- 15 11月, 2005 31 次提交
-
-
由 Bob Picco 提交于
Fix up booting with sparse mem enabled. Otherwise it would just cause an early PANIC at boot. Signed-off-by: NBob Picco <bob.picco@hp.com> Signed-off-by: NAndi Kleen <ak@suse.de> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Andi Kleen 提交于
This is needed for large multinode IBM systems which have a sparse APIC space in clustered mode, fully covering the available 8 bits. The previous kernels would limit the local APIC number to 127, which caused it to reject some of the CPUs at boot. I increased the maximum and shrunk the apic_version array a bit to make up for that (the version is only 8 bit, so don't need an full int to store) Cc: Chris McDermott <lcm@us.ibm.com> Signed-off-by: NAndi Kleen <ak@suse.de> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Andi Kleen 提交于
CONFIG_CHECKING covered some debugging code used in the early times of the port. But it wasn't even SMP safe for quite some time and the bugs it checked for seem to be gone. This patch removes all the code to verify GS at kernel entry. There haven't been any new bugs in this area for a long time. Previously it also covered the sysctl for the page fault tracing. That didn't make much sense because that code was unconditionally compiled in. I made that a boot option now because it is typically only useful at boot. Signed-off-by: NAndi Kleen <ak@suse.de> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Magnus Damm 提交于
The current x86_64 NUMA memory code is inconsequent when it comes to node memory ranges. The exact behaviour varies depending on which config option that is used. setup_node_bootmem() has start and end as arguments and these are used to calculate the size of the node like this: (end - start). This is all fine if end is pointing to the first non-available byte. The problem is that the current x86_64 code sometimes treats it as the last present byte and sometimes as the first non-available byte. The result is that some configurations might lose a page at the end of the range. This patch tries to fix CONFIG_ACPI_NUMA, CONFIG_K8_NUMA and CONFIG_NUMA_EMU so they all treat the end variable as the first non-available byte. This is the same way as the single node code. The patch is boot tested on dual x86_64 hardware with the above configurations, but maybe the removed code is needed as some workaround? Signed-off-by: NMagnus Damm <magnus@valinux.co.jp> Signed-off-by: NAndi Kleen <ak@suse.de> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Andi Kleen 提交于
The logging for boot errors was turned off because it was broken on some AMD systems. But give Intel EM64T systems a chance because they are supposed to be correct there. The advantage is that there is a chance to actually log uncorrected machine checks after the reset. Signed-off-by: NAndi Kleen <ak@suse.de> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Ravikiran G Thirumalai 提交于
On x86_64 arches, there is no way to choose ACPI_NUMA without having to choose K8_NUMA. CONFIG_K8_NUMA is not needed for Intel EM64T NUMA boxes. It also looks odd if you have to select ACPI_NUMA from the power management menu. This patch fixes those oddities. Patch does the following: 1. Makes NUMA a config option like other arches 2. Makes topology detection options like K8_NUMA dependent on NUMA 3. Choosing ACPI NUMA detection can be done from the standard "Processor type and features" menu AK: I fixed up the dependencies and changed the help texts a bit on top of Kiran's patch. Signed-off-by: NRavikiran Thirumalai <kiran@scalex86.org> Signed-off-by: NShai Fultheim <shai@scalex86.org> Signed-off-by: NAndi Kleen <ak@suse.de> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
Keeping this function does not makes sense because it's a copied (and buggy) copy of sys_time. The only difference is that now.tv_sec (which is a time_t, i.e. a 64-bit long) is copied (and truncated) into a int (32-bit). The prototype is the same (they both take a long __user *), so let's drop this and redirect it to sys_time (and make sure it exists by defining __ARCH_WANT_SYS_TIME). Only disadvantage is that the sys_stime definition is also compiled (may be fixed if needed by adding a separate __ARCH_WANT_SYS_STIME macro, and defining it for all arch's defining __ARCH_WANT_SYS_TIME except x86_64). Acked-by: NAndi Kleen <ak@suse.de> Signed-off-by: NPaolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NAndi Kleen <ak@suse.de> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Andi Kleen 提交于
B stepping were the first shipping Opterons. memcpy/memset/copy_page/ clear_page had special optimized version for them. These are really old and in the minority now and the difference to the generic versions (using rep microcode) is not that big anyways. So just remove them. TODO: figure out optimized versions for Intel Netburst based EM64T Signed-off-by: NAndi Kleen <ak@suse.de> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Andi Kleen 提交于
Old code could retry for 10 seconds worst time. Only try it for one second now. Suggested by Yinghai Lu Cc: Yinghai.Lu@amd.com Signed-off-by: NAndi Kleen <ak@suse.de> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Siddha, Suresh B 提交于
Fields obtained through cpuid vector 0x1(ebx[16:23]) and vector 0x4(eax[14:25], eax[26:31]) indicate the maximum values and might not always be the same as what is available and what OS sees. So make sure "siblings" and "cpu cores" values in /proc/cpuinfo reflect the values as seen by OS instead of what cpuid instruction says. This will also fix the buggy BIOS cases (for example where cpuid on a single core cpu says there are "2" siblings, even when HT is disabled in the BIOS. http://bugzilla.kernel.org/show_bug.cgi?id=4359) Signed-off-by: NSuresh Siddha <suresh.b.siddha@intel.com> Signed-off-by: NAndi Kleen <ak@suse.de> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Andi Kleen 提交于
When they were disabled before (e.g. after a panic) it's better to keep them off, otherwise followon panics can happen from timer interrupt handlers etc. Drawback is that pageup in the console won't work anymore though. Signed-off-by: NAndi Kleen <ak@suse.de> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Andi Kleen 提交于
No functional changes. Signed-off-by: NAndi Kleen <ak@suse.de> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Andi Kleen 提交于
Signed-off-by: NAndi Kleen <ak@suse.de> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Shaohua Li 提交于
They report 40bit, but only have 36bits of physical address space. This caused problems with setting up the correct masks for MTRR. CPUID workaround for steppings 0F33h(supporting x86) and 0F34h(supporting x86 and EM64T). Detail info can be found at: http://download.intel.com/design/Xeon/specupdt/30240216.pdf http://download.intel.com/design/Pentium4/specupdt/30235221.pdf Signed-off-by: Shaohua Li<shaohua.li@intel.com> Signed-off-by: NAndi Kleen <ak@suse.de> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Eric Dumazet 提交于
Compute the highest possible value for memnode_shift, in order to reduce footprint of memnodemap[] to the minimum, thus making all users (phys_to_nid(), kfree()), more cache friendly. Before the patch : Node 0 MemBase 0000000000000000 Limit 00000001ffffffff Node 1 MemBase 0000000200000000 Limit 00000003ffffffff Using 23 for the hash shift. Max adder is 3ffffffff After the patch : Node 0 MemBase 0000000000000000 Limit 00000001ffffffff Node 1 MemBase 0000000200000000 Limit 00000003ffffffff Using 33 for the hash shift. In this case, only 2 bytes of memnodemap[] are used, instead of 2048 Signed-off-by: NEric Dumazet <dada1@cosmosbay.com> Signed-off-by: NAndi Kleen <ak@suse.de> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Bryan Ford 提交于
This allows to run 64bit signal handlers in 64bit processes that run small code snippets in compat mode. Signed-off-by: NAndi Kleen <ak@suse.de> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Andi Kleen 提交于
With a NR_CPUS==128 kernel with CPU hotplug enabled we would waste 4MB on per CPU data of all possible CPUs. The reason was that HOTPLUG always set up possible map to NR_CPUS cpus and then we need to allocate that much (each per CPU data is roughly ~32k now) The underlying problem is that ACPI didn't tell us how many hotplug CPUs the platform supports. So the old code just assumed all, which would lead to this memory wastage. This implements some new heuristics: - If the BIOS specified disabled CPUs in the ACPI/mptables assume they can be enabled later (this is bending the ACPI specification a bit, but seems like a obvious extension) - The user can overwrite it with a new additionals_cpus=NUM option - Otherwise use half of the available CPUs or 2, whatever is more. Cc: ashok.raj@intel.com Cc: len.brown@intel.com Signed-off-by: NAndi Kleen <ak@suse.de> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Andi Kleen 提交于
Minor victory on the continuous quest against all stray extern. Signed-off-by: NAndi Kleen <ak@suse.de> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Andi Kleen 提交于
Minor cleanup - remove obsolete extern Signed-off-by: NAndi Kleen <ak@suse.de> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Andi Kleen 提交于
Adding __initdata_* to asm-generic/sections.h Replaces a lot of open coded externs in arch/x86_64/* I had to change __bss_end to __bss_stop to match the other architectures. Signed-off-by: NAndi Kleen <ak@suse.de> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Siddha, Suresh B 提交于
We should zap the low mappings, as soon as possible, so that we can catch kernel bugs more effectively. Previously early boot had NULL mapped and didn't trap on NULL references. This patch introduces boot_level4_pgt, which will always have low identity addresses mapped. Druing boot, all the processors will use this as their level4 pgt. On BP, we will switch to init_level4_pgt as soon as we enter C code and zap the low mappings as soon as we are done with the usage of identity low mapped addresses. On AP's we will zap the low mappings as soon as we jump to C code. Signed-off-by: NSuresh Siddha <suresh.b.siddha@intel.com> Signed-off-by: NAshok Raj <ashok.raj@intel.com> Signed-off-by: NAndi Kleen <ak@suse.de> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Andi Kleen 提交于
Not go from the CPU number to an mapping array. Mode number is often used now in fast paths. This also adds a generic numa_node_id to all the topology includes Suggested by Eric Dumazet Signed-off-by: NAndi Kleen <ak@suse.de> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Andi Kleen 提交于
Fix arch/x86_64/kernel/aperture.c: In function #iommu_hole_init#: arch/x86_64/kernel/aperture.c:199: warning: #aper_order# may be used uninitialized in this function Signed-off-by: NAndi Kleen <ak@suse.de> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Suresh Siddha 提交于
According to cpuid instruction in IA32 SDM-Vol2, when computing cpu model, we need to consider extended model ID for family 0x6 also. AK: Also added fixes/simplifcation from Petr Vandrovec Signed-off-by: NSuresh Siddha <suresh.b.siddha@intel.com> Signed-off-by: NAndi Kleen <ak@suse.de> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Ashok Raj 提交于
Remove duplicate __cpuinit in smp.c. Already defined in init.h which is already included. Signed-off-by: NAshok Raj <ashok.raj@intel.com> Signed-off-by: NAndi Kleen <ak@suse.de> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Andi Kleen 提交于
Signed-off-by: NAndi Kleen <ak@suse.de> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 James Cleverdon 提交于
Here's a patch that builds on Natalie Protasevich's IRQ compression patch and tries to work for MPS boots as well as ACPI. It is meant for a 4-node IBM x460 NUMA box, which was dying because it had interrupt pins with GSI numbers > NR_IRQS and thus overflowed irq_desc. The problem is that this system has 270 GSIs (which are 1:1 mapped with I/O APIC RTEs) and an 8-node box would have 540. This is much bigger than NR_IRQS (224 for both i386 and x86_64). Also, there aren't enough vectors to go around. There are about 190 usable vectors, not counting the reserved ones and the unused vectors at 0x20 to 0x2F. So, my patch attempts to compress the GSI range and share vectors by sharing IRQs. Cc: "Protasevich, Natalie" <Natalie.Protasevich@unisys.com> Signed-off-by: NAndi Kleen <ak@suse.de> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Jacob Shin 提交于
MC4_MISC - DRAM Errors Threshold Register realized under AMD K8 Rev F. This register is used to count correctable and uncorrectable ECC errors that occur during DRAM read operations. The user may interface through sysfs files in order to change the threshold configuration. bank%d/error_count - reads current error count, write to clear. bank%d/interrupt_enable - set/clear interrupt enable. bank%d/threshold_limit - read/write the threshold limit. APIC vector 0xF9 in hw_irq.h. 5 software defined bank ids in mce.h. new apic.c function to setup threshold apic lvt. defaults to interrupt off, count enabled, and threshold limit max. sysfs interface created on /sys/devices/system/threshold. AK: added some ifdefs to make it compile on UP Signed-off-by: NJacob Shin <jacob.shin@amd.com> Signed-off-by: NAndi Kleen <ak@suse.de> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Andi Kleen 提交于
The VM needs to know about lost memory in zones to accurately balance dirty pages. This patch accounts mem_map in there too, which fixes a constant errror of a few percent. Also some other misc mappings and the kernel text itself are accounted too. Signed-off-by: NAndi Kleen <ak@suse.de> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Andi Kleen 提交于
Add a new 4GB GFP_DMA32 zone between the GFP_DMA and GFP_NORMAL zones. As a bit of historical background: when the x86-64 port was originally designed we had some discussion if we should use a 16MB DMA zone like i386 or a 4GB DMA zone like IA64 or both. Both was ruled out at this point because it was in early 2.4 when VM is still quite shakey and had bad troubles even dealing with one DMA zone. We settled on the 16MB DMA zone mainly because we worried about older soundcards and the floppy. But this has always caused problems since then because device drivers had trouble getting enough DMA able memory. These days the VM works much better and the wide use of NUMA has proven it can deal with many zones successfully. So this patch adds both zones. This helps drivers who need a lot of memory below 4GB because their hardware is not accessing more (graphic drivers - proprietary and free ones, video frame buffer drivers, sound drivers etc.). Previously they could only use IOMMU+16MB GFP_DMA, which was not enough memory. Another common problem is that hardware who has full memory addressing for >4GB misses it for some control structures in memory (like transmit rings or other metadata). They tended to allocate memory in the 16MB GFP_DMA or the IOMMU/swiotlb then using pci_alloc_consistent, but that can tie up a lot of precious 16MB GFPDMA/IOMMU/swiotlb memory (even on AMD systems the IOMMU tends to be quite small) especially if you have many devices. With the new zone pci_alloc_consistent can just put this stuff into memory below 4GB which works better. One argument was still if the zone should be 4GB or 2GB. The main motivation for 2GB would be an unnamed not so unpopular hardware raid controller (mostly found in older machines from a particular four letter company) who has a strange 2GB restriction in firmware. But that one works ok with swiotlb/IOMMU anyways, so it doesn't really need GFP_DMA32. I chose 4GB to be compatible with IA64 and because it seems to be the most common restriction. The new zone is so far added only for x86-64. For other architectures who don't set up this new zone nothing changes. Architectures can set a compatibility define in Kconfig CONFIG_DMA_IS_DMA32 that will define GFP_DMA32 as GFP_DMA. Otherwise it's a nop because on 32bit architectures it's normally not needed because GFP_NORMAL (=0) is DMA able enough. One problem is still that GFP_DMA means different things on different architectures. e.g. some drivers used to have #ifdef ia64 use GFP_DMA (trusting it to be 4GB) #elif __x86_64__ (use other hacks like the swiotlb because 16MB is not enough) ... . This was quite ugly and is now obsolete. These should be now converted to use GFP_DMA32 unconditionally. I haven't done this yet. Or best only use pci_alloc_consistent/dma_alloc_coherent which will use GFP_DMA32 transparently. Signed-off-by: NAndi Kleen <ak@suse.de> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Andi Kleen 提交于
Rerun and enable autofs 4, relayfs and softdog Signed-off-by: NAndi Kleen <ak@suse.de> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
- 14 11月, 2005 1 次提交
-
-
由 Karsten Wiese 提交于
attached patch renames one instance of /sys/devices/system/timer to /sys/devices/system/timer_pit to avoid a name clash with another instance created in time.c. Acked-by: NAndi Kleen <ak@muc.de> Cc: Greg KH <greg@kroah.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
- 09 11月, 2005 3 次提交
-
-
由 Nick Piggin 提交于
Make some changes to the NEED_RESCHED and POLLING_NRFLAG to reduce confusion, and make their semantics rigid. Improves efficiency of resched_task and some cpu_idle routines. * In resched_task: - TIF_NEED_RESCHED is only cleared with the task's runqueue lock held, and as we hold it during resched_task, then there is no need for an atomic test and set there. The only other time this should be set is when the task's quantum expires, in the timer interrupt - this is protected against because the rq lock is irq-safe. - If TIF_NEED_RESCHED is set, then we don't need to do anything. It won't get unset until the task get's schedule()d off. - If we are running on the same CPU as the task we resched, then set TIF_NEED_RESCHED and no further action is required. - If we are running on another CPU, and TIF_POLLING_NRFLAG is *not* set after TIF_NEED_RESCHED has been set, then we need to send an IPI. Using these rules, we are able to remove the test and set operation in resched_task, and make clear the previously vague semantics of POLLING_NRFLAG. * In idle routines: - Enter cpu_idle with preempt disabled. When the need_resched() condition becomes true, explicitly call schedule(). This makes things a bit clearer (IMO), but haven't updated all architectures yet. - Many do a test and clear of TIF_NEED_RESCHED for some reason. According to the resched_task rules, this isn't needed (and actually breaks the assumption that TIF_NEED_RESCHED is only cleared with the runqueue lock held). So remove that. Generally one less locked memory op when switching to the idle thread. - Many idle routines clear TIF_POLLING_NRFLAG, and only set it in the inner most polling idle loops. The above resched_task semantics allow it to be set until before the last time need_resched() is checked before going into a halt requiring interrupt wakeup. Many idle routines simply never enter such a halt, and so POLLING_NRFLAG can be always left set, completely eliminating resched IPIs when rescheduling the idle task. POLLING_NRFLAG width can be increased, to reduce the chance of resched IPIs. Signed-off-by: NNick Piggin <npiggin@suse.de> Cc: Ingo Molnar <mingo@elte.hu> Cc: Con Kolivas <kernel@kolivas.org> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Nick Piggin 提交于
Run idle threads with preempt disabled. Also corrected a bugs in arm26's cpu_idle (make it actually call schedule()). How did it ever work before? Might fix the CPU hotplugging hang which Nigel Cunningham noted. We think the bug hits if the idle thread is preempted after checking need_resched() and before going to sleep, then the CPU offlined. After calling stop_machine_run, the CPU eventually returns from preemption and into the idle thread and goes to sleep. The CPU will continue executing previous idle and have no chance to call play_dead. By disabling preemption until we are ready to explicitly schedule, this bug is fixed and the idle threads generally become more robust. From: alexs <ashepard@u.washington.edu> PPC build fix From: Yoichi Yuasa <yuasa@hh.iij4u.or.jp> MIPS build fix Signed-off-by: NNick Piggin <npiggin@suse.de> Signed-off-by: NYoichi Yuasa <yuasa@hh.iij4u.or.jp> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
由 Christoph Hellwig 提交于
Signed-off-by: NChristoph Hellwig <hch@lst.de> Cc: Andi Kleen <ak@muc.de> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
- 07 11月, 2005 5 次提交
-
-
由 Adrian Bunk 提交于
EXPORT_SYMBOL's for phys_proc_id and cpu_core_id were added this year but never used. Signed-off-by: NAdrian Bunk <bunk@stusta.de> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
Reorganize the preempt_disable/enable calls to eliminate the extra preempt depth. Changes based on Paul McKenney's review suggestions for the kprobes RCU changeset. Signed-off-by: NAnanth N Mavinakayanahalli <ananth@in.ibm.com> Signed-off-by: NAnil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
Changes to the arch kprobes infrastructure to take advantage of the locking changes introduced by usage of RCU for synchronization. All handlers are now run without any locks held, so they have to be re-entrant or provide their own synchronization. Signed-off-by: NAnanth N Mavinakayanahalli <ananth@in.ibm.com> Signed-off-by: NAnil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
x86_64 changes to track kprobe execution on a per-cpu basis. We now track the kprobe state machine independently on each cpu using a arch specific kprobe control block. Signed-off-by: NAnanth N Mavinakayanahalli <ananth@in.ibm.com> Signed-off-by: NAnil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-
The following set of patches are aimed at improving kprobes scalability. We currently serialize kprobe registration, unregistration and handler execution using a single spinlock - kprobe_lock. With these changes, kprobe handlers can run without any locks held. It also allows for simultaneous kprobe handler executions on different processors as we now track kprobe execution on a per processor basis. It is now necessary that the handlers be re-entrant since handlers can run concurrently on multiple processors. All changes have been tested on i386, ia64, ppc64 and x86_64, while sparc64 has been compile tested only. The patches can be viewed as 3 logical chunks: patch 1: Reorder preempt_(dis/en)able calls patches 2-7: Introduce per_cpu data areas to track kprobe execution patches 8-9: Use RCU to synchronize kprobe (un)registration and handler execution. Thanks to Maneesh Soni, James Keniston and Anil Keshavamurthy for their review and suggestions. Thanks again to Anil, Hien Nguyen and Kevin Stafford for testing the patches. This patch: Reorder preempt_disable/enable() calls in arch kprobes files in preparation to introduce locking changes. No functional changes introduced by this patch. Signed-off-by: NAnanth N Mavinakayahanalli <ananth@in.ibm.com> Signed-off-by: NAnil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Signed-off-by: NAndrew Morton <akpm@osdl.org> Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
-