- 10 8月, 2021 9 次提交
-
-
由 Darrick J. Wong 提交于
Now that we defer inode inactivation, we've decoupled the process of unlinking or closing an inode from the process of inactivating it. In theory this should lead to better throughput since we now inactivate the queued inodes in batches instead of one at a time. Unfortunately, one of the primary risks with this decoupling is the loss of rate control feedback between the frontend and background threads. In other words, a rm -rf /* thread can run the system out of memory if it can queue inodes for inactivation and jump to a new CPU faster than the background threads can actually clear the deferred work. The workers can get scheduled off the CPU if they have to do IO, etc. To solve this problem, we configure a shrinker so that it will activate the /second/ time the shrinkers are called. The custom shrinker will queue all percpu deferred inactivation workers immediately and set a flag to force frontend callers who are releasing a vfs inode to wait for the inactivation workers. On my test VM with 560M of RAM and a 2TB filesystem, this seems to solve most of the OOMing problem when deleting 10 million inodes. Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NDave Chinner <dchinner@redhat.com>
-
由 Darrick J. Wong 提交于
When we're servicing an INUMBERS or BULKSTAT request or running quotacheck, grab an empty transaction so that we can use its inherent recursive buffer locking abilities to detect inode btree cycles without hitting ABBA buffer deadlocks. This patch requires the deferred inode inactivation patchset because xfs_irele cannot directly call xfs_inactive when the iwalk itself has an (empty) transaction. Found by fuzzing an inode btree pointer to introduce a cycle into the tree (xfs/365). Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Darrick J. Wong 提交于
In xfs_trans_alloc, if the block reservation call returns ENOSPC, we call xfs_blockgc_free_space with a NULL icwalk structure to try to free space. Each frontend thread that encounters this situation starts its own walk of the inode cache to see if it can find anything, which is wasteful since we don't have any additional selection criteria. For this one common case, create a function that reschedules all pending background work immediately and flushes the workqueue so that the scan can run in parallel. Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NDave Chinner <dchinner@redhat.com>
-
由 Darrick J. Wong 提交于
Now that we have the infrastructure to switch background workers on and off at will, fix the block gc worker code so that we don't actually run the worker when the filesystem is frozen, same as we do for deferred inactivation. Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NDave Chinner <dchinner@redhat.com>
-
由 Darrick J. Wong 提交于
Users have come to expect that the space accounting information in statfs and getquota reports are fairly accurate. Now that we inactivate inodes from a background queue, these numbers can be thrown off by whatever resources are singly-owned by the inodes in the queue. Flush the pending inactivations when userspace asks for a space usage report. Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NDave Chinner <dchinner@redhat.com>
-
由 Darrick J. Wong 提交于
Other parts of XFS have learned to call xfs_blockgc_free_{space,quota} to try to free speculative preallocations when space is tight. This means that file writes, transaction reservation failures, quota limit enforcement, and the EOFBLOCKS ioctl all call this function to free space when things are tight. Since inode inactivation is now a background task, this means that the filesystem can be hanging on to unlinked but not yet freed space. Add this to the list of things that xfs_blockgc_free_* makes writer threads scan for when they cannot reserve space. Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NDave Chinner <dchinner@redhat.com>
-
由 Darrick J. Wong 提交于
Now that we have made the inactivation of unlinked inodes a background task to increase the throughput of file deletions, we need to be a little more careful about how long of a delay we can tolerate. Similar to the patch doing this for free space on the data device, if the file being inactivated is a realtime file and the realtime volume is running low on free extents, we want to run the worker ASAP so that the realtime allocator can make better decisions. Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NDave Chinner <dchinner@redhat.com>
-
由 Darrick J. Wong 提交于
Now that we have made the inactivation of unlinked inodes a background task to increase the throughput of file deletions, we need to be a little more careful about how long of a delay we can tolerate. Specifically, if the dquots attached to the inode being inactivated are nearing any kind of enforcement boundary, we want to queue that inactivation work immediately so that users don't get EDQUOT/ENOSPC errors even after they deleted a bunch of files to stay within quota. Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NDave Chinner <dchinner@redhat.com>
-
由 Darrick J. Wong 提交于
Now that we have made the inactivation of unlinked inodes a background task to increase the throughput of file deletions, we need to be a little more careful about how long of a delay we can tolerate. On a mostly empty filesystem, the risk of the allocator making poor decisions due to fragmentation of the free space on account a lengthy delay in background updates is minimal because there's plenty of space. However, if free space is tight, we want to deallocate unlinked inodes as quickly as possible to avoid fallocate ENOSPC and to give the allocator the best shot at optimal allocations for new writes. Therefore, queue the percpu worker immediately if the filesystem is more than 95% full. This follows the same principle that XFS becomes less aggressive about speculative allocations and lazy cleanup (and more precise about accounting) when nearing full. Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NDave Chinner <dchinner@redhat.com>
-
- 07 8月, 2021 9 次提交
-
-
由 Dave Chinner 提交于
Move inode inactivation to background work contexts so that it no longer runs in the context that releases the final reference to an inode. This will allow process work that ends up blocking on inactivation to continue doing work while the filesytem processes the inactivation in the background. A typical demonstration of this is unlinking an inode with lots of extents. The extents are removed during inactivation, so this blocks the process that unlinked the inode from the directory structure. By moving the inactivation to the background process, the userspace applicaiton can keep working (e.g. unlinking the next inode in the directory) while the inactivation work on the previous inode is done by a different CPU. The implementation of the queue is relatively simple. We use a per-cpu lockless linked list (llist) to queue inodes for inactivation without requiring serialisation mechanisms, and a work item to allow the queue to be processed by a CPU bound worker thread. We also keep a count of the queue depth so that we can trigger work after a number of deferred inactivations have been queued. The use of a bound workqueue with a single work depth allows the workqueue to run one work item per CPU. We queue the work item on the CPU we are currently running on, and so this essentially gives us affine per-cpu worker threads for the per-cpu queues. THis maintains the effective CPU affinity that occurs within XFS at the AG level due to all objects in a directory being local to an AG. Hence inactivation work tends to run on the same CPU that last accessed all the objects that inactivation accesses and this maintains hot CPU caches for unlink workloads. A depth of 32 inodes was chosen to match the number of inodes in an inode cluster buffer. This hopefully allows sequential allocation/unlink behaviours to defering inactivation of all the inodes in a single cluster buffer at a time, further helping maintain hot CPU and buffer cache accesses while running inactivations. A hard per-cpu queue throttle of 256 inode has been set to avoid runaway queuing when inodes that take a long to time inactivate are being processed. For example, when unlinking inodes with large numbers of extents that can take a lot of processing to free. Signed-off-by: NDave Chinner <dchinner@redhat.com> [djwong: tweak comments and tracepoints, convert opflags to state bits] Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NDarrick J. Wong <djwong@kernel.org>
-
由 Darrick J. Wong 提交于
If we don't need to inactivate an inode, we can detach the dquots and move on to reclamation. This isn't strictly required here; it's a preparation patch for deferred inactivation per reviewer request[1] to move the creation of xfs_inode_needs_inactivation into a separate change. Eventually this !need_inactive chunk will turn into the code path for inodes that skip xfs_inactive and go straight to memory reclaim. [1] https://lore.kernel.org/linux-xfs/20210609012838.GW2945738@locust/T/#mca6d958521cb88bbc1bfe1a30767203328d410b5Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NDave Chinner <dchinner@redhat.com>
-
由 Darrick J. Wong 提交于
Move the xfs_inactive call and all the other debugging checks and stats updates into xfs_inode_mark_reclaimable because most of that are implementation details about the inode cache. This is preparation for deferred inactivation that is coming up. We also move it around xfs_icache.c in preparation for deferred inactivation. Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NDave Chinner <dchinner@redhat.com>
-
由 Dave Chinner 提交于
The inode inactivation and CIL tracking percpu structures are per-xfs_mount structures. That means when we get a CPU dead notification, we need to then iterate all the per-cpu structure instances to process them. Rather than keeping linked lists of per-cpu structures in each subsystem, add a list of all xfs_mounts that the generic xfs_cpu_dead() function will iterate and call into each subsystem appropriately. This allows us to handle both per-mount and global XFS percpu state from xfs_cpu_dead(), and avoids the need to link subsystem structures that can be easily found from the xfs_mount into their own global lists. Signed-off-by: NDave Chinner <dchinner@redhat.com> [djwong: expand some comments about mount list setup ordering rules] Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NDarrick J. Wong <djwong@kernel.org>
-
由 Dave Chinner 提交于
We need to move to per-cpu state for both deferred inode inactivation and CIL tracking, but to do that we need to handle CPUs being removed from the system by the hot-plug code. Introduce generic XFS infrastructure to handle CPU hotplug events that is set up at module init time and torn down at module exit time. Initially, we only need CPU dead notifications, so we only set up a callback for these notifications. The infrastructure can be updated in future for other CPU hotplug state machine notifications easily if ever needed. Signed-off-by: NDave Chinner <dchinner@redhat.com> [djwong: rearrange some macros, fix function prototypes] Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NDarrick J. Wong <djwong@kernel.org>
-
由 Christoph Hellwig 提交于
These only made a difference when quotaoff supported disabling quota accounting on a mounted file system, so we can switch everyone to use a single set of flags and helpers now. Note that the *QUOTA_ON naming for the helpers is kept as it was the much more commonly used one. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NCarlos Maiolino <cmaiolino@redhat.com> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NDarrick J. Wong <djwong@kernel.org>
-
由 Christoph Hellwig 提交于
We always purge all dquots now, so drop the argument. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NCarlos Maiolino <cmaiolino@redhat.com> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NDarrick J. Wong <djwong@kernel.org>
-
由 Christoph Hellwig 提交于
xfs_dqrele_all_inodes is unused now, remove it and all supporting code. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NDarrick J. Wong <djwong@kernel.org>
-
由 Christoph Hellwig 提交于
Disabling quota accounting is hairy, racy code with all kinds of pitfalls. And it has a very strange mind set, as quota accounting (unlike enforcement) really is a propery of the on-disk format. There is no good use case for supporting this. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NCarlos Maiolino <cmaiolino@redhat.com> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NDarrick J. Wong <djwong@kernel.org>
-
- 30 7月, 2021 12 次提交
-
-
由 Darrick J. Wong 提交于
While reviewing the buffer item recovery code, the thought occurred to me: in V5 filesystems we use log sequence number (LSN) tracking to avoid replaying older metadata updates against newer log items. However, we use the magic number of the ondisk buffer to find the LSN of the ondisk metadata, which means that if an attacker can control the layout of the realtime device precisely enough that the start of an rt bitmap block matches the magic and UUID of some other kind of block, they can control the purported LSN of that spoofed block and thereby break log replay. Since realtime bitmap and summary blocks don't have headers at all, we have no way to tell if a block really should be replayed. The best we can do is replay unconditionally and hope for the best. Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NCarlos Maiolino <cmaiolino@redhat.com>
-
由 Dave Chinner 提交于
From the department of "generic/482 keeps on giving", we bring you another tail update race condition: iclog: S1 C1 +-----------------------+-----------------------+ S2 EOIC Two checkpoints in a single iclog. One is complete, the other just contains the start record and overruns into a new iclog. Timeline: Before S1: Cache flush, log tail = X At S1: Metadata stable, write start record and checkpoint At C1: Write commit record, set NEED_FUA Single iclog checkpoint, so no need for NEED_FLUSH Log tail still = X, so no need for NEED_FLUSH After C1, Before S2: Cache flush, log tail = X At S2: Metadata stable, write start record and checkpoint After S2: Log tail moves to X+1 At EOIC: End of iclog, more journal data to write Releases iclog Not a commit iclog, so no need for NEED_FLUSH Writes log tail X+1 into iclog. At this point, the iclog has tail X+1 and NEED_FUA set. There has been no cache flush for the metadata between X and X+1, and the iclog writes the new tail permanently to the log. THis is sufficient to violate on disk metadata/journal ordering. We have two options here. The first is to detect this case in some manner and ensure that the partial checkpoint write sets NEED_FLUSH when the iclog is already marked NEED_FUA and the log tail changes. This seems somewhat fragile and quite complex to get right, and it doesn't actually make it obvious what underlying problem it is actually addressing from reading the code. The second option seems much cleaner to me, because it is derived directly from the requirements of the C1 commit record in the iclog. That is, when we write this commit record to the iclog, we've guaranteed that the metadata/data ordering is correct for tail update purposes. Hence if we only write the log tail into the iclog for the *first* commit record rather than the log tail at the last release, we guarantee that the log tail does not move past where the the first commit record in the log expects it to be. IOWs, taking the first option means that replay of C1 becomes dependent on future operations doing the right thing, not just the C1 checkpoint itself doing the right thing. This makes log recovery almost impossible to reason about because now we have to take into account what might or might not have happened in the future when looking at checkpoints in the log rather than just having to reconstruct the past... Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NDarrick J. Wong <djwong@kernel.org>
-
由 Dave Chinner 提交于
Because I cannot tell if the NEED_FLUSH flag is being set correctly by the log force and CIL push machinery without it. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NDarrick J. Wong <djwong@kernel.org>
-
由 Dave Chinner 提交于
From the department of "WTAF? How did we miss that!?"... When we are recovering a buffer, the first thing we do is check the buffer magic number and extract the LSN from the buffer. If the LSN is older than the current LSN, we replay the modification to it. If the metadata on disk is newer than the transaction in the log, we skip it. This is a fundamental v5 filesystem metadata recovery behaviour. generic/482 failed with an attribute writeback failure during log recovery. The write verifier caught the corruption before it got written to disk, and the attr buffer dump looked like: XFS (dm-3): Metadata corruption detected at xfs_attr3_leaf_verify+0x275/0x2e0, xfs_attr3_leaf block 0x19be8 XFS (dm-3): Unmount and run xfs_repair XFS (dm-3): First 128 bytes of corrupted metadata buffer: 00000000: 00 00 00 00 00 00 00 00 3b ee 00 00 4d 2a 01 e1 ........;...M*.. 00000010: 00 00 00 00 00 01 9b e8 00 00 00 01 00 00 05 38 ...............8 ^^^^^^^^^^^^^^^^^^^^^^^ 00000020: df 39 5e 51 58 ac 44 b6 8d c5 e7 10 44 09 bc 17 .9^QX.D.....D... 00000030: 00 00 00 00 00 02 00 83 00 03 00 cc 0f 24 01 00 .............$.. 00000040: 00 68 0e bc 0f c8 00 10 00 00 00 00 00 00 00 00 .h.............. 00000050: 00 00 3c 31 0f 24 01 00 00 00 3c 32 0f 88 01 00 ..<1.$....<2.... 00000060: 00 00 3c 33 0f d8 01 00 00 00 00 00 00 00 00 00 ..<3............ 00000070: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ ..... The highlighted bytes are the LSN that was replayed into the buffer: 0x100000538. This is cycle 1, block 0x538. Prior to replay, that block on disk looks like this: $ sudo xfs_db -c "fsb 0x417d" -c "type attr3" -c p /dev/mapper/thin-vol hdr.info.hdr.forw = 0 hdr.info.hdr.back = 0 hdr.info.hdr.magic = 0x3bee hdr.info.crc = 0xb5af0bc6 (correct) hdr.info.bno = 105448 hdr.info.lsn = 0x100000900 ^^^^^^^^^^^ hdr.info.uuid = df395e51-58ac-44b6-8dc5-e7104409bc17 hdr.info.owner = 131203 hdr.count = 2 hdr.usedbytes = 120 hdr.firstused = 3796 hdr.holes = 1 hdr.freemap[0-2] = [base,size] Note the LSN stamped into the buffer on disk: 1/0x900. The version on disk is much newer than the log transaction that was being replayed. That's a bug, and should -never- happen. So I immediately went to look at xlog_recover_get_buf_lsn() to check that we handled the LSN correctly. I was wondering if there was a similar "two commits with the same start LSN skips the second replay" problem with buffers. I didn't get that far, because I found a much more basic, rudimentary bug: xlog_recover_get_buf_lsn() doesn't recognise buffers with XFS_ATTR3_LEAF_MAGIC set in them!!! IOWs, attr3 leaf buffers fall through the magic number checks unrecognised, so trigger the "recover immediately" behaviour instead of undergoing an LSN check. IOWs, we incorrectly replay ATTR3 leaf buffers and that causes silent on disk corruption of inode attribute forks and potentially other things.... Git history shows this is *another* zero day bug, this time introduced in commit 50d5c8d8 ("xfs: check LSN ordering for v5 superblocks during recovery") which failed to handle the attr3 leaf buffers in recovery. And we've failed to handle them ever since... Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NDarrick J. Wong <djwong@kernel.org>
-
由 Dave Chinner 提交于
When we log an inode, we format the "log inode" core and set an LSN in that inode core. We do that via xfs_inode_item_format_core(), which calls: xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn); to format the log inode. It writes the LSN from the inode item into the log inode, and if recovery decides the inode item needs to be replayed, it recovers the log inode LSN field and writes it into the on disk inode LSN field. Now this might seem like a reasonable thing to do, but it is wrong on multiple levels. Firstly, if the item is not yet in the AIL, item->li_lsn is zero. i.e. the first time the inode it is logged and formatted, the LSN we write into the log inode will be zero. If we only log it once, recovery will run and can write this zero LSN into the inode. This means that the next time the inode is logged and log recovery runs, it will *always* replay changes to the inode regardless of whether the inode is newer on disk than the version in the log and that violates the entire purpose of recording the LSN in the inode at writeback time (i.e. to stop it going backwards in time on disk during recovery). Secondly, if we commit the CIL to the journal so the inode item moves to the AIL, and then relog the inode, the LSN that gets stamped into the log inode will be the LSN of the inode's current location in the AIL, not it's age on disk. And it's not the LSN that will be associated with the current change. That means when log recovery replays this inode item, the LSN that ends up on disk is the LSN for the previous changes in the log, not the current changes being replayed. IOWs, after recovery the LSN on disk is not in sync with the LSN of the modifications that were replayed into the inode. This, again, violates the recovery ordering semantics that on-disk writeback LSNs provide. Hence the inode LSN in the log dinode is -always- invalid. Thirdly, recovery actually has the LSN of the log transaction it is replaying right at hand - it uses it to determine if it should replay the inode by comparing it to the on-disk inode's LSN. But it doesn't use that LSN to stamp the LSN into the inode which will be written back when the transaction is fully replayed. It uses the one in the log dinode, which we know is always going to be incorrect. Looking back at the change history, the inode logging was broken by commit 93f958f9 ("xfs: cull unnecessary icdinode fields") way back in 2016 by a stupid idiot who thought he knew how this code worked. i.e. me. That commit replaced an in memory di_lsn field that was updated only at inode writeback time from the inode item.li_lsn value - and hence always contained the same LSN that appeared in the on-disk inode - with a read of the inode item LSN at inode format time. CLearly these are not the same thing. Before 93f958f9, the log recovery behaviour was irrelevant, because the LSN in the log inode always matched the on-disk LSN at the time the inode was logged, hence recovery of the transaction would never make the on-disk LSN in the inode go backwards or get out of sync. A symptom of the problem is this, caught from a failure of generic/482. Before log recovery, the inode has been allocated but never used: xfs_db> inode 393388 xfs_db> p core.magic = 0x494e core.mode = 0 .... v3.crc = 0x99126961 (correct) v3.change_count = 0 v3.lsn = 0 v3.flags2 = 0 v3.cowextsize = 0 v3.crtime.sec = Thu Jan 1 10:00:00 1970 v3.crtime.nsec = 0 After log recovery: xfs_db> p core.magic = 0x494e core.mode = 020444 .... v3.crc = 0x23e68f23 (correct) v3.change_count = 2 v3.lsn = 0 v3.flags2 = 0 v3.cowextsize = 0 v3.crtime.sec = Thu Jul 22 17:03:03 2021 v3.crtime.nsec = 751000000 ... You can see that the LSN of the on-disk inode is 0, even though it clearly has been written to disk. I point out this inode, because the generic/482 failure occurred because several adjacent inodes in this specific inode cluster were not replayed correctly and still appeared to be zero on disk when all the other metadata (inobt, finobt, directories, etc) indicated they should be allocated and written back. The fix for this is two-fold. The first is that we need to either revert the LSN changes in 93f958f9 or stop logging the inode LSN altogether. If we do the former, log recovery does not need to change but we add 8 bytes of memory per inode to store what is largely a write-only inode field. If we do the latter, log recovery needs to stamp the on-disk inode in the same manner that inode writeback does. I prefer the latter, because we shouldn't really be trying to log and replay changes to the on disk LSN as the on-disk value is the canonical source of the on-disk version of the inode. It also matches the way we recover buffer items - we create a buf_log_item that carries the current recovery transaction LSN that gets stamped into the buffer by the write verifier when it gets written back when the transaction is fully recovered. However, this might break log recovery on older kernels even more, so I'm going to simply ignore the logged value in recovery and stamp the on-disk inode with the LSN of the transaction being recovered that will trigger writeback on transaction recovery completion. This will ensure that the on-disk inode LSN always reflects the LSN of the last change that was written to disk, regardless of whether it comes from log recovery or runtime writeback. Fixes: 93f958f9 ("xfs: cull unnecessary icdinode fields") Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NDarrick J. Wong <djwong@kernel.org>
-
由 Dave Chinner 提交于
Before waiting on a iclog in xfs_log_force_lsn(), we don't check to see if the iclog has already been completed and the contents on stable storage. We check for completed iclogs in xfs_log_force(), so we should do the same thing for xfs_log_force_lsn(). This fixed some random up-to-30s pauses seen in unmounting filesystems in some tests. A log force ends up waiting on completed iclog, and that doesn't then get flushed (and hence the log force get completed) until the background log worker issues a log force that flushes the iclog in question. Then the unmount unblocks and continues. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NDarrick J. Wong <djwong@kernel.org>
-
由 Dave Chinner 提交于
After fixing the tail_lsn vs cache flush race, generic/482 continued to fail in a similar way where cache flushes were missing before iclog FUA writes. Tracing of iclog state changes during the fsstress workload portion of the test (via xlog_iclog* events) indicated that iclog writes were coming from two sources - CIL pushes and log forces (due to fsync/O_SYNC operations). All of the cases where a recovery problem was triggered indicated that the log force was the source of the iclog write that was not preceeded by a cache flush. This was an oversight in the modifications made in commit eef983ff ("xfs: journal IO cache flush reductions"). Log forces for fsync imply a data device cache flush has been issued if an iclog was flushed to disk and is indicated to the caller via the log_flushed parameter so they can elide the device cache flush if the journal issued one. The change in eef983ff results in iclogs only issuing a cache flush if XLOG_ICL_NEED_FLUSH is set on the iclog, but this was not added to the iclogs that the log force code flushes to disk. Hence log forces are no longer guaranteeing that a cache flush is issued, hence opening up a potential on-disk ordering failure. Log forces should also set XLOG_ICL_NEED_FUA as well to ensure that the actual iclogs it forces to the journal are also on stable storage before it returns to the caller. This patch introduces the xlog_force_iclog() helper function to encapsulate the process of taking a reference to an iclog, switching its state if WANT_SYNC and flushing it to stable storage correctly. Both xfs_log_force() and xfs_log_force_lsn() are converted to use it, as is xlog_unmount_write() which has an elaborate method of doing exactly the same "write this iclog to stable storage" operation. Further, if the log force code needs to wait on a iclog in the WANT_SYNC state, it needs to ensure that iclog also results in a cache flush being issued. This covers the case where the iclog contains the commit record of the CIL flush that the log force triggered, but it hasn't been written yet because there is still an active reference to the iclog. Note: this whole cache flush whack-a-mole patch is a result of log forces still being iclog state centric rather than being CIL sequence centric. Most of this nasty code will go away in future when log forces are converted to wait on CIL sequence push completion rather than iclog completion. With the CIL push algorithm guaranteeing that the CIL checkpoint is fully on stable storage when it completes, we no longer need to iterate iclogs and push them to ensure a CIL sequence push has completed and so all this nasty iclog iteration and flushing code will go away. Fixes: eef983ff ("xfs: journal IO cache flush reductions") Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NDarrick J. Wong <djwong@kernel.org>
-
由 Dave Chinner 提交于
We force iclogs in several places - we need them all to have the same cache flush semantics, so start by factoring out the iclog force into a common helper. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NDarrick J. Wong <djwong@kernel.org>
-
由 Dave Chinner 提交于
There is a race between the new CIL async data device metadata IO completion cache flush and the log tail in the iclog the flush covers being updated. This can be seen by repeating generic/482 in a loop and eventually log recovery fails with a failures such as this: XFS (dm-3): Starting recovery (logdev: internal) XFS (dm-3): bad inode magic/vsn daddr 228352 #0 (magic=0) XFS (dm-3): Metadata corruption detected at xfs_inode_buf_verify+0x180/0x190, xfs_inode block 0x37c00 xfs_inode_buf_verify XFS (dm-3): Unmount and run xfs_repair XFS (dm-3): First 128 bytes of corrupted metadata buffer: 00000000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00000010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00000020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00000030: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00000040: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00000050: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00000060: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00000070: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ XFS (dm-3): metadata I/O error in "xlog_recover_items_pass2+0x55/0xc0" at daddr 0x37c00 len 32 error 117 Analysis of the logwrite replay shows that there were no writes to the data device between the FUA @ write 124 and the FUA at write @ 125, but log recovery @ 125 failed. The difference was the one log write @ 125 moved the tail of the log forwards from (1,8) to (1,32) and so the inode create intent in (1,8) was not replayed and so the inode cluster was zero on disk when replay of the first inode item in (1,32) was attempted. What this meant was that the journal write that occurred at @ 125 did not ensure that metadata completed before the iclog was written was correctly on stable storage. The tail of the log moved forward, so IO must have been completed between the two iclog writes. This means that there is a race condition between the unconditional async cache flush in the CIL push work and the tail LSN that is written to the iclog. This happens like so: CIL push work AIL push work ------------- ------------- Add to committing list start async data dev cache flush ..... <flush completes> <all writes to old tail lsn are stable> xlog_write .... push inode create buffer <start IO> ..... xlog_write(commit record) .... <IO completes> log tail moves xlog_assign_tail_lsn() start_lsn == commit_lsn <no iclog preflush!> xlog_state_release_iclog __xlog_state_release_iclog() <writes *new* tail_lsn into iclog> xlog_sync() .... submit_bio() <tail in log moves forward without flushing written metadata> Essentially, this can only occur if the commit iclog is issued without a cache flush. If the iclog bio is submitted with REQ_PREFLUSH, then it will guarantee that all the completed IO is one stable storage before the iclog bio with the new tail LSN in it is written to the log. IOWs, the tail lsn that is written to the iclog needs to be sampled *before* we issue the cache flush that guarantees all IO up to that LSN has been completed. To fix this without giving up the performance advantage of the flush/FUA optimisations (e.g. g/482 runtime halves with 5.14-rc1 compared to 5.13), we need to ensure that we always issue a cache flush if the tail LSN changes between the initial async flush and the commit record being written. THis requires sampling the tail_lsn before we start the flush, and then passing the sampled tail LSN to xlog_state_release_iclog() so it can determine if the the tail LSN has changed while writing the checkpoint. If the tail LSN has changed, then it needs to set the NEED_FLUSH flag on the iclog and we'll issue another cache flush before writing the iclog. Fixes: eef983ff ("xfs: journal IO cache flush reductions") Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NDarrick J. Wong <djwong@kernel.org>
-
由 Dave Chinner 提交于
Fold __xlog_state_release_iclog into its only caller to prepare make an upcoming fix easier. Signed-off-by: NDave Chinner <dchinner@redhat.com> [hch: split from a larger patch] Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NDarrick J. Wong <djwong@kernel.org>
-
由 Dave Chinner 提交于
The recent journal flush/FUA changes replaced the flushing of the data device on every iclog write with an up-front async data device cache flush. Unfortunately, the assumption of which this was based on has been proven incorrect by the flush vs log tail update ordering issue. As the fix for that issue uses the XLOG_ICL_NEED_FLUSH flag to indicate that data device needs a cache flush, we now need to (once again) ensure that an iclog write to external logs that need a cache flush to be issued actually issue a cache flush to the data device as well as the log device. Fixes: eef983ff ("xfs: journal IO cache flush reductions") Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Signed-off-by: NDarrick J. Wong <djwong@kernel.org>
-
由 Dave Chinner 提交于
We incorrectly flush the log device instead of the data device when trying to ensure metadata is correctly on disk before writing the unmount record. Fixes: eef983ff ("xfs: journal IO cache flush reductions") Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDarrick J. Wong <djwong@kernel.org>
-
- 16 7月, 2021 7 次提交
-
-
由 Darrick J. Wong 提交于
If we encounter a directory that has been configured to pass on an extent size hint to a new realtime file and the hint isn't an integer multiple of the rt extent size, we should flag the hint for administrative review because that is a misconfiguration (that other parts of the kernel will fix automatically). Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Darrick J. Wong 提交于
During a realtime grow operation, we run a single transaction for each rt bitmap block added to the filesystem. This means that each step has to be careful to increase sb_rblocks appropriately. Fix the integer overflow error in this calculation that can happen when the extent size is very large. Found by running growfs to add a rt volume to a filesystem formatted with a 1g rt extent size. Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Darrick J. Wong 提交于
Improve the checking at the start of a realtime grow operation so that we avoid accidentally set a new extent size that is too large and avoid adding an rt volume to a filesystem with rmap or reflink because we don't support rt rmap or reflink yet. While we're at it, separate the checks so that we're only testing one aspect at a time. Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Darrick J. Wong 提交于
Commit 603f000b changed xfs_ioctl_setattr_check_extsize to reject an attempt to set an EXTSZINHERIT extent size hint on a directory with RTINHERIT set if the hint isn't a multiple of the realtime extent size. However, I have recently discovered that it is possible to change the realtime extent size when adding a rt device to a filesystem, which means that the existence of directories with misaligned inherited hints is not an accident. As a result, it's possible that someone could have set a valid hint and added an rt volume with a different rt extent size, which invalidates the ondisk hints. After such a sequence, FSGETXATTR will report a misaligned hint, which FSSETXATTR will trip over, causing confusion if the user was doing the usual GET/SET sequence to change some other attribute. Change xfs_fill_fsxattr to omit the hint if it isn't aligned properly. Fixes: 603f000b ("xfs: validate extsz hints against rt extent size when rtinherit is set") Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Darrick J. Wong 提交于
While auditing the realtime growfs code, I realized that the GROWFSRT ioctl (and by extension xfs_growfs) has always allowed sysadmins to change the realtime extent size when adding a realtime section to the filesystem. Since we also have always allowed sysadmins to set RTINHERIT and EXTSZINHERIT on directories even if there is no realtime device, this invalidates the premise laid out in the comments added in commit 603f000b. In other words, this is not a case of inadequate metadata validation. This is a case of nearly forgotten (and apparently untested) but supported functionality. Update the comments to reflect what we've learned, and remove the log message about correcting the misalignment. Fixes: 603f000b ("xfs: validate extsz hints against rt extent size when rtinherit is set") Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NCarlos Maiolino <cmaiolino@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Darrick J. Wong 提交于
While running xfs/168, I noticed a second source of post-shrink corruption errors causing shutdowns. Let's say that directory B has a low inode number and is a child of directory A, which has a high number. If B is empty but open, and unlinked from A, B's dotdot link continues to point to A. If A is then unlinked and the filesystem shrunk so that A is no longer a valid inode, a subsequent AIL push of B will trip the inode verifiers because the dotdot entry points outside of the filesystem. To avoid this problem, reset B's dotdot entry to the root directory when unlinking directories, since the root directory cannot be removed. Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NGao Xiang <hsiangkao@linux.alibaba.com>
-
由 Darrick J. Wong 提交于
While running xfs/168, I noticed occasional write verifier shutdowns involving inodes at the very end of the filesystem. Existing inode btree validation code checks that all inode clusters are fully contained within the filesystem. However, due to inadequate checking in the fs shrink code, it's possible that there could be a sparse inode cluster at the end of the filesystem where the upper inodes of the cluster are marked as holes and the corresponding blocks are free. In this case, the last blocks in the AG are listed in the bnobt. This enables the shrink to proceed but results in a filesystem that trips the inode verifiers. Fix this by disallowing the shrink. Signed-off-by: NDarrick J. Wong <djwong@kernel.org> Reviewed-by: NGao Xiang <hsiangkao@linux.alibaba.com>
-
- 12 7月, 2021 1 次提交
-
-
由 Gustavo A. R. Silva 提交于
In preparation to enable -Wimplicit-fallthrough for Clang, fix the following warnings by replacing /* fallthrough */ comments, and its variants, with the new pseudo-keyword macro fallthrough: fs/xfs/libxfs/xfs_attr.c:487:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough] fs/xfs/libxfs/xfs_attr.c:500:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough] fs/xfs/libxfs/xfs_attr.c:532:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough] fs/xfs/libxfs/xfs_attr.c:594:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough] fs/xfs/libxfs/xfs_attr.c:607:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough] fs/xfs/libxfs/xfs_attr.c:1410:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough] fs/xfs/libxfs/xfs_attr.c:1445:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough] fs/xfs/libxfs/xfs_attr.c:1473:2: warning: unannotated fall-through between switch labels [-Wimplicit-fallthrough] Notice that Clang doesn't recognize /* fallthrough */ comments as implicit fall-through markings, so in order to globally enable -Wimplicit-fallthrough for Clang, these comments need to be replaced with fallthrough; in the whole codebase. Link: https://github.com/KSPP/linux/issues/115Reviewed-by: NKees Cook <keescook@chromium.org> Signed-off-by: NGustavo A. R. Silva <gustavoars@kernel.org>
-
- 30 6月, 2021 2 次提交
-
-
由 Matthew Wilcox (Oracle) 提交于
Use __set_page_dirty_no_writeback() instead. This will set the dirty bit on the page, which will be used to avoid calling set_page_dirty() in the future. It will have no effect on actually writing the page back, as the pages are not on any LRU lists. [akpm@linux-foundation.org: export __set_page_dirty_no_writeback() to modules] Link: https://lkml.kernel.org/r/20210615162342.1669332-6-willy@infradead.orgSigned-off-by: NMatthew Wilcox (Oracle) <willy@infradead.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@lst.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Jan Kara <jack@suse.cz> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Matthew Wilcox (Oracle) 提交于
The only difference between iomap_set_page_dirty() and __set_page_dirty_nobuffers() is that the latter includes a debugging check that a !Uptodate page has private data. Link: https://lkml.kernel.org/r/20210615162342.1669332-4-willy@infradead.orgSigned-off-by: NMatthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: NChristoph Hellwig <hch@lst.de> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Jan Kara <jack@suse.cz> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-