never run afoul of
      protection keys because they do not affect instruction fetches.
      
      So, plumb the PF_INSTR bit down in to the
      arch_vma_access_permitted() function where we do the protection
      key checks.
      
      We also add a new FAULT_FLAG_INSTRUCTION.  This is because
      handle_mm_fault() is not passed the architecture-specific
      error_code where we keep PF_INSTR, so we need to encode the
      instruction fetch information in to the arch-generic fault
      flags.
      Signed-off-by: NDave Hansen <dave.hansen@linux.intel.com>
      Reviewed-by: NThomas Gleixner <tglx@linutronix.de>
      Cc: Andrew Morton <akpm@linux-foundation.org>
      Cc: Andy Lutomirski <luto@amacapital.net>
      Cc: Borislav Petkov <bp@alien8.de>
      Cc: Brian Gerst <brgerst@gmail.com>
      Cc: Dave Hansen <dave@sr71.net>
      Cc: Denys Vlasenko <dvlasenk@redhat.com>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: linux-mm@kvack.org
      Link: http://lkml.kernel.org/r/20160212210224.96928009@viggo.jf.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
      d61172b4
    • D
      mm/core: Do not enforce PKEY permissions on remote mm access · 1b2ee126
      Dave Hansen 提交于
      We try to enforce protection keys in software the same way that we
      do in hardware.  (See long example below).
      
      But, we only want to do this when accessing our *own* process's
      memory.  If GDB set PKRU[6].AD=1 (disable access to PKEY 6), then
      tried to PTRACE_POKE a target process which just happened to have
      some mprotect_pkey(pkey=6) memory, we do *not* want to deny the
      debugger access to that memory.  PKRU is fundamentally a
      thread-local structure and we do not want to enforce it on access
      to _another_ thread's data.
      
      This gets especially tricky when we have workqueues or other
      delayed-work mechanisms that might run in a random process's context.
      We can check that we only enforce pkeys when operating on our *own* mm,
      but delayed work gets performed when a random user context is active.
      We might end up with a situation where a delayed-work gup fails when
      running randomly under its "own" task but succeeds when running under
      another process.  We want to avoid that.
      
      To avoid that, we use the new GUP flag: FOLL_REMOTE and add a
      fault flag: FAULT_FLAG_REMOTE.  They indicate that we are
      walking an mm which is not guranteed to be the same as
      current->mm and should not be subject to protection key
      enforcement.
      
      Thanks to Jerome Glisse for pointing out this scenario.
      Signed-off-by: NDave Hansen <dave.hansen@linux.intel.com>
      Reviewed-by: NThomas Gleixner <tglx@linutronix.de>
      Cc: Alexey Kardashevskiy <aik@ozlabs.ru>
      Cc: Andrea Arcangeli <aarcange@redhat.com>
      Cc: Andrew Morton <akpm@linux-foundation.org>
      Cc: Andy Lutomirski <luto@amacapital.net>
      Cc: Andy Lutomirski <luto@kernel.org>
      Cc: Arnd Bergmann <arnd@arndb.de>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: Boaz Harrosh <boaz@plexistor.com>
      Cc: Borislav Petkov <bp@alien8.de>
      Cc: Brian Gerst <brgerst@gmail.com>
      Cc: Dan Williams <dan.j.williams@intel.com>
      Cc: Dave Chinner <dchinner@redhat.com>
      Cc: Dave Hansen <dave.hansen@linux.intel.com>
      Cc: David Gibson <david@gibson.dropbear.id.au>
      Cc: Denys Vlasenko <dvlasenk@redhat.com>
      Cc: Dominik Dingel <dingel@linux.vnet.ibm.com>
      Cc: Dominik Vogt <vogt@linux.vnet.ibm.com>
      Cc: Eric B Munson <emunson@akamai.com>
      Cc: Geliang Tang <geliangtang@163.com>
      Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
      Cc: Hugh Dickins <hughd@google.com>
      Cc: Jan Kara <jack@suse.cz>
      Cc: Jason Low <jason.low2@hp.com>
      Cc: Jerome Marchand <jmarchan@redhat.com>
      Cc: Joerg Roedel <joro@8bytes.org>
      Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
      Cc: Konstantin Khlebnikov <koct9i@gmail.com>
      Cc: Laurent Dufour <ldufour@linux.vnet.ibm.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
      Cc: Matthew Wilcox <willy@linux.intel.com>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: Michael Ellerman <mpe@ellerman.id.au>
      Cc: Michal Hocko <mhocko@suse.com>
      Cc: Mikulas Patocka <mpatocka@redhat.com>
      Cc: Minchan Kim <minchan@kernel.org>
      Cc: Oleg Nesterov <oleg@redhat.com>
      Cc: Paul Mackerras <paulus@samba.org>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Sasha Levin <sasha.levin@oracle.com>
      Cc: Shachar Raindel <raindel@mellanox.com>
      Cc: Vlastimil Babka <vbabka@suse.cz>
      Cc: Xie XiuQi <xiexiuqi@huawei.com>
      Cc: iommu@lists.linux-foundation.org
      Cc: linux-arch@vger.kernel.org
      Cc: linux-kernel@vger.kernel.org
      Cc: linux-mm@kvack.org
      Cc: linux-s390@vger.kernel.org
      Cc: linuxppc-dev@lists.ozlabs.org
      Signed-off-by: NIngo Molnar <mingo@kernel.org>
      1b2ee126
  13. 18 2月, 2016 1 次提交
    • D
      mm/gup, x86/mm/pkeys: Check VMAs and PTEs for protection keys · 33a709b2
      Dave Hansen 提交于
      Today, for normal faults and page table walks, we check the VMA
      and/or PTE to ensure that it is compatible with the action.  For
      instance, if we get a write fault on a non-writeable VMA, we
      SIGSEGV.
      
      We try to do the same thing for protection keys.  Basically, we
      try to make sure that if a user does this:
      
      	mprotect(ptr, size, PROT_NONE);
      	*ptr = foo;
      
      they see the same effects with protection keys when they do this:
      
      	mprotect(ptr, size, PROT_READ|PROT_WRITE);
      	set_pkey(ptr, size, 4);
      	wrpkru(0xffffff3f); // access disable pkey 4
      	*ptr = foo;
      
      The state to do that checking is in the VMA, but we also
      sometimes have to do it on the page tables only, like when doing
      a get_user_pages_fast() where we have no VMA.
      
      We add two functions and expose them to generic code:
      
      	arch_pte_access_permitted(pte_flags, write)
      	arch_vma_access_permitted(vma, write)
      
      These are, of course, backed up in x86 arch code with checks
      against the PTE or VMA's protection key.
      
      But, there are also cases where we do not want to respect
      protection keys.  When we ptrace(), for instance, we do not want
      to apply the tracer's PKRU permissions to the PTEs from the
      process being traced.
      Signed-off-by: NDave Hansen <dave.hansen@linux.intel.com>
      Reviewed-by: NThomas Gleixner <tglx@linutronix.de>
      Cc: Alexey Kardashevskiy <aik@ozlabs.ru>
      Cc: Andrew Morton <akpm@linux-foundation.org>
      Cc: Andy Lutomirski <luto@amacapital.net>
      Cc: Andy Lutomirski <luto@kernel.org>
      Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
      Cc: Arnd Bergmann <arnd@arndb.de>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: Boaz Harrosh <boaz@plexistor.com>
      Cc: Borislav Petkov <bp@alien8.de>
      Cc: Brian Gerst <brgerst@gmail.com>
      Cc: Dan Williams <dan.j.williams@intel.com>
      Cc: Dave Hansen <dave@sr71.net>
      Cc: David Gibson <david@gibson.dropbear.id.au>
      Cc: David Hildenbrand <dahi@linux.vnet.ibm.com>
      Cc: David Vrabel <david.vrabel@citrix.com>
      Cc: Denys Vlasenko <dvlasenk@redhat.com>
      Cc: Dominik Dingel <dingel@linux.vnet.ibm.com>
      Cc: Dominik Vogt <vogt@linux.vnet.ibm.com>
      Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
      Cc: Hugh Dickins <hughd@google.com>
      Cc: Jason Low <jason.low2@hp.com>
      Cc: Jerome Marchand <jmarchan@redhat.com>
      Cc: Juergen Gross <jgross@suse.com>
      Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
      Cc: Laurent Dufour <ldufour@linux.vnet.ibm.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
      Cc: Matthew Wilcox <willy@linux.intel.com>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: Michael Ellerman <mpe@ellerman.id.au>
      Cc: Michal Hocko <mhocko@suse.com>
      Cc: Mikulas Patocka <mpatocka@redhat.com>
      Cc: Minchan Kim <minchan@kernel.org>
      Cc: Paul Mackerras <paulus@samba.org>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Sasha Levin <sasha.levin@oracle.com>
      Cc: Shachar Raindel <raindel@mellanox.com>
      Cc: Stephen Smalley <sds@tycho.nsa.gov>
      Cc: Toshi Kani <toshi.kani@hpe.com>
      Cc: Vlastimil Babka <vbabka@suse.cz>
      Cc: linux-arch@vger.kernel.org
      Cc: linux-kernel@vger.kernel.org
      Cc: linux-mm@kvack.org
      Cc: linux-s390@vger.kernel.org
      Cc: linuxppc-dev@lists.ozlabs.org
      Link: http://lkml.kernel.org/r/20160212210219.14D5D715@viggo.jf.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
      33a709b2
  14. 23 4月, 2015 1 次提交
  15. 25 3月, 2015 1 次提交
    • H
      s390: remove 31 bit support · 5a79859a
      Heiko Carstens 提交于
      Remove the 31 bit support in order to reduce maintenance cost and
      effectively remove dead code. Since a couple of years there is no
      distribution left that comes with a 31 bit kernel.
      
      The 31 bit kernel also has been broken since more than a year before
      anybody noticed. In addition I added a removal warning to the kernel
      shown at ipl for 5 minutes: a960062e ("s390: add 31 bit warning
      message") which let everybody know about the plan to remove 31 bit
      code. We didn't get any response.
      
      Given that the last 31 bit only machine was introduced in 1999 let's
      remove the code.
      Anybody with 31 bit user space code can still use the compat mode.
      Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com>
      Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
      5a79859a
  16. 03 3月, 2015 1 次提交
  17. 19 11月, 2014 1 次提交
    • D
      mm: Make arch_unmap()/bprm_mm_init() available to all architectures · 62e88b1c
      Dave Hansen 提交于
      The x86 MPX patch set calls arch_unmap() and arch_bprm_mm_init()
      from fs/exec.c, so we need at least a stub for them in all
      architectures.  They are only called under an #ifdef for
      CONFIG_MMU=y, so we can at least restict this to architectures
      with MMU support.
      
      blackfin/c6x have no MMU support, so do not call arch_unmap().
      They also do not include mm_hooks.h or mmu_context.h at all and
      do not need to be touched.
      
      s390, um and unicore32 do not use asm-generic/mm_hooks.h, so got
      their own arch_unmap() versions.  (I also moved um's
      arch_dup_mmap() to be closer to the other mm_hooks.h functions).
      
      xtensa only includes mm_hooks when MMU=y, which should be fine
      since arch_unmap() is called only from MMU=y code.
      
      For the rest, we use the stub copies of these functions in
      asm-generic/mm_hook.h.
      
      I cross compiled defconfigs for cris (to check NOMMU) and s390
      to make sure that this works.  I also checked a 64-bit build
      of UML and all my normal x86 builds including PARAVIRT on and
      off.
      Signed-off-by: NDave Hansen <dave.hansen@linux.intel.com>
      Cc: Dave Hansen <dave@sr71.net>
      Cc: linux-arch@vger.kernel.org
      Cc: x86@kernel.org
      Link: http://lkml.kernel.org/r/20141118182350.8B4AA2C2@viggo.jf.intel.comSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
      62e88b1c
  18. 10 6月, 2014 1 次提交
    • M
      s390/uaccess: always load the kernel ASCE after task switch · f8b13505
      Martin Schwidefsky 提交于
      This patch fixes a problem introduced with git commit beef560b
      "s390/uaccess: simplify control register updates".
      
      The switch_mm function is not called if the next process is a kernel
      thread without an attached mm or is a nop if the mm does not change.
      But CR1 still needs to be loaded with the kernel ASCE in case the
      code returns to a uaccess function that uses the secondary space mode.
      
      In addition move the set_fs call from finish_arch_switch to
      finish_arch_post_lock_switch and then remove finish_arch_switch.
      Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
      f8b13505
  19. 20 5月, 2014 2 次提交
    • M
      s390: split TIF bits into CIF, PIF and TIF bits · d3a73acb
      Martin Schwidefsky 提交于
      The oi and ni instructions used in entry[64].S to set and clear bits
      in the thread-flags are not guaranteed to be atomic in regard to other
      CPUs. Split the TIF bits into CPU, pt_regs and thread-info specific
      bits. Updates on the TIF bits are done with atomic instructions,
      updates on CPU and pt_regs bits are done with non-atomic instructions.
      Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
      d3a73acb
    • M
      s390/uaccess: simplify control register updates · beef560b
      Martin Schwidefsky 提交于
      Always switch to the kernel ASCE in switch_mm. Load the secondary
      space ASCE in finish_arch_post_lock_switch after checking that
      any pending page table operations have completed. The primary
      ASCE is loaded in entry[64].S. With this the update_primary_asce
      call can be removed from the switch_to macro and from the start
      of switch_mm function. Remove the load_primary argument from
      update_user_asce/clear_user_asce, rename update_user_asce to
      set_user_asce and rename update_primary_asce to load_kernel_asce.
      Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
      beef560b
  20. 22 4月, 2014 2 次提交
  21. 03 4月, 2014 3 次提交
    • H
      s390/uaccess: rework uaccess code - fix locking issues · 457f2180
      Heiko Carstens 提交于
      The current uaccess code uses a page table walk in some circumstances,
      e.g. in case of the in atomic futex operations or if running on old
      hardware which doesn't support the mvcos instruction.
      
      However it turned out that the page table walk code does not correctly
      lock page tables when accessing page table entries.
      In other words: a different cpu may invalidate a page table entry while
      the current cpu inspects the pte. This may lead to random data corruption.
      
      Adding correct locking however isn't trivial for all uaccess operations.
      Especially copy_in_user() is problematic since that requires to hold at
      least two locks, but must be protected against ABBA deadlock when a
      different cpu also performs a copy_in_user() operation.
      
      So the solution is a different approach where we change address spaces:
      
      User space runs in primary address mode, or access register mode within
      vdso code, like it currently already does.
      
      The kernel usually also runs in home space mode, however when accessing
      user space the kernel switches to primary or secondary address mode if
      the mvcos instruction is not available or if a compare-and-swap (futex)
      instruction on a user space address is performed.
      KVM however is special, since that requires the kernel to run in home
      address space while implicitly accessing user space with the sie
      instruction.
      
      So we end up with:
      
      User space:
      - runs in primary or access register mode
      - cr1 contains the user asce
      - cr7 contains the user asce
      - cr13 contains the kernel asce
      
      Kernel space:
      - runs in home space mode
      - cr1 contains the user or kernel asce
        -> the kernel asce is loaded when a uaccess requires primary or
           secondary address mode
      - cr7 contains the user or kernel asce, (changed with set_fs())
      - cr13 contains the kernel asce
      
      In case of uaccess the kernel changes to:
      - primary space mode in case of a uaccess (copy_to_user) and uses
        e.g. the mvcp instruction to access user space. However the kernel
        will stay in home space mode if the mvcos instruction is available
      - secondary space mode in case of futex atomic operations, so that the
        instructions come from primary address space and data from secondary
        space
      
      In case of kvm the kernel runs in home space mode, but cr1 gets switched
      to contain the gmap asce before the sie instruction gets executed. When
      the sie instruction is finished cr1 will be switched back to contain the
      user asce.
      
      A context switch between two processes will always load the kernel asce
      for the next process in cr1. So the first exit to user space is a bit
      more expensive (one extra load control register instruction) than before,
      however keeps the code rather simple.
      
      In sum this means there is no need to perform any error prone page table
      walks anymore when accessing user space.
      
      The patch seems to be rather large, however it mainly removes the
      the page table walk code and restores the previously deleted "standard"
      uaccess code, with a couple of changes.
      
      The uaccess without mvcos mode can be enforced with the "uaccess_primary"
      kernel parameter.
      Reported-by: NChristian Borntraeger <borntraeger@de.ibm.com>
      Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com>
      Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
      457f2180
    • M
      s390/mm,tlb: optimize TLB flushing for zEC12 · 1b948d6c
      Martin Schwidefsky 提交于
      The zEC12 machines introduced the local-clearing control for the IDTE
      and IPTE instruction. If the control is set only the TLB of the local
      CPU is cleared of entries, either all entries of a single address space
      for IDTE, or the entry for a single page-table entry for IPTE.
      Without the local-clearing control the TLB flush is broadcasted to all
      CPUs in the configuration, which is expensive.
      
      The reset of the bit mask of the CPUs that need flushing after a
      non-local IDTE is tricky. As TLB entries for an address space remain
      in the TLB even if the address space is detached a new bit field is
      required to keep track of attached CPUs vs. CPUs in the need of a
      flush. After a non-local flush with IDTE the bit-field of attached CPUs
      is copied to the bit-field of CPUs in need of a flush. The ordering
      of operations on cpu_attach_mask, attach_count and mm_cpumask(mm) is
      such that an underindication in mm_cpumask(mm) is prevented but an
      overindication in mm_cpumask(mm) is possible.
      Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
      1b948d6c
    • M
      s390/mm,tlb: safeguard against speculative TLB creation · 02a8f3ab
      Martin Schwidefsky 提交于
      The principles of operations states that the CPU is allowed to create
      TLB entries for an address space anytime while an ASCE is loaded to
      the control register. This is true even if the CPU is running in the
      kernel and the user address space is not (actively) accessed.
      
      In theory this can affect two aspects of the TLB flush logic.
      For full-mm flushes the ASCE of the dying process is still attached.
      The approach to flush first with IDTE and then just free all page
      tables can in theory lead to stale TLB entries. Use the batched
      free of page tables for the full-mm flushes as well.
      
      For operations that can have a stale ASCE in the control register,
      e.g. a delayed update_user_asce in switch_mm, load the kernel ASCE
      to prevent invalid TLBs from being created.
      Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
      02a8f3ab
  22. 21 2月, 2014 1 次提交
    • M
      s390/mm,tlb: race of lazy TLB flush vs. recreation of TLB entries · 53e857f3
      Martin Schwidefsky 提交于
      Git commit 050eef36 "[S390] fix tlb flushing vs. concurrent
      /proc accesses" introduced the attach counter to avoid using the
      mm_users value to decide between IPTE for every PTE and lazy TLB
      flushing with IDTE. That fixed the problem with mm_users but it
      introduced another subtle race, fortunately one that is very hard
      to hit.
      The background is the requirement of the architecture that a valid
      PTE may not be changed while it can be used concurrently by another
      cpu. The decision between IPTE and lazy TLB flushing needs to be
      done while the PTE is still valid. Now if the virtual cpu is
      temporarily stopped after the decision to use lazy TLB flushing but
      before the invalid bit of the PTE has been set, another cpu can attach
      the mm, find that flush_mm is set, do the IDTE, return to userspace,
      and recreate a TLB that uses the PTE in question. When the first,
      stopped cpu continues it will change the PTE while it is attached on
      another cpu. The first cpu will do another IDTE shortly after the
      modification of the PTE which makes the race window quite short.
      
      To fix this race the CPU that wants to attach the address space of a
      user space thread needs to wait for the end of the PTE modification.
      The number of concurrent TLB flushers for an mm is tracked in the
      upper 16 bits of the attach_count and finish_arch_post_lock_switch
      is used to wait for the end of the flush operation if required.
      Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
      53e857f3
  23. 24 10月, 2013 1 次提交
  24. 22 8月, 2013 1 次提交
  25. 29 7月, 2013 1 次提交
  26. 26 9月, 2012 1 次提交
  27. 30 7月, 2012 1 次提交
  28. 26 7月, 2012 1 次提交
  29. 20 7月, 2012 1 次提交
    • H
      s390/comments: unify copyright messages and remove file names · a53c8fab
      Heiko Carstens 提交于
      Remove the file name from the comment at top of many files. In most
      cases the file name was wrong anyway, so it's rather pointless.
      
      Also unify the IBM copyright statement. We did have a lot of sightly
      different statements and wanted to change them one after another
      whenever a file gets touched. However that never happened. Instead
      people start to take the old/"wrong" statements to use as a template
      for new files.
      So unify all of them in one go.
      Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com>
      a53c8fab
  30. 24 5月, 2012 1 次提交
  31. 29 3月, 2012 1 次提交
  32. 23 5月, 2011 1 次提交
    • M
      [S390] Remove data execution protection · 043d0708
      Martin Schwidefsky 提交于
      The noexec support on s390 does not rely on a bit in the page table
      entry but utilizes the secondary space mode to distinguish between
      memory accesses for instructions vs. data. The noexec code relies
      on the assumption that the cpu will always use the secondary space
      page table for data accesses while it is running in the secondary
      space mode. Up to the z9-109 class machines this has been the case.
      Unfortunately this is not true anymore with z10 and later machines.
      The load-relative-long instructions lrl, lgrl and lgfrl access the
      memory operand using the same addressing-space mode that has been
      used to fetch the instruction.
      This breaks the noexec mode for all user space binaries compiled
      with march=z10 or later. The only option is to remove the current
      noexec support.
      Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
      043d0708
  33. 10 5月, 2011 1 次提交
  34. 24 8月, 2010 1 次提交
    • M
      [S390] fix tlb flushing vs. concurrent /proc accesses · 050eef36
      Martin Schwidefsky 提交于
      The tlb flushing code uses the mm_users field of the mm_struct to
      decide if each page table entry needs to be flushed individually with
      IPTE or if a global flush for the mm_struct is sufficient after all page
      table updates have been done. The comment for mm_users says "How many
      users with user space?" but the /proc code increases mm_users after it
      found the process structure by pid without creating a new user process.
      Which makes mm_users useless for the decision between the two tlb
      flusing methods. The current code can be confused to not flush tlb
      entries by a concurrent access to /proc files if e.g. a fork is in
      progres. The solution for this problem is to make the tlb flushing
      logic independent from the mm_users field.
      Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
      050eef36
  35. 07 12月, 2009 1 次提交
    • M
      [S390] Improve address space mode selection. · b11b5334
      Martin Schwidefsky 提交于
      Introduce user_mode to replace the two variables switch_amode and
      s390_noexec. There are three valid combinations of the old values:
        1) switch_amode == 0 && s390_noexec == 0
        2) switch_amode == 1 && s390_noexec == 0
        3) switch_amode == 1 && s390_noexec == 1
      They get replaced by
        1) user_mode == HOME_SPACE_MODE
        2) user_mode == PRIMARY_SPACE_MODE
        3) user_mode == SECONDARY_SPACE_MODE
      The new kernel parameter user_mode=[primary,secondary,home] lets
      you choose the address space mode the user space processes should
      use. In addition the CONFIG_S390_SWITCH_AMODE config option
      is removed.
      Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
      b11b5334