- 08 12月, 2020 3 次提交
-
-
由 David Sterba 提交于
btrfs_get_16 shows up in the system performance profiles (helper to read 16bit values from on-disk structures). This is partially because of the checksum size that's frequently read along with data reads/writes, other u16 uses are from item size or directory entries. Replace all calls to btrfs_super_csum_size by the cached value from fs_info. Reviewed-by: NJohannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: NQu Wenruo <wqu@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 David Sterba 提交于
We do a lot of calculations where we divide or multiply by sectorsize. We also know and make sure that sectorsize is a power of two, so this means all divisions can be turned to shifts and avoid eg. expensive u64/u32 divisions. The type is u32 as it's more register friendly on x86_64 compared to u8 and the resulting assembly is smaller (movzbl vs movl). There's also superblock s_blocksize_bits but it's usually one more pointer dereference farther than fs_info. Reviewed-by: NJohannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 Filipe Manana 提交于
When scrubbing a stripe of a block group we always start readahead for the checksums btree and wait for it to complete, however when the blockgroup is not a data block group (or a mixed block group) it is a waste of time to do it, since there are no checksums for metadata extents in that btree. So skip that when the block group does not have the data flag set, saving some time doing memory allocations, queueing a job in the readahead work queue, waiting for it to complete and potentially avoiding some IO as well (when csum tree extents are not in memory already). Reviewed-by: NJohannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: NJosef Bacik <josef@toxicpanda.com> Signed-off-by: NFilipe Manana <fdmanana@suse.com> Reviewed-by: NDavid Sterba <dsterba@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
- 05 11月, 2020 1 次提交
-
-
由 David Sterba 提交于
Based on user feedback update the message printed when scrub fails to start due to write requirements. To make a distinction add a device id to the messages. Reviewed-by: NJosef Bacik <josef@toxicpanda.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
- 07 10月, 2020 1 次提交
-
-
由 David Sterba 提交于
There's already defined _rs within ctree.h:btrfs_printk_ratelimited, local variables should not use _ to avoid such name clashes with macro-local variables. Reviewed-by: NJosef Bacik <josef@toxicpanda.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
- 27 8月, 2020 1 次提交
-
-
由 Josef Bacik 提交于
I got the following lockdep splat while testing: ====================================================== WARNING: possible circular locking dependency detected 5.8.0-rc7-00172-g021118712e59 #932 Not tainted ------------------------------------------------------ btrfs/229626 is trying to acquire lock: ffffffff828513f0 (cpu_hotplug_lock){++++}-{0:0}, at: alloc_workqueue+0x378/0x450 but task is already holding lock: ffff889dd3889518 (&fs_info->scrub_lock){+.+.}-{3:3}, at: btrfs_scrub_dev+0x11c/0x630 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #7 (&fs_info->scrub_lock){+.+.}-{3:3}: __mutex_lock+0x9f/0x930 btrfs_scrub_dev+0x11c/0x630 btrfs_dev_replace_by_ioctl.cold.21+0x10a/0x1d4 btrfs_ioctl+0x2799/0x30a0 ksys_ioctl+0x83/0xc0 __x64_sys_ioctl+0x16/0x20 do_syscall_64+0x50/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #6 (&fs_devs->device_list_mutex){+.+.}-{3:3}: __mutex_lock+0x9f/0x930 btrfs_run_dev_stats+0x49/0x480 commit_cowonly_roots+0xb5/0x2a0 btrfs_commit_transaction+0x516/0xa60 sync_filesystem+0x6b/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0xe/0x30 btrfs_kill_super+0x12/0x20 deactivate_locked_super+0x29/0x60 cleanup_mnt+0xb8/0x140 task_work_run+0x6d/0xb0 __prepare_exit_to_usermode+0x1cc/0x1e0 do_syscall_64+0x5c/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #5 (&fs_info->tree_log_mutex){+.+.}-{3:3}: __mutex_lock+0x9f/0x930 btrfs_commit_transaction+0x4bb/0xa60 sync_filesystem+0x6b/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0xe/0x30 btrfs_kill_super+0x12/0x20 deactivate_locked_super+0x29/0x60 cleanup_mnt+0xb8/0x140 task_work_run+0x6d/0xb0 __prepare_exit_to_usermode+0x1cc/0x1e0 do_syscall_64+0x5c/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #4 (&fs_info->reloc_mutex){+.+.}-{3:3}: __mutex_lock+0x9f/0x930 btrfs_record_root_in_trans+0x43/0x70 start_transaction+0xd1/0x5d0 btrfs_dirty_inode+0x42/0xd0 touch_atime+0xa1/0xd0 btrfs_file_mmap+0x3f/0x60 mmap_region+0x3a4/0x640 do_mmap+0x376/0x580 vm_mmap_pgoff+0xd5/0x120 ksys_mmap_pgoff+0x193/0x230 do_syscall_64+0x50/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #3 (&mm->mmap_lock#2){++++}-{3:3}: __might_fault+0x68/0x90 _copy_to_user+0x1e/0x80 perf_read+0x141/0x2c0 vfs_read+0xad/0x1b0 ksys_read+0x5f/0xe0 do_syscall_64+0x50/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #2 (&cpuctx_mutex){+.+.}-{3:3}: __mutex_lock+0x9f/0x930 perf_event_init_cpu+0x88/0x150 perf_event_init+0x1db/0x20b start_kernel+0x3ae/0x53c secondary_startup_64+0xa4/0xb0 -> #1 (pmus_lock){+.+.}-{3:3}: __mutex_lock+0x9f/0x930 perf_event_init_cpu+0x4f/0x150 cpuhp_invoke_callback+0xb1/0x900 _cpu_up.constprop.26+0x9f/0x130 cpu_up+0x7b/0xc0 bringup_nonboot_cpus+0x4f/0x60 smp_init+0x26/0x71 kernel_init_freeable+0x110/0x258 kernel_init+0xa/0x103 ret_from_fork+0x1f/0x30 -> #0 (cpu_hotplug_lock){++++}-{0:0}: __lock_acquire+0x1272/0x2310 lock_acquire+0x9e/0x360 cpus_read_lock+0x39/0xb0 alloc_workqueue+0x378/0x450 __btrfs_alloc_workqueue+0x15d/0x200 btrfs_alloc_workqueue+0x51/0x160 scrub_workers_get+0x5a/0x170 btrfs_scrub_dev+0x18c/0x630 btrfs_dev_replace_by_ioctl.cold.21+0x10a/0x1d4 btrfs_ioctl+0x2799/0x30a0 ksys_ioctl+0x83/0xc0 __x64_sys_ioctl+0x16/0x20 do_syscall_64+0x50/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 other info that might help us debug this: Chain exists of: cpu_hotplug_lock --> &fs_devs->device_list_mutex --> &fs_info->scrub_lock Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&fs_info->scrub_lock); lock(&fs_devs->device_list_mutex); lock(&fs_info->scrub_lock); lock(cpu_hotplug_lock); *** DEADLOCK *** 2 locks held by btrfs/229626: #0: ffff88bfe8bb86e0 (&fs_devs->device_list_mutex){+.+.}-{3:3}, at: btrfs_scrub_dev+0xbd/0x630 #1: ffff889dd3889518 (&fs_info->scrub_lock){+.+.}-{3:3}, at: btrfs_scrub_dev+0x11c/0x630 stack backtrace: CPU: 15 PID: 229626 Comm: btrfs Kdump: loaded Not tainted 5.8.0-rc7-00172-g021118712e59 #932 Hardware name: Quanta Tioga Pass Single Side 01-0030993006/Tioga Pass Single Side, BIOS F08_3A18 12/20/2018 Call Trace: dump_stack+0x78/0xa0 check_noncircular+0x165/0x180 __lock_acquire+0x1272/0x2310 lock_acquire+0x9e/0x360 ? alloc_workqueue+0x378/0x450 cpus_read_lock+0x39/0xb0 ? alloc_workqueue+0x378/0x450 alloc_workqueue+0x378/0x450 ? rcu_read_lock_sched_held+0x52/0x80 __btrfs_alloc_workqueue+0x15d/0x200 btrfs_alloc_workqueue+0x51/0x160 scrub_workers_get+0x5a/0x170 btrfs_scrub_dev+0x18c/0x630 ? start_transaction+0xd1/0x5d0 btrfs_dev_replace_by_ioctl.cold.21+0x10a/0x1d4 btrfs_ioctl+0x2799/0x30a0 ? do_sigaction+0x102/0x250 ? lockdep_hardirqs_on_prepare+0xca/0x160 ? _raw_spin_unlock_irq+0x24/0x30 ? trace_hardirqs_on+0x1c/0xe0 ? _raw_spin_unlock_irq+0x24/0x30 ? do_sigaction+0x102/0x250 ? ksys_ioctl+0x83/0xc0 ksys_ioctl+0x83/0xc0 __x64_sys_ioctl+0x16/0x20 do_syscall_64+0x50/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xa9 This happens because we're allocating the scrub workqueues under the scrub and device list mutex, which brings in a whole host of other dependencies. Because the work queue allocation is done with GFP_KERNEL, it can trigger reclaim, which can lead to a transaction commit, which in turns needs the device_list_mutex, it can lead to a deadlock. A different problem for which this fix is a solution. Fix this by moving the actual allocation outside of the scrub lock, and then only take the lock once we're ready to actually assign them to the fs_info. We'll now have to cleanup the workqueues in a few more places, so I've added a helper to do the refcount dance to safely free the workqueues. CC: stable@vger.kernel.org # 5.4+ Reviewed-by: NFilipe Manana <fdmanana@suse.com> Signed-off-by: NJosef Bacik <josef@toxicpanda.com> Reviewed-by: NDavid Sterba <dsterba@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
- 27 7月, 2020 10 次提交
-
-
由 Josef Bacik 提交于
Eric reported seeing this message while running generic/475 BTRFS: error (device dm-3) in btrfs_sync_log:3084: errno=-117 Filesystem corrupted Full stack trace: BTRFS: error (device dm-0) in btrfs_commit_transaction:2323: errno=-5 IO failure (Error while writing out transaction) BTRFS info (device dm-0): forced readonly BTRFS warning (device dm-0): Skipping commit of aborted transaction. ------------[ cut here ]------------ BTRFS: error (device dm-0) in cleanup_transaction:1894: errno=-5 IO failure BTRFS: Transaction aborted (error -117) BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c6480 len 4096 err no 10 BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c6488 len 4096 err no 10 BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c6490 len 4096 err no 10 BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c6498 len 4096 err no 10 BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c64a0 len 4096 err no 10 BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c64a8 len 4096 err no 10 BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c64b0 len 4096 err no 10 BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c64b8 len 4096 err no 10 BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c64c0 len 4096 err no 10 BTRFS warning (device dm-0): direct IO failed ino 3572 rw 0,0 sector 0x1b85e8 len 4096 err no 10 BTRFS warning (device dm-0): direct IO failed ino 3572 rw 0,0 sector 0x1b85f0 len 4096 err no 10 WARNING: CPU: 3 PID: 23985 at fs/btrfs/tree-log.c:3084 btrfs_sync_log+0xbc8/0xd60 [btrfs] BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d4288 len 4096 err no 10 BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d4290 len 4096 err no 10 BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d4298 len 4096 err no 10 BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d42a0 len 4096 err no 10 BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d42a8 len 4096 err no 10 BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d42b0 len 4096 err no 10 BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d42b8 len 4096 err no 10 BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d42c0 len 4096 err no 10 BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d42c8 len 4096 err no 10 BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d42d0 len 4096 err no 10 CPU: 3 PID: 23985 Comm: fsstress Tainted: G W L 5.8.0-rc4-default+ #1181 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba527-rebuilt.opensuse.org 04/01/2014 RIP: 0010:btrfs_sync_log+0xbc8/0xd60 [btrfs] RSP: 0018:ffff909a44d17bd0 EFLAGS: 00010286 RAX: 0000000000000000 RBX: 0000000000000001 RCX: 0000000000000001 RDX: ffff8f3be41cb940 RSI: ffffffffb0108d2b RDI: ffffffffb0108ff7 RBP: ffff909a44d17e70 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000037988 R12: ffff8f3bd20e4000 R13: ffff8f3bd20e4428 R14: 00000000ffffff8b R15: ffff909a44d17c70 FS: 00007f6a6ed3fb80(0000) GS:ffff8f3c3dc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f6a6ed3e000 CR3: 00000000525c0003 CR4: 0000000000160ee0 Call Trace: ? finish_wait+0x90/0x90 ? __mutex_unlock_slowpath+0x45/0x2a0 ? lock_acquire+0xa3/0x440 ? lockref_put_or_lock+0x9/0x30 ? dput+0x20/0x4a0 ? dput+0x20/0x4a0 ? do_raw_spin_unlock+0x4b/0xc0 ? _raw_spin_unlock+0x1f/0x30 btrfs_sync_file+0x335/0x490 [btrfs] do_fsync+0x38/0x70 __x64_sys_fsync+0x10/0x20 do_syscall_64+0x50/0xe0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f6a6ef1b6e3 Code: Bad RIP value. RSP: 002b:00007ffd01e20038 EFLAGS: 00000246 ORIG_RAX: 000000000000004a RAX: ffffffffffffffda RBX: 000000000007a120 RCX: 00007f6a6ef1b6e3 RDX: 00007ffd01e1ffa0 RSI: 00007ffd01e1ffa0 RDI: 0000000000000003 RBP: 0000000000000003 R08: 0000000000000001 R09: 00007ffd01e2004c R10: 0000000000000000 R11: 0000000000000246 R12: 000000000000009f R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 irq event stamp: 0 hardirqs last enabled at (0): [<0000000000000000>] 0x0 hardirqs last disabled at (0): [<ffffffffb007fe0b>] copy_process+0x67b/0x1b00 softirqs last enabled at (0): [<ffffffffb007fe0b>] copy_process+0x67b/0x1b00 softirqs last disabled at (0): [<0000000000000000>] 0x0 ---[ end trace af146e0e38433456 ]--- BTRFS: error (device dm-0) in btrfs_sync_log:3084: errno=-117 Filesystem corrupted This ret came from btrfs_write_marked_extents(). If we get an aborted transaction via EIO before, we'll see it in btree_write_cache_pages() and return EUCLEAN, which gets printed as "Filesystem corrupted". Except we shouldn't be returning EUCLEAN here, we need to be returning EROFS because EUCLEAN is reserved for actual corruption, not IO errors. We are inconsistent about our handling of BTRFS_FS_STATE_ERROR elsewhere, but we want to use EROFS for this particular case. The original transaction abort has the real error code for why we ended up with an aborted transaction, all subsequent actions just need to return EROFS because they may not have a trans handle and have no idea about the original cause of the abort. After patch "btrfs: don't WARN if we abort a transaction with EROFS" the stacktrace will not be dumped either. Reported-by: NEric Sandeen <esandeen@redhat.com> CC: stable@vger.kernel.org # 5.4+ Signed-off-by: NJosef Bacik <josef@toxicpanda.com> Reviewed-by: NDavid Sterba <dsterba@suse.com> [ add full test stacktrace ] Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 David Sterba 提交于
Add proper variable for the scrub page and use it instead of repeatedly dereferencing the other structures. Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 David Sterba 提交于
Use a simpler iteration over tree block pages, same what csum_tree_block does: first page always exists, loop over the rest. Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 David Sterba 提交于
Add proper variable for the scrub page and use it instead of repeatedly dereferencing the other structures. Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 David Sterba 提交于
We have sectorsize same as PAGE_SIZE, the checksum can be calculated in one go. Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 David Sterba 提交于
Add proper variable for the scrub page and use it instead of repeatedly dereferencing the other structures. Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 David Sterba 提交于
The page contents with the checksum is available during the entire function so we don't need to make a copy. Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 David Sterba 提交于
BTRFS_SUPER_INFO_SIZE is 4096, and fits to a page on all supported architectures, so we can calculate the checksum in one go. Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 David Sterba 提交于
As the page mapping has been removed, rename the variables to 'kaddr' that we use everywhere else. The type is changed to 'char *' so pointer arithmetic works without casts. Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 David Sterba 提交于
All pages that scrub uses in the scrub_block::pagev array are allocated with GFP_KERNEL and never part of any mapping, so kmap is not necessary, we only need to know the page address. In scrub_write_page_to_dev_replace we don't even need to call flush_dcache_page because of the same reason as above. Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
- 25 5月, 2020 4 次提交
-
-
由 David Sterba 提交于
The main function to lookup a root by its id btrfs_get_fs_root takes the whole key, while only using the objectid. The value of offset is preset to (u64)-1 but not actually used until btrfs_find_root that does the actual search. Switch btrfs_get_fs_root to use only objectid and remove all local variables that existed just for the lookup. The actual key for search is set up in btrfs_get_fs_root, reusing another key variable. Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 Filipe Manana 提交于
When scrubbing a stripe, whenever we find an extent we lookup for its checksums in the checksum tree. However we do it even for metadata extents which don't have checksum items stored in the checksum tree, that is only for data extents. So make the lookup for checksums only if we are processing with a data extent. Signed-off-by: NFilipe Manana <fdmanana@suse.com> Reviewed-by: NDavid Sterba <dsterba@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 Filipe Manana 提交于
Back in 2014, commit 04216820 ("Btrfs: fix race between fs trimming and block group remove/allocation"), I added the 'trimming' member to the block group structure. Its purpose was to prevent races between trimming and block group deletion/allocation by pinning the block group in a way that prevents its logical address and device extents from being reused while trimming is in progress for a block group, so that if another task deletes the block group and then another task allocates a new block group that gets the same logical address and device extents while the trimming task is still in progress. After the previous fix for scrub (patch "btrfs: fix a race between scrub and block group removal/allocation"), scrub now also has the same needs that trimming has, so the member name 'trimming' no longer makes sense. Since there is already a 'pinned' member in the block group that refers to space reservations (pinned bytes), rename the member to 'frozen', add a comment on top of it to describe its general purpose and rename the helpers to increment and decrement the counter as well, to match the new member name. The next patch in the series will move the helpers into a more suitable file (from free-space-cache.c to block-group.c). Signed-off-by: NFilipe Manana <fdmanana@suse.com> Reviewed-by: NDavid Sterba <dsterba@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 Filipe Manana 提交于
When scrub is verifying the extents of a block group for a device, it is possible that the corresponding block group gets removed and its logical address and device extents get used for a new block group allocation. When this happens scrub incorrectly reports that errors were detected and, if the the new block group has a different profile then the old one, deleted block group, we can crash due to a null pointer dereference. Possibly other unexpected and weird consequences can happen as well. Consider the following sequence of actions that leads to the null pointer dereference crash when scrub is running in parallel with balance: 1) Balance sets block group X to read-only mode and starts relocating it. Block group X is a metadata block group, has a raid1 profile (two device extents, each one in a different device) and a logical address of 19424870400; 2) Scrub is running and finds device extent E, which belongs to block group X. It enters scrub_stripe() to find all extents allocated to block group X, the search is done using the extent tree; 3) Balance finishes relocating block group X and removes block group X; 4) Balance starts relocating another block group and when trying to commit the current transaction as part of the preparation step (prepare_to_relocate()), it blocks because scrub is running; 5) The scrub task finds the metadata extent at the logical address 19425001472 and marks the pages of the extent to be read by a bio (struct scrub_bio). The extent item's flags, which have the bit BTRFS_EXTENT_FLAG_TREE_BLOCK set, are added to each page (struct scrub_page). It is these flags in the scrub pages that tells the bio's end io function (scrub_bio_end_io_worker) which type of extent it is dealing with. At this point we end up with 4 pages in a bio which is ready for submission (the metadata extent has a size of 16Kb, so that gives 4 pages on x86); 6) At the next iteration of scrub_stripe(), scrub checks that there is a pause request from the relocation task trying to commit a transaction, therefore it submits the pending bio and pauses, waiting for the transaction commit to complete before resuming; 7) The relocation task commits the transaction. The device extent E, that was used by our block group X, is now available for allocation, since the commit root for the device tree was swapped by the transaction commit; 8) Another task doing a direct IO write allocates a new data block group Y which ends using device extent E. This new block group Y also ends up getting the same logical address that block group X had: 19424870400. This happens because block group X was the block group with the highest logical address and, when allocating Y, find_next_chunk() returns the end offset of the current last block group to be used as the logical address for the new block group, which is 18351128576 + 1073741824 = 19424870400 So our new block group Y has the same logical address and device extent that block group X had. However Y is a data block group, while X was a metadata one, and Y has a raid0 profile, while X had a raid1 profile; 9) After allocating block group Y, the direct IO submits a bio to write to device extent E; 10) The read bio submitted by scrub reads the 4 pages (16Kb) from device extent E, which now correspond to the data written by the task that did a direct IO write. Then at the end io function associated with the bio, scrub_bio_end_io_worker(), we call scrub_block_complete() which calls scrub_checksum(). This later function checks the flags of the first page, and sees that the bit BTRFS_EXTENT_FLAG_TREE_BLOCK is set in the flags, so it assumes it has a metadata extent and then calls scrub_checksum_tree_block(). That functions returns an error, since interpreting data as a metadata extent causes the checksum verification to fail. So this makes scrub_checksum() call scrub_handle_errored_block(), which determines 'failed_mirror_index' to be 1, since the device extent E was allocated as the second mirror of block group X. It allocates BTRFS_MAX_MIRRORS scrub_block structures as an array at 'sblocks_for_recheck', and all the memory is initialized to zeroes by kcalloc(). After that it calls scrub_setup_recheck_block(), which is responsible for filling each of those structures. However, when that function calls btrfs_map_sblock() against the logical address of the metadata extent, 19425001472, it gets a struct btrfs_bio ('bbio') that matches the current block group Y. However block group Y has a raid0 profile and not a raid1 profile like X had, so the following call returns 1: scrub_nr_raid_mirrors(bbio) And as a result scrub_setup_recheck_block() only initializes the first (index 0) scrub_block structure in 'sblocks_for_recheck'. Then scrub_recheck_block() is called by scrub_handle_errored_block() with the second (index 1) scrub_block structure as the argument, because 'failed_mirror_index' was previously set to 1. This scrub_block was not initialized by scrub_setup_recheck_block(), so it has zero pages, its 'page_count' member is 0 and its 'pagev' page array has all members pointing to NULL. Finally when scrub_recheck_block() calls scrub_recheck_block_checksum() we have a NULL pointer dereference when accessing the flags of the first page, as pavev[0] is NULL: static void scrub_recheck_block_checksum(struct scrub_block *sblock) { (...) if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA) scrub_checksum_data(sblock); (...) } Producing a stack trace like the following: [542998.008985] BUG: kernel NULL pointer dereference, address: 0000000000000028 [542998.010238] #PF: supervisor read access in kernel mode [542998.010878] #PF: error_code(0x0000) - not-present page [542998.011516] PGD 0 P4D 0 [542998.011929] Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI [542998.012786] CPU: 3 PID: 4846 Comm: kworker/u8:1 Tainted: G B W 5.6.0-rc7-btrfs-next-58 #1 [542998.014524] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014 [542998.016065] Workqueue: btrfs-scrub btrfs_work_helper [btrfs] [542998.017255] RIP: 0010:scrub_recheck_block_checksum+0xf/0x20 [btrfs] [542998.018474] Code: 4c 89 e6 ... [542998.021419] RSP: 0018:ffffa7af0375fbd8 EFLAGS: 00010202 [542998.022120] RAX: 0000000000000000 RBX: ffff9792e674d120 RCX: 0000000000000000 [542998.023178] RDX: 0000000000000001 RSI: ffff9792e674d120 RDI: ffff9792e674d120 [542998.024465] RBP: 0000000000000000 R08: 0000000000000067 R09: 0000000000000001 [542998.025462] R10: ffffa7af0375fa50 R11: 0000000000000000 R12: ffff9791f61fe800 [542998.026357] R13: ffff9792e674d120 R14: 0000000000000001 R15: ffffffffc0e3dfc0 [542998.027237] FS: 0000000000000000(0000) GS:ffff9792fb200000(0000) knlGS:0000000000000000 [542998.028327] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [542998.029261] CR2: 0000000000000028 CR3: 00000000b3b18003 CR4: 00000000003606e0 [542998.030301] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [542998.031316] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [542998.032380] Call Trace: [542998.032752] scrub_recheck_block+0x162/0x400 [btrfs] [542998.033500] ? __alloc_pages_nodemask+0x31e/0x460 [542998.034228] scrub_handle_errored_block+0x6f8/0x1920 [btrfs] [542998.035170] scrub_bio_end_io_worker+0x100/0x520 [btrfs] [542998.035991] btrfs_work_helper+0xaa/0x720 [btrfs] [542998.036735] process_one_work+0x26d/0x6a0 [542998.037275] worker_thread+0x4f/0x3e0 [542998.037740] ? process_one_work+0x6a0/0x6a0 [542998.038378] kthread+0x103/0x140 [542998.038789] ? kthread_create_worker_on_cpu+0x70/0x70 [542998.039419] ret_from_fork+0x3a/0x50 [542998.039875] Modules linked in: dm_snapshot dm_thin_pool ... [542998.047288] CR2: 0000000000000028 [542998.047724] ---[ end trace bde186e176c7f96a ]--- This issue has been around for a long time, possibly since scrub exists. The last time I ran into it was over 2 years ago. After recently fixing fstests to pass the "--full-balance" command line option to btrfs-progs when doing balance, several tests started to more heavily exercise balance with fsstress, scrub and other operations in parallel, and therefore started to hit this issue again (with btrfs/061 for example). Fix this by having scrub increment the 'trimming' counter of the block group, which pins the block group in such a way that it guarantees neither its logical address nor device extents can be reused by future block group allocations until we decrement the 'trimming' counter. Also make sure that on each iteration of scrub_stripe() we stop scrubbing the block group if it was removed already. A later patch in the series will rename the block group's 'trimming' counter and its helpers to a more generic name, since now it is not used exclusively for pinning while trimming anymore. CC: stable@vger.kernel.org # 4.4+ Signed-off-by: NFilipe Manana <fdmanana@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
- 24 3月, 2020 5 次提交
-
-
由 Gustavo A. R. Silva 提交于
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero." [1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732 ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: NGustavo A. R. Silva <gustavo@embeddedor.com> Reviewed-by: NDavid Sterba <dsterba@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 Josef Bacik 提交于
We are now using these for all roots, rename them to btrfs_put_root() and btrfs_grab_root(); Reviewed-by: NNikolay Borisov <nborisov@suse.com> Signed-off-by: NJosef Bacik <josef@toxicpanda.com> Reviewed-by: NDavid Sterba <dsterba@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 Josef Bacik 提交于
Now that all callers of btrfs_get_fs_root are subsequently calling btrfs_grab_fs_root and handling dropping the ref when they are done appropriately, go ahead and push btrfs_grab_fs_root up into btrfs_get_fs_root. Signed-off-by: NJosef Bacik <josef@toxicpanda.com> Reviewed-by: NDavid Sterba <dsterba@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 Josef Bacik 提交于
We look up the root for the bytenr that is failing, so we need to hold a ref on the root for that operation. Signed-off-by: NJosef Bacik <josef@toxicpanda.com> Reviewed-by: NDavid Sterba <dsterba@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 Josef Bacik 提交于
All this does is call btrfs_get_fs_root() with check_ref == true. Just use btrfs_get_fs_root() so we don't have a bunch of different helpers that do the same thing. Reviewed-by: NNikolay Borisov <nborisov@suse.com> Signed-off-by: NJosef Bacik <josef@toxicpanda.com> Reviewed-by: NDavid Sterba <dsterba@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
- 24 1月, 2020 1 次提交
-
-
由 Qu Wenruo 提交于
[BUG] For dev-replace test cases with fsstress, like btrfs/06[45] btrfs/071, looped runs can lead to random failure, where scrub finds csum error. The possibility is not high, around 1/20 to 1/100, but it's causing data corruption. The bug is observable after commit b12de528 ("btrfs: scrub: Don't check free space before marking a block group RO") [CAUSE] Dev-replace has two source of writes: - Write duplication All writes to source device will also be duplicated to target device. Content: Not yet persisted data/meta - Scrub copy Dev-replace reused scrub code to iterate through existing extents, and copy the verified data to target device. Content: Previously persisted data and metadata The difference in contents makes the following race possible: Regular Writer | Dev-replace ----------------------------------------------------------------- ^ | | Preallocate one data extent | | at bytenr X, len 1M | v | ^ Commit transaction | | Now extent [X, X+1M) is in | v commit root | ================== Dev replace starts ========================= | ^ | | Scrub extent [X, X+1M) | | Read [X, X+1M) | | (The content are mostly garbage | | since it's preallocated) ^ | v | Write back happens for | | extent [X, X+512K) | | New data writes to both | | source and target dev. | v | | ^ | | Scrub writes back extent [X, X+1M) | | to target device. | | This will over write the new data in | | [X, X+512K) | v This race can only happen for nocow writes. Thus metadata and data cow writes are safe, as COW will never overwrite extents of previous transaction (in commit root). This behavior can be confirmed by disabling all fallocate related calls in fsstress (*), then all related tests can pass a 2000 run loop. *: FSSTRESS_AVOID="-f fallocate=0 -f allocsp=0 -f zero=0 -f insert=0 \ -f collapse=0 -f punch=0 -f resvsp=0" I didn't expect resvsp ioctl will fallback to fallocate in VFS... [FIX] Make dev-replace to require mandatory block group RO, and wait for current nocow writes before calling scrub_chunk(). This patch will mostly revert commit 76a8efa1 ("btrfs: Continue replace when set_block_ro failed") for dev-replace path. The side effect is, dev-replace can be more strict on avaialble space, but definitely worth to avoid data corruption. Reported-by: NFilipe Manana <fdmanana@suse.com> Fixes: 76a8efa1 ("btrfs: Continue replace when set_block_ro failed") Fixes: b12de528 ("btrfs: scrub: Don't check free space before marking a block group RO") Reviewed-by: NFilipe Manana <fdmanana@suse.com> Signed-off-by: NQu Wenruo <wqu@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
- 20 1月, 2020 1 次提交
-
-
由 Dennis Zhou 提交于
block_group removal is a little tricky. It can race with the extent allocator, the cleaner thread, and balancing. The current path is for a block_group to be added to the unused_bgs list. Then, when the cleaner thread comes around, it starts a transaction and then proceeds with removing the block_group. Extents that are pinned are subsequently removed from the pinned trees and then eventually a discard is issued for the entire block_group. Async discard introduces another player into the game, the discard workqueue. While it has none of the racing issues, the new problem is ensuring we don't leave free space untrimmed prior to forgetting the block_group. This is handled by placing fully free block_groups on a separate discard queue. This is necessary to maintain discarding order as in the future we will slowly trim even fully free block_groups. The ordering helps us make progress on the same block_group rather than say the last fully freed block_group or needing to search through the fully freed block groups at the beginning of a list and insert after. The new order of events is a fully freed block group gets placed on the unused discard queue first. Once it's processed, it will be placed on the unusued_bgs list and then the original sequence of events will happen, just without the final whole block_group discard. The mount flags can change when processing unused_bgs, so when flipping from DISCARD to DISCARD_ASYNC, the unused_bgs must be punted to the discard_list to be trimmed. If we flip off DISCARD_ASYNC, we punt free block groups on the discard_list to the unused_bg queue which will do the final discard for us. Reviewed-by: NJosef Bacik <josef@toxicpanda.com> Signed-off-by: NDennis Zhou <dennis@kernel.org> Reviewed-by: NDavid Sterba <dsterba@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
- 19 11月, 2019 6 次提交
-
-
由 Filipe Manana 提交于
When doing a device replace, while at scrub.c:scrub_enumerate_chunks(), we set the block group to RO mode and then wait for any ongoing writes into extents of the block group to complete. While doing that wait we overwrite the value of the variable 'ret' and can break out of the loop if an error happens without turning the block group back into RW mode. So what happens is the following: 1) btrfs_inc_block_group_ro() returns 0, meaning it set the block group to RO mode (its ->ro field set to 1 or incremented to some value > 1); 2) Then btrfs_wait_ordered_roots() returns a value > 0; 3) Then if either joining or committing the transaction fails, we break out of the loop wihtout calling btrfs_dec_block_group_ro(), leaving the block group in RO mode forever. To fix this, just remove the code that waits for ongoing writes to extents of the block group, since it's not needed because in the initial setup phase of a device replace operation, before starting to find all chunks and their extents, we set the target device for replace while holding fs_info->dev_replace->rwsem, which ensures that after releasing that semaphore, any writes into the source device are made to the target device as well (__btrfs_map_block() guarantees that). So while at scrub_enumerate_chunks() we only need to worry about finding and copying extents (from the source device to the target device) that were written before we started the device replace operation. Fixes: f0e9b7d6 ("Btrfs: fix race setting block group readonly during device replace") Signed-off-by: NFilipe Manana <fdmanana@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 Qu Wenruo 提交于
[BUG] When running btrfs/072 with only one online CPU, it has a pretty high chance to fail: btrfs/072 12s ... _check_dmesg: something found in dmesg (see xfstests-dev/results//btrfs/072.dmesg) - output mismatch (see xfstests-dev/results//btrfs/072.out.bad) --- tests/btrfs/072.out 2019-10-22 15:18:14.008965340 +0800 +++ /xfstests-dev/results//btrfs/072.out.bad 2019-11-14 15:56:45.877152240 +0800 @@ -1,2 +1,3 @@ QA output created by 072 Silence is golden +Scrub find errors in "-m dup -d single" test ... And with the following call trace: BTRFS info (device dm-5): scrub: started on devid 1 ------------[ cut here ]------------ BTRFS: Transaction aborted (error -27) WARNING: CPU: 0 PID: 55087 at fs/btrfs/block-group.c:1890 btrfs_create_pending_block_groups+0x3e6/0x470 [btrfs] CPU: 0 PID: 55087 Comm: btrfs Tainted: G W O 5.4.0-rc1-custom+ #13 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 RIP: 0010:btrfs_create_pending_block_groups+0x3e6/0x470 [btrfs] Call Trace: __btrfs_end_transaction+0xdb/0x310 [btrfs] btrfs_end_transaction+0x10/0x20 [btrfs] btrfs_inc_block_group_ro+0x1c9/0x210 [btrfs] scrub_enumerate_chunks+0x264/0x940 [btrfs] btrfs_scrub_dev+0x45c/0x8f0 [btrfs] btrfs_ioctl+0x31a1/0x3fb0 [btrfs] do_vfs_ioctl+0x636/0xaa0 ksys_ioctl+0x67/0x90 __x64_sys_ioctl+0x43/0x50 do_syscall_64+0x79/0xe0 entry_SYSCALL_64_after_hwframe+0x49/0xbe ---[ end trace 166c865cec7688e7 ]--- [CAUSE] The error number -27 is -EFBIG, returned from the following call chain: btrfs_end_transaction() |- __btrfs_end_transaction() |- btrfs_create_pending_block_groups() |- btrfs_finish_chunk_alloc() |- btrfs_add_system_chunk() This happens because we have used up all space of btrfs_super_block::sys_chunk_array. The root cause is, we have the following bad loop of creating tons of system chunks: 1. The only SYSTEM chunk is being scrubbed It's very common to have only one SYSTEM chunk. 2. New SYSTEM bg will be allocated As btrfs_inc_block_group_ro() will check if we have enough space after marking current bg RO. If not, then allocate a new chunk. 3. New SYSTEM bg is still empty, will be reclaimed During the reclaim, we will mark it RO again. 4. That newly allocated empty SYSTEM bg get scrubbed We go back to step 2, as the bg is already mark RO but still not cleaned up yet. If the cleaner kthread doesn't get executed fast enough (e.g. only one CPU), then we will get more and more empty SYSTEM chunks, using up all the space of btrfs_super_block::sys_chunk_array. [FIX] Since scrub/dev-replace doesn't always need to allocate new extent, especially chunk tree extent, so we don't really need to do chunk pre-allocation. To break above spiral, here we introduce a new parameter to btrfs_inc_block_group(), @do_chunk_alloc, which indicates whether we need extra chunk pre-allocation. For relocation, we pass @do_chunk_alloc=true, while for scrub, we pass @do_chunk_alloc=false. This should keep unnecessary empty chunks from popping up for scrub. Also, since there are two parameters for btrfs_inc_block_group_ro(), add more comment for it. Reviewed-by: NFilipe Manana <fdmanana@suse.com> Signed-off-by: NQu Wenruo <wqu@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 David Sterba 提交于
The type name is misleading, a single entry is named 'cache' while this normally means a collection of objects. Rename that everywhere. Also the identifier was quite long, making function prototypes harder to format. Suggested-by: NNikolay Borisov <nborisov@suse.com> Reviewed-by: NQu Wenruo <wqu@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 Dan Carpenter 提交于
The "&fs_info->dev_replace.rwsem" and "&dev_replace->rwsem" refer to the same lock but Smatch is not clever enough to figure that out so it leads to static checker warnings. It's better to use it consistently anyway. Signed-off-by: NDan Carpenter <dan.carpenter@oracle.com> Reviewed-by: NDavid Sterba <dsterba@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 David Sterba 提交于
The on-disk format of block group item makes use of the key that stores the offset and length. This is further used in the code, although this makes thing harder to understand. The key is also packed so the offset/length is not properly aligned as u64. Add start (key.objectid) and length (key.offset) members to block group and remove the embedded key. When the item is searched or written, a local variable for key is used. Reviewed-by: NJohannes Thumshirn <jthumshirn@suse.de> Reviewed-by: NNikolay Borisov <nborisov@suse.com> Reviewed-by: NQu Wenruo <wqu@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 David Sterba 提交于
For unknown reasons, the member 'used' in the block group struct is stored in the b-tree item and accessed everywhere using the special accessor helper. Let's unify it and make it a regular member and only update the item before writing it to the tree. The item is still being used for flags and chunk_objectid, there's some duplication until the item is removed in following patches. Reviewed-by: NJohannes Thumshirn <jthumshirn@suse.de> Reviewed-by: NNikolay Borisov <nborisov@suse.com> Reviewed-by: NQu Wenruo <wqu@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
- 18 11月, 2019 2 次提交
-
-
由 Omar Sandoval 提交于
Commit 9e0af237 ("Btrfs: fix task hang under heavy compressed write") worked around the issue that a recycled work item could get a false dependency on the original work item due to how the workqueue code guarantees non-reentrancy. It did so by giving different work functions to different types of work. However, the fixes in the previous few patches are more complete, as they prevent a work item from being recycled at all (except for a tiny window that the kernel workqueue code handles for us). This obsoletes the previous fix, so we don't need the unique helpers for correctness. The only other reason to keep them would be so they show up in stack traces, but they always seem to be optimized to a tail call, so they don't show up anyways. So, let's just get rid of the extra indirection. While we're here, rename normal_work_helper() to the more informative btrfs_work_helper(). Reviewed-by: NNikolay Borisov <nborisov@suse.com> Reviewed-by: NFilipe Manana <fdmanana@suse.com> Signed-off-by: NOmar Sandoval <osandov@fb.com> Reviewed-by: NDavid Sterba <dsterba@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 Omar Sandoval 提交于
Currently, scrub_missing_raid56_worker() puts and potentially frees sblock (which embeds the work item) and then submits a bio through scrub_wr_submit(). This is another potential instance of the bug in "btrfs: don't prematurely free work in run_ordered_work()". Fix it by dropping the reference after we submit the bio. Reviewed-by: NJohannes Thumshirn <jthumshirn@suse.de> Signed-off-by: NOmar Sandoval <osandov@fb.com> Reviewed-by: NDavid Sterba <dsterba@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
- 09 9月, 2019 1 次提交
-
-
由 Josef Bacik 提交于
This is prep work for moving all of the block group cache code into its own file. Signed-off-by: NJosef Bacik <josef@toxicpanda.com> Reviewed-by: NDavid Sterba <dsterba@suse.com> [ minor comment updates ] Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
- 02 7月, 2019 1 次提交
-
-
由 David Sterba 提交于
Preparatory patch for additional RAID1 profiles with more copies. The mask will contain 3-copy and 4-copy, most of the checks for plain RAID1 work the same for the other profiles. Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
- 01 7月, 2019 3 次提交
-
-
由 Johannes Thumshirn 提交于
Currently btrfs_csum_data() relied on the crc32c() wrapper around the crypto framework for calculating the CRCs. As we have our own crypto_shash structure in the fs_info now, we can directly call into the crypto framework without going trough the wrapper. This way we can even remove the btrfs_csum_data() and btrfs_csum_final() wrappers. The module dependency on crc32c is preserved via MODULE_SOFTDEP("pre: crc32c"), which was previously provided by LIBCRC32C config option doing the same. Signed-off-by: NJohannes Thumshirn <jthumshirn@suse.de> Reviewed-by: NDavid Sterba <dsterba@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 Johannes Thumshirn 提交于
BTRFS has the implicit assumption that a checksum in btrfs_orderd_sums is 4 bytes. While this is true for CRC32C, it is not for any other checksum. Change the data type to be a byte array and adjust loop index calculation accordingly. This includes moving the adjustment of 'index' by 'ins_size' in btrfs_csum_file_blocks() before dividing 'ins_size' by the checksum size, because before this patch the 'sums' member of 'struct btrfs_ordered_sum' was 4 Bytes in size and afterwards it is only one byte. Reviewed-by: NNikolay Borisov <nborisov@suse.com> Signed-off-by: NJohannes Thumshirn <jthumshirn@suse.de> Reviewed-by: NDavid Sterba <dsterba@suse.com> Signed-off-by: NDavid Sterba <dsterba@suse.com>
-
由 David Sterba 提交于
There are several places that call nr_data_stripes, but this value does not change. Signed-off-by: NDavid Sterba <dsterba@suse.com>
-