- 27 9月, 2011 1 次提交
-
-
由 Jeremy Fitzhardinge 提交于
Signed-off-by: NJeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
-
- 19 7月, 2011 1 次提交
-
-
由 Jeremy Fitzhardinge 提交于
Signed-off-by: NJeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
-
- 27 5月, 2011 1 次提交
-
-
由 Dan Magenheimer 提交于
This patch provides a shim between the kernel-internal cleancache API (see Documentation/mm/cleancache.txt) and the Xen Transcendent Memory ABI (see http://oss.oracle.com/projects/tmem). Xen tmem provides "hypervisor RAM" as an ephemeral page-oriented pseudo-RAM store for cleancache pages, shared cleancache pages, and frontswap pages. Tmem provides enterprise-quality concurrency, full save/restore and live migration support, compression and deduplication. A presentation showing up to 8% faster performance and up to 52% reduction in sectors read on a kernel compile workload, despite aggressive in-kernel page reclamation ("self-ballooning") can be found at: http://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdfSigned-off-by: NDan Magenheimer <dan.magenheimer@oracle.com> Reviewed-by: NJeremy Fitzhardinge <jeremy@goop.org> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Matthew Wilcox <matthew@wil.cx> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Rik Van Riel <riel@redhat.com> Cc: Jan Beulich <JBeulich@novell.com> Cc: Chris Mason <chris.mason@oracle.com> Cc: Andreas Dilger <adilger@sun.com> Cc: Ted Ts'o <tytso@mit.edu> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <joel.becker@oracle.com> Cc: Nitin Gupta <ngupta@vflare.org>
-
- 26 2月, 2011 2 次提交
-
-
由 Ian Campbell 提交于
Rename old interface to sched_op_compat and rename sched_op_new to simply sched_op. Signed-off-by: NIan Campbell <ian.campbell@citrix.com> Reviewed-by: NKonrad Rzeszutek Wilk <konrad.wilk@oracle.com>
-
由 Ian Campbell 提交于
Take the opportunity to comment on the semantics of the PV guest suspend hypercall arguments. Signed-off-by: NIan Campbell <ian.campbell@citrix.com> Reviewed-by: NKonrad Rzeszutek Wilk <konrad.wilk@oracle.com>
-
- 21 10月, 2010 1 次提交
-
-
由 Jeremy Fitzhardinge 提交于
Allow non-constant hypercall to be called, for privcmd. [ Impact: make arbitrary hypercalls; needed for privcmd ] Signed-off-by: NJeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
-
- 23 7月, 2010 1 次提交
-
-
由 Jeremy Fitzhardinge 提交于
Signed-off-by: NJeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com> Signed-off-by: NSheng Yang <sheng@linux.intel.com> Signed-off-by: NStefano Stabellini <stefano.stabellini@eu.citrix.com>
-
- 12 3月, 2009 1 次提交
-
-
由 Jan Beulich 提交于
Impact: fix potential oops during app-initiated LDT manipulation The underlying hypercall has differing argument requirements on 32- and 64-bit. Signed-off-by: NJan Beulich <jbeulich@novell.com> Acked-by: NJeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com> LKML-Reference: <49B9061E.76E4.0078.0@novell.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 17 12月, 2008 1 次提交
-
-
由 Jeremy Fitzhardinge 提交于
Impact: cleanup hypervisor.h had accumulated a lot of crud, including lots of spurious #includes. Clean it all up, and go around fixing up everything else accordingly. Signed-off-by: NJeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 23 10月, 2008 3 次提交
-
-
由 H. Peter Anvin 提交于
Drop double underscores from header guards in arch/x86/include. They are used inconsistently, and are not necessary. Signed-off-by: NH. Peter Anvin <hpa@zytor.com>
-
由 H. Peter Anvin 提交于
Change header guards named "ASM_X86__*" to "_ASM_X86_*" since: a. the double underscore is ugly and pointless. b. no leading underscore violates namespace constraints. Signed-off-by: NH. Peter Anvin <hpa@zytor.com>
-
由 Al Viro 提交于
Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk> Signed-off-by: NH. Peter Anvin <hpa@zytor.com>
-
- 23 7月, 2008 1 次提交
-
-
由 Vegard Nossum 提交于
This patch is the result of an automatic script that consolidates the format of all the headers in include/asm-x86/. The format: 1. No leading underscore. Names with leading underscores are reserved. 2. Pathname components are separated by two underscores. So we can distinguish between mm_types.h and mm/types.h. 3. Everything except letters and numbers are turned into single underscores. Signed-off-by: NVegard Nossum <vegard.nossum@gmail.com>
-
- 16 7月, 2008 5 次提交
-
-
由 Jeremy Fitzhardinge 提交于
64-bit hypercall interface can pass a maddr in one argument rather than splitting it. Signed-off-by: NJeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com> Cc: Stephen Tweedie <sct@redhat.com> Cc: Eduardo Habkost <ehabkost@redhat.com> Cc: Mark McLoughlin <markmc@redhat.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Eduardo Habkost 提交于
Signed-off-by: NEduardo Habkost <ehabkost@redhat.com> Signed-off-by: NJeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com> Cc: Stephen Tweedie <sct@redhat.com> Cc: Mark McLoughlin <markmc@redhat.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Jeremy Fitzhardinge 提交于
Use callback_op hypercall to register callbacks in a 32/64-bit independent way (64-bit doesn't need a code segment, but that detail is hidden in XEN_CALLBACK). Signed-off-by: NJeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com> Cc: Stephen Tweedie <sct@redhat.com> Cc: Eduardo Habkost <ehabkost@redhat.com> Cc: Mark McLoughlin <markmc@redhat.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Jeremy Fitzhardinge 提交于
The 64-bit calling convention for hypercalls uses different registers from 32-bit. Annoyingly, gcc's asm syntax doesn't have a way to specify one of the extra numeric reigisters in a constraint, so we must use explicitly placed register variables. Given that we have to do it for some args, may as well do it for all. Also fix syntax gcc generates for the call instruction itself. We need a plain direct call, but the asm expansion which works on 32-bit generates a rip-relative addressing mode in 64-bit, which is treated as an indirect call. The alternative is to pass the hypercall page offset into the asm, and have it add it to the hypercall page start address to generate the call. Signed-off-by: NJeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com> Cc: Stephen Tweedie <sct@redhat.com> Cc: Eduardo Habkost <ehabkost@redhat.com> Cc: Mark McLoughlin <markmc@redhat.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Jeremy Fitzhardinge 提交于
64-bit guests can pass 64-bit quantities in a single argument, so fix up the hypercalls. Signed-off-by: NJeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com> Cc: Stephen Tweedie <sct@redhat.com> Cc: Eduardo Habkost <ehabkost@redhat.com> Cc: Mark McLoughlin <markmc@redhat.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 27 5月, 2008 2 次提交
-
-
由 Jeremy Fitzhardinge 提交于
Use the new sched_op hypercall, mainly because xenner doesn't support the old one. Signed-off-by: NJeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
-
由 Jeremy Fitzhardinge 提交于
Xen will trap and emulate clts, but its better to use a hypercall. Also, xenner doesn't handle clts. Signed-off-by: NJeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 25 4月, 2008 1 次提交
-
-
由 Jeremy Fitzhardinge 提交于
Signed-off-by: NJeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com> Signed-off-by: NIngo Molnar <mingo@elte.hu> Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 11 10月, 2007 1 次提交
-
-
由 Thomas Gleixner 提交于
Move the headers to include/asm-x86 and fixup the header install make rules Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 18 7月, 2007 2 次提交
-
-
由 Jeremy Fitzhardinge 提交于
This patch is a rollup of all the core pieces of the Xen implementation, including: - booting and setup - pagetable setup - privileged instructions - segmentation - interrupt flags - upcalls - multicall batching BOOTING AND SETUP The vmlinux image is decorated with ELF notes which tell the Xen domain builder what the kernel's requirements are; the domain builder then constructs the address space accordingly and starts the kernel. Xen has its own entrypoint for the kernel (contained in an ELF note). The ELF notes are set up by xen-head.S, which is included into head.S. In principle it could be linked separately, but it seems to provoke lots of binutils bugs. Because the domain builder starts the kernel in a fairly sane state (32-bit protected mode, paging enabled, flat segments set up), there's not a lot of setup needed before starting the kernel proper. The main steps are: 1. Install the Xen paravirt_ops, which is simply a matter of a structure assignment. 2. Set init_mm to use the Xen-supplied pagetables (analogous to the head.S generated pagetables in a native boot). 3. Reserve address space for Xen, since it takes a chunk at the top of the address space for its own use. 4. Call start_kernel() PAGETABLE SETUP Once we hit the main kernel boot sequence, it will end up calling back via paravirt_ops to set up various pieces of Xen specific state. One of the critical things which requires a bit of extra care is the construction of the initial init_mm pagetable. Because Xen places tight constraints on pagetables (an active pagetable must always be valid, and must always be mapped read-only to the guest domain), we need to be careful when constructing the new pagetable to keep these constraints in mind. It turns out that the easiest way to do this is use the initial Xen-provided pagetable as a template, and then just insert new mappings for memory where a mapping doesn't already exist. This means that during pagetable setup, it uses a special version of xen_set_pte which ignores any attempt to remap a read-only page as read-write (since Xen will map its own initial pagetable as RO), but lets other changes to the ptes happen, so that things like NX are set properly. PRIVILEGED INSTRUCTIONS AND SEGMENTATION When the kernel runs under Xen, it runs in ring 1 rather than ring 0. This means that it is more privileged than user-mode in ring 3, but it still can't run privileged instructions directly. Non-performance critical instructions are dealt with by taking a privilege exception and trapping into the hypervisor and emulating the instruction, but more performance-critical instructions have their own specific paravirt_ops. In many cases we can avoid having to do any hypercalls for these instructions, or the Xen implementation is quite different from the normal native version. The privileged instructions fall into the broad classes of: Segmentation: setting up the GDT and the GDT entries, LDT, TLS and so on. Xen doesn't allow the GDT to be directly modified; all GDT updates are done via hypercalls where the new entries can be validated. This is important because Xen uses segment limits to prevent the guest kernel from damaging the hypervisor itself. Traps and exceptions: Xen uses a special format for trap entrypoints, so when the kernel wants to set an IDT entry, it needs to be converted to the form Xen expects. Xen sets int 0x80 up specially so that the trap goes straight from userspace into the guest kernel without going via the hypervisor. sysenter isn't supported. Kernel stack: The esp0 entry is extracted from the tss and provided to Xen. TLB operations: the various TLB calls are mapped into corresponding Xen hypercalls. Control registers: all the control registers are privileged. The most important is cr3, which points to the base of the current pagetable, and we handle it specially. Another instruction we treat specially is CPUID, even though its not privileged. We want to control what CPU features are visible to the rest of the kernel, and so CPUID ends up going into a paravirt_op. Xen implements this mainly to disable the ACPI and APIC subsystems. INTERRUPT FLAGS Xen maintains its own separate flag for masking events, which is contained within the per-cpu vcpu_info structure. Because the guest kernel runs in ring 1 and not 0, the IF flag in EFLAGS is completely ignored (and must be, because even if a guest domain disables interrupts for itself, it can't disable them overall). (A note on terminology: "events" and interrupts are effectively synonymous. However, rather than using an "enable flag", Xen uses a "mask flag", which blocks event delivery when it is non-zero.) There are paravirt_ops for each of cli/sti/save_fl/restore_fl, which are implemented to manage the Xen event mask state. The only thing worth noting is that when events are unmasked, we need to explicitly see if there's a pending event and call into the hypervisor to make sure it gets delivered. UPCALLS Xen needs a couple of upcall (or callback) functions to be implemented by each guest. One is the event upcalls, which is how events (interrupts, effectively) are delivered to the guests. The other is the failsafe callback, which is used to report errors in either reloading a segment register, or caused by iret. These are implemented in i386/kernel/entry.S so they can jump into the normal iret_exc path when necessary. MULTICALL BATCHING Xen provides a multicall mechanism, which allows multiple hypercalls to be issued at once in order to mitigate the cost of trapping into the hypervisor. This is particularly useful for context switches, since the 4-5 hypercalls they would normally need (reload cr3, update TLS, maybe update LDT) can be reduced to one. This patch implements a generic batching mechanism for hypercalls, which gets used in many places in the Xen code. Signed-off-by: NJeremy Fitzhardinge <jeremy@xensource.com> Signed-off-by: NChris Wright <chrisw@sous-sol.org> Cc: Ian Pratt <ian.pratt@xensource.com> Cc: Christian Limpach <Christian.Limpach@cl.cam.ac.uk> Cc: Adrian Bunk <bunk@stusta.de>
-
由 Jeremy Fitzhardinge 提交于
Add Xen interface header files. These are taken fairly directly from the Xen tree, but somewhat rearranged to suit the kernel's conventions. Define macros and inline functions for doing hypercalls into the hypervisor. Signed-off-by: NJeremy Fitzhardinge <jeremy@xensource.com> Signed-off-by: NIan Pratt <ian.pratt@xensource.com> Signed-off-by: NChristian Limpach <Christian.Limpach@cl.cam.ac.uk> Signed-off-by: NChris Wright <chrisw@sous-sol.org>
-