- 13 7月, 2021 2 次提交
-
-
由 Matthew Wilcox (Oracle) 提交于
Rewrite copy_huge_page() and move it into mm/util.c so it's always available. Fixes an exposure of uninitialised memory on configurations with HUGETLB and UFFD enabled and MIGRATION disabled. Fixes: 8cc5fcbb ("mm, hugetlb: fix racy resv_huge_pages underflow on UFFDIO_COPY") Signed-off-by: NMatthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: NMike Kravetz <mike.kravetz@oracle.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Hugh Dickins 提交于
Many thanks to Kirill for reminding that PageDoubleMap cannot be relied on to warn of pte mappings in the Anon THP case; and a scan of subpages does not seem appropriate here. Note how follow_trans_huge_pmd() does not even mark an Anon THP as mlocked when compound_mapcount != 1: multiple mlocking of Anon THP is avoided, so simply return from page_mlock() in this case. Link: https://lore.kernel.org/lkml/cfa154c-d595-406-eb7d-eb9df730f944@google.com/ Fixes: d9770fcc ("mm/rmap: fix old bug: munlocking THP missed other mlocks") Reported-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: NHugh Dickins <hughd@google.com> Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Alistair Popple <apopple@nvidia.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Yang Shi <shy828301@gmail.com> Cc: Shakeel Butt <shakeelb@google.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 12 7月, 2021 4 次提交
-
-
由 Hugh Dickins 提交于
I know nothing about zone_device pages and !device_private pages; but if try_to_migrate_one() will do nothing for them, then it's better that try_to_migrate() filter them first, than trawl through all their vmas. Signed-off-by: NHugh Dickins <hughd@google.com> Reviewed-by: NShakeel Butt <shakeelb@google.com> Reviewed-by: NAlistair Popple <apopple@nvidia.com> Link: https://lore.kernel.org/lkml/1241d356-8ec9-f47b-a5ec-9b2bf66d242@google.com/ Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Yang Shi <shy828301@gmail.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Hugh Dickins 提交于
In the unlikely race case that page_mlock_one() finds VM_LOCKED has been cleared by the time it got page table lock, page_vma_mapped_walk_done() must be called before returning, either explicitly, or by a final call to page_vma_mapped_walk() - otherwise the page table remains locked. Fixes: cd62734c ("mm/rmap: split try_to_munlock from try_to_unmap") Signed-off-by: NHugh Dickins <hughd@google.com> Reviewed-by: NAlistair Popple <apopple@nvidia.com> Reviewed-by: NShakeel Butt <shakeelb@google.com> Reported-by: Nkernel test robot <oliver.sang@intel.com> Link: https://lore.kernel.org/lkml/20210711151446.GB4070@xsang-OptiPlex-9020/ Link: https://lore.kernel.org/lkml/f71f8523-cba7-3342-40a7-114abc5d1f51@google.com/ Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Yang Shi <shy828301@gmail.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Hugh Dickins 提交于
The kernel recovers in due course from missing Mlocked pages: but there was no point in calling page_mlock() (formerly known as try_to_munlock()) on a THP, because nothing got done even when it was found to be mapped in another VM_LOCKED vma. It's true that we need to be careful: Mlocked accounting of pte-mapped THPs is too difficult (so consistently avoided); but Mlocked accounting of only-pmd-mapped THPs is supposed to work, even when multiple mappings are mlocked and munlocked or munmapped. Refine the tests. There is already a VM_BUG_ON_PAGE(PageDoubleMap) in page_mlock(), so page_mlock_one() does not even have to worry about that complication. (I said the kernel recovers: but would page reclaim be likely to split THP before rediscovering that it's VM_LOCKED? I've not followed that up) Fixes: 9a73f61b ("thp, mlock: do not mlock PTE-mapped file huge pages") Signed-off-by: NHugh Dickins <hughd@google.com> Reviewed-by: NShakeel Butt <shakeelb@google.com> Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Link: https://lore.kernel.org/lkml/cfa154c-d595-406-eb7d-eb9df730f944@google.com/ Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Alistair Popple <apopple@nvidia.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Hugh Dickins 提交于
Parallel developments in mm/rmap.c have left behind some out-of-date comments: try_to_migrate_one() also accepts TTU_SYNC (already commented in try_to_migrate() itself), and try_to_migrate() returns nothing at all. TTU_SPLIT_FREEZE has just been deleted, so reword the comment about it in mm/huge_memory.c; and TTU_IGNORE_ACCESS was removed in 5.11, so delete the "recently referenced" comment from try_to_unmap_one() (once upon a time the comment was near the removed codeblock, but they drifted apart). Signed-off-by: NHugh Dickins <hughd@google.com> Reviewed-by: NShakeel Butt <shakeelb@google.com> Reviewed-by: NAlistair Popple <apopple@nvidia.com> Link: https://lore.kernel.org/lkml/563ce5b2-7a44-5b4d-1dfd-59a0e65932a9@google.com/ Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Yang Shi <shy828301@gmail.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 11 7月, 2021 1 次提交
-
-
由 Mel Gorman 提交于
Commit dbbee9d5 ("mm/page_alloc: convert per-cpu list protection to local_lock") folded in a workaround patch for pahole that was unable to deal with zero-sized percpu structures. A superior workaround is achieved with commit a0b8200d ("kbuild: skip per-CPU BTF generation for pahole v1.18-v1.21"). This patch reverts the dummy field and the pahole version check. Fixes: dbbee9d5 ("mm/page_alloc: convert per-cpu list protection to local_lock") Signed-off-by: NMel Gorman <mgorman@techsingularity.net> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 09 7月, 2021 10 次提交
-
-
由 Aneesh Kumar K.V 提交于
Patch series "Speedup mremap on ppc64", v8. This patchset enables MOVE_PMD/MOVE_PUD support on power. This requires the platform to support updating higher-level page tables without updating page table entries. This also needs to invalidate the Page Walk Cache on architecture supporting the same. This patch (of 3): Architectures like ppc64 support faster mremap only with radix translation. Hence allow a runtime check w.r.t support for fast mremap. Link: https://lkml.kernel.org/r/20210616045735.374532-1-aneesh.kumar@linux.ibm.com Link: https://lkml.kernel.org/r/20210616045735.374532-2-aneesh.kumar@linux.ibm.comSigned-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Kalesh Singh <kaleshsingh@google.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com> Cc: Hugh Dickins <hughd@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Aneesh Kumar K.V 提交于
To avoid a race between rmap walk and mremap, mremap does take_rmap_locks(). The lock was taken to ensure that rmap walk don't miss a page table entry due to PTE moves via move_pagetables(). The kernel does further optimization of this lock such that if we are going to find the newly added vma after the old vma, the rmap lock is not taken. This is because rmap walk would find the vmas in the same order and if we don't find the page table attached to older vma we would find it with the new vma which we would iterate later. As explained in commit eb66ae03 ("mremap: properly flush TLB before releasing the page") mremap is special in that it doesn't take ownership of the page. The optimized version for PUD/PMD aligned mremap also doesn't hold the ptl lock. This can result in stale TLB entries as show below. This patch updates the rmap locking requirement in mremap to handle the race condition explained below with optimized mremap:: Optmized PMD move CPU 1 CPU 2 CPU 3 mremap(old_addr, new_addr) page_shrinker/try_to_unmap_one mmap_write_lock_killable() addr = old_addr lock(pte_ptl) lock(pmd_ptl) pmd = *old_pmd pmd_clear(old_pmd) flush_tlb_range(old_addr) *new_pmd = pmd *new_addr = 10; and fills TLB with new addr and old pfn unlock(pmd_ptl) ptep_clear_flush() old pfn is free. Stale TLB entry Optimized PUD move also suffers from a similar race. Both the above race condition can be fixed if we force mremap path to take rmap lock. Link: https://lkml.kernel.org/r/20210616045239.370802-7-aneesh.kumar@linux.ibm.com Fixes: 2c91bd4a ("mm: speed up mremap by 20x on large regions") Fixes: c49dd340 ("mm: speedup mremap on 1GB or larger regions") Link: https://lore.kernel.org/linux-mm/CAHk-=wgXVR04eBNtxQfevontWnP6FDm+oj5vauQXP3S-huwbPw@mail.gmail.comSigned-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Acked-by: NHugh Dickins <hughd@google.com> Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Kalesh Singh <kaleshsingh@google.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Aneesh Kumar K.V 提交于
pmd/pud_populate is the right interface to be used to set the respective page table entries. Some architectures like ppc64 do assume that set_pmd/pud_at can only be used to set a hugepage PTE. Since we are not setting up a hugepage PTE here, use the pmd/pud_populate interface. Link: https://lkml.kernel.org/r/20210616045239.370802-6-aneesh.kumar@linux.ibm.comSigned-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Hugh Dickins <hughd@google.com> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Kalesh Singh <kaleshsingh@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Aneesh Kumar K.V 提交于
With two level page table don't enable move_normal_pud. Link: https://lkml.kernel.org/r/20210616045239.370802-5-aneesh.kumar@linux.ibm.comSigned-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Hugh Dickins <hughd@google.com> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Kalesh Singh <kaleshsingh@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Aneesh Kumar K.V 提交于
With TRANSPARENT_HUGEPAGE_PUD enabled the kernel can find huge PUD entries. Add a helper to move huge PUD entries on mremap(). This will be used by a later patch to optimize mremap of PUD_SIZE aligned level 4 PTE mapped address This also make sure we support mremap on huge PUD entries even with CONFIG_HAVE_MOVE_PUD disabled. [aneesh.kumar@linux.ibm.com: fix build failure with clang-10] Link: https://lore.kernel.org/lkml/YMuOSnJsL9qkxweY@archlinux-ax161 Link: https://lkml.kernel.org/r/20210619134310.89098-1-aneesh.kumar@linux.ibm.com Link: https://lkml.kernel.org/r/20210616045239.370802-4-aneesh.kumar@linux.ibm.comSigned-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Hugh Dickins <hughd@google.com> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Kalesh Singh <kaleshsingh@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Kefeng Wang 提交于
Patch series "init_mm: cleanup ARCH's text/data/brk setup code", v3. Add setup_initial_init_mm() helper, then use it to cleanup the text, data and brk setup code. This patch (of 15): Add setup_initial_init_mm() helper to setup kernel text, data and brk. Link: https://lkml.kernel.org/r/20210608083418.137226-1-wangkefeng.wang@huawei.com Link: https://lkml.kernel.org/r/20210608083418.137226-2-wangkefeng.wang@huawei.comSigned-off-by: NKefeng Wang <wangkefeng.wang@huawei.com> Cc: Souptick Joarder <jrdr.linux@gmail.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greentime Hu <green.hu@gmail.com> Cc: Greg Ungerer <gerg@linux-m68k.org> Cc: Guo Ren <guoren@kernel.org> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jonas Bonn <jonas@southpole.se> Cc: Ley Foon Tan <ley.foon.tan@intel.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nick Hu <nickhu@andestech.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Rich Felker <dalias@libc.org> Cc: Russell King (Oracle) <rmk+kernel@armlinux.org.uk> Cc: Stafford Horne <shorne@gmail.com> Cc: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Will Deacon <will@kernel.org> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mike Rapoport 提交于
It is unsafe to allow saving of secretmem areas to the hibernation snapshot as they would be visible after the resume and this essentially will defeat the purpose of secret memory mappings. Prevent hibernation whenever there are active secret memory users. Link: https://lkml.kernel.org/r/20210518072034.31572-6-rppt@kernel.orgSigned-off-by: NMike Rapoport <rppt@linux.ibm.com> Acked-by: NDavid Hildenbrand <david@redhat.com> Acked-by: NJames Bottomley <James.Bottomley@HansenPartnership.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christopher Lameter <cl@linux.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Elena Reshetova <elena.reshetova@intel.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Bottomley <jejb@linux.ibm.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Palmer Dabbelt <palmerdabbelt@google.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rick Edgecombe <rick.p.edgecombe@intel.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tycho Andersen <tycho@tycho.ws> Cc: Will Deacon <will@kernel.org> Cc: kernel test robot <lkp@intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mike Rapoport 提交于
Introduce "memfd_secret" system call with the ability to create memory areas visible only in the context of the owning process and not mapped not only to other processes but in the kernel page tables as well. The secretmem feature is off by default and the user must explicitly enable it at the boot time. Once secretmem is enabled, the user will be able to create a file descriptor using the memfd_secret() system call. The memory areas created by mmap() calls from this file descriptor will be unmapped from the kernel direct map and they will be only mapped in the page table of the processes that have access to the file descriptor. Secretmem is designed to provide the following protections: * Enhanced protection (in conjunction with all the other in-kernel attack prevention systems) against ROP attacks. Seceretmem makes "simple" ROP insufficient to perform exfiltration, which increases the required complexity of the attack. Along with other protections like the kernel stack size limit and address space layout randomization which make finding gadgets is really hard, absence of any in-kernel primitive for accessing secret memory means the one gadget ROP attack can't work. Since the only way to access secret memory is to reconstruct the missing mapping entry, the attacker has to recover the physical page and insert a PTE pointing to it in the kernel and then retrieve the contents. That takes at least three gadgets which is a level of difficulty beyond most standard attacks. * Prevent cross-process secret userspace memory exposures. Once the secret memory is allocated, the user can't accidentally pass it into the kernel to be transmitted somewhere. The secreremem pages cannot be accessed via the direct map and they are disallowed in GUP. * Harden against exploited kernel flaws. In order to access secretmem, a kernel-side attack would need to either walk the page tables and create new ones, or spawn a new privileged uiserspace process to perform secrets exfiltration using ptrace. The file descriptor based memory has several advantages over the "traditional" mm interfaces, such as mlock(), mprotect(), madvise(). File descriptor approach allows explicit and controlled sharing of the memory areas, it allows to seal the operations. Besides, file descriptor based memory paves the way for VMMs to remove the secret memory range from the userspace hipervisor process, for instance QEMU. Andy Lutomirski says: "Getting fd-backed memory into a guest will take some possibly major work in the kernel, but getting vma-backed memory into a guest without mapping it in the host user address space seems much, much worse." memfd_secret() is made a dedicated system call rather than an extension to memfd_create() because it's purpose is to allow the user to create more secure memory mappings rather than to simply allow file based access to the memory. Nowadays a new system call cost is negligible while it is way simpler for userspace to deal with a clear-cut system calls than with a multiplexer or an overloaded syscall. Moreover, the initial implementation of memfd_secret() is completely distinct from memfd_create() so there is no much sense in overloading memfd_create() to begin with. If there will be a need for code sharing between these implementation it can be easily achieved without a need to adjust user visible APIs. The secret memory remains accessible in the process context using uaccess primitives, but it is not exposed to the kernel otherwise; secret memory areas are removed from the direct map and functions in the follow_page()/get_user_page() family will refuse to return a page that belongs to the secret memory area. Once there will be a use case that will require exposing secretmem to the kernel it will be an opt-in request in the system call flags so that user would have to decide what data can be exposed to the kernel. Removing of the pages from the direct map may cause its fragmentation on architectures that use large pages to map the physical memory which affects the system performance. However, the original Kconfig text for CONFIG_DIRECT_GBPAGES said that gigabyte pages in the direct map "... can improve the kernel's performance a tiny bit ..." (commit 00d1c5e0 ("x86: add gbpages switches")) and the recent report [1] showed that "... although 1G mappings are a good default choice, there is no compelling evidence that it must be the only choice". Hence, it is sufficient to have secretmem disabled by default with the ability of a system administrator to enable it at boot time. Pages in the secretmem regions are unevictable and unmovable to avoid accidental exposure of the sensitive data via swap or during page migration. Since the secretmem mappings are locked in memory they cannot exceed RLIMIT_MEMLOCK. Since these mappings are already locked independently from mlock(), an attempt to mlock()/munlock() secretmem range would fail and mlockall()/munlockall() will ignore secretmem mappings. However, unlike mlock()ed memory, secretmem currently behaves more like long-term GUP: secretmem mappings are unmovable mappings directly consumed by user space. With default limits, there is no excessive use of secretmem and it poses no real problem in combination with ZONE_MOVABLE/CMA, but in the future this should be addressed to allow balanced use of large amounts of secretmem along with ZONE_MOVABLE/CMA. A page that was a part of the secret memory area is cleared when it is freed to ensure the data is not exposed to the next user of that page. The following example demonstrates creation of a secret mapping (error handling is omitted): fd = memfd_secret(0); ftruncate(fd, MAP_SIZE); ptr = mmap(NULL, MAP_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); [1] https://lore.kernel.org/linux-mm/213b4567-46ce-f116-9cdf-bbd0c884eb3c@linux.intel.com/ [akpm@linux-foundation.org: suppress Kconfig whine] Link: https://lkml.kernel.org/r/20210518072034.31572-5-rppt@kernel.orgSigned-off-by: NMike Rapoport <rppt@linux.ibm.com> Acked-by: NHagen Paul Pfeifer <hagen@jauu.net> Acked-by: NJames Bottomley <James.Bottomley@HansenPartnership.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christopher Lameter <cl@linux.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Elena Reshetova <elena.reshetova@intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Bottomley <jejb@linux.ibm.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Palmer Dabbelt <palmerdabbelt@google.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rick Edgecombe <rick.p.edgecombe@intel.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tycho Andersen <tycho@tycho.ws> Cc: Will Deacon <will@kernel.org> Cc: David Hildenbrand <david@redhat.com> Cc: kernel test robot <lkp@intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mike Rapoport 提交于
Patch series "mm: introduce memfd_secret system call to create "secret" memory areas", v20. This is an implementation of "secret" mappings backed by a file descriptor. The file descriptor backing secret memory mappings is created using a dedicated memfd_secret system call The desired protection mode for the memory is configured using flags parameter of the system call. The mmap() of the file descriptor created with memfd_secret() will create a "secret" memory mapping. The pages in that mapping will be marked as not present in the direct map and will be present only in the page table of the owning mm. Although normally Linux userspace mappings are protected from other users, such secret mappings are useful for environments where a hostile tenant is trying to trick the kernel into giving them access to other tenants mappings. It's designed to provide the following protections: * Enhanced protection (in conjunction with all the other in-kernel attack prevention systems) against ROP attacks. Seceretmem makes "simple" ROP insufficient to perform exfiltration, which increases the required complexity of the attack. Along with other protections like the kernel stack size limit and address space layout randomization which make finding gadgets is really hard, absence of any in-kernel primitive for accessing secret memory means the one gadget ROP attack can't work. Since the only way to access secret memory is to reconstruct the missing mapping entry, the attacker has to recover the physical page and insert a PTE pointing to it in the kernel and then retrieve the contents. That takes at least three gadgets which is a level of difficulty beyond most standard attacks. * Prevent cross-process secret userspace memory exposures. Once the secret memory is allocated, the user can't accidentally pass it into the kernel to be transmitted somewhere. The secreremem pages cannot be accessed via the direct map and they are disallowed in GUP. * Harden against exploited kernel flaws. In order to access secretmem, a kernel-side attack would need to either walk the page tables and create new ones, or spawn a new privileged uiserspace process to perform secrets exfiltration using ptrace. In the future the secret mappings may be used as a mean to protect guest memory in a virtual machine host. For demonstration of secret memory usage we've created a userspace library https://git.kernel.org/pub/scm/linux/kernel/git/jejb/secret-memory-preloader.git that does two things: the first is act as a preloader for openssl to redirect all the OPENSSL_malloc calls to secret memory meaning any secret keys get automatically protected this way and the other thing it does is expose the API to the user who needs it. We anticipate that a lot of the use cases would be like the openssl one: many toolkits that deal with secret keys already have special handling for the memory to try to give them greater protection, so this would simply be pluggable into the toolkits without any need for user application modification. Hiding secret memory mappings behind an anonymous file allows usage of the page cache for tracking pages allocated for the "secret" mappings as well as using address_space_operations for e.g. page migration callbacks. The anonymous file may be also used implicitly, like hugetlb files, to implement mmap(MAP_SECRET) and use the secret memory areas with "native" mm ABIs in the future. Removing of the pages from the direct map may cause its fragmentation on architectures that use large pages to map the physical memory which affects the system performance. However, the original Kconfig text for CONFIG_DIRECT_GBPAGES said that gigabyte pages in the direct map "... can improve the kernel's performance a tiny bit ..." (commit 00d1c5e0 ("x86: add gbpages switches")) and the recent report [1] showed that "... although 1G mappings are a good default choice, there is no compelling evidence that it must be the only choice". Hence, it is sufficient to have secretmem disabled by default with the ability of a system administrator to enable it at boot time. In addition, there is also a long term goal to improve management of the direct map. [1] https://lore.kernel.org/linux-mm/213b4567-46ce-f116-9cdf-bbd0c884eb3c@linux.intel.com/ This patch (of 7): It will be used by the upcoming secret memory implementation. Link: https://lkml.kernel.org/r/20210518072034.31572-1-rppt@kernel.org Link: https://lkml.kernel.org/r/20210518072034.31572-2-rppt@kernel.orgSigned-off-by: NMike Rapoport <rppt@linux.ibm.com> Reviewed-by: NDavid Hildenbrand <david@redhat.com> Acked-by: NJames Bottomley <James.Bottomley@HansenPartnership.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christopher Lameter <cl@linux.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Elena Reshetova <elena.reshetova@intel.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Bottomley <jejb@linux.ibm.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Palmer Dabbelt <palmerdabbelt@google.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rick Edgecombe <rick.p.edgecombe@intel.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tycho Andersen <tycho@tycho.ws> Cc: Will Deacon <will@kernel.org> Cc: kernel test robot <lkp@intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Oliver Glitta 提交于
Many stack traces are similar so there are many similar arrays. Stackdepot saves each unique stack only once. Replace field addrs in struct track with depot_stack_handle_t handle. Use stackdepot to save stack trace. The benefits are smaller memory overhead and possibility to aggregate per-cache statistics in the future using the stackdepot handle instead of matching stacks manually. [rdunlap@infradead.org: rename save_stack_trace()] Link: https://lkml.kernel.org/r/20210513051920.29320-1-rdunlap@infradead.org [vbabka@suse.cz: fix lockdep splat] Link: https://lkml.kernel.org/r/20210516195150.26740-1-vbabka@suse.czLink: https://lkml.kernel.org/r/20210414163434.4376-1-glittao@gmail.comSigned-off-by: NOliver Glitta <glittao@gmail.com> Signed-off-by: NRandy Dunlap <rdunlap@infradead.org> Signed-off-by: NVlastimil Babka <vbabka@suse.cz> Reviewed-by: NVlastimil Babka <vbabka@suse.cz> Acked-by: NDavid Rientjes <rientjes@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 05 7月, 2021 1 次提交
-
-
由 Dennis Zhou 提交于
Prior to "percpu: implement partial chunk depopulation", pcpu_depopulate_chunk() was called only on the destruction path. This meant the virtual address range was on its way back to vmalloc which will handle flushing the tlbs for us. However, with pcpu_reclaim_populated(), we are now calling pcpu_depopulate_chunk() during the active lifecycle of a chunk. Therefore, we need to flush the tlb as well otherwise we can end up accessing the wrong page through an invalid tlb mapping as reported in [1]. [1] https://lore.kernel.org/lkml/20210702191140.GA3166599@roeck-us.net/ Fixes: f1833241 ("percpu: implement partial chunk depopulation") Reported-and-tested-by: NGuenter Roeck <linux@roeck-us.net> Signed-off-by: NDennis Zhou <dennis@kernel.org>
-
- 02 7月, 2021 22 次提交
-
-
由 Alistair Popple 提交于
Some devices require exclusive write access to shared virtual memory (SVM) ranges to perform atomic operations on that memory. This requires CPU page tables to be updated to deny access whilst atomic operations are occurring. In order to do this introduce a new swap entry type (SWP_DEVICE_EXCLUSIVE). When a SVM range needs to be marked for exclusive access by a device all page table mappings for the particular range are replaced with device exclusive swap entries. This causes any CPU access to the page to result in a fault. Faults are resovled by replacing the faulting entry with the original mapping. This results in MMU notifiers being called which a driver uses to update access permissions such as revoking atomic access. After notifiers have been called the device will no longer have exclusive access to the region. Walking of the page tables to find the target pages is handled by get_user_pages() rather than a direct page table walk. A direct page table walk similar to what migrate_vma_collect()/unmap() does could also have been utilised. However this resulted in more code similar in functionality to what get_user_pages() provides as page faulting is required to make the PTEs present and to break COW. [dan.carpenter@oracle.com: fix signedness bug in make_device_exclusive_range()] Link: https://lkml.kernel.org/r/YNIz5NVnZ5GiZ3u1@mwanda Link: https://lkml.kernel.org/r/20210616105937.23201-8-apopple@nvidia.comSigned-off-by: NAlistair Popple <apopple@nvidia.com> Signed-off-by: NDan Carpenter <dan.carpenter@oracle.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Peter Xu <peterx@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Shakeel Butt <shakeelb@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Alistair Popple 提交于
Currently if copy_nonpresent_pte() returns a non-zero value it is assumed to be a swap entry which requires further processing outside the loop in copy_pte_range() after dropping locks. This prevents other values being returned to signal conditions such as failure which a subsequent change requires. Instead make copy_nonpresent_pte() return an error code if further processing is required and read the value for the swap entry in the main loop under the ptl. Link: https://lkml.kernel.org/r/20210616105937.23201-7-apopple@nvidia.comSigned-off-by: NAlistair Popple <apopple@nvidia.com> Reviewed-by: NPeter Xu <peterx@redhat.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Shakeel Butt <shakeelb@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Alistair Popple 提交于
MMU notifier ranges have a migrate_pgmap_owner field which is used by drivers to store a pointer. This is subsequently used by the driver callback to filter MMU_NOTIFY_MIGRATE events. Other notifier event types can also benefit from this filtering, so rename the 'migrate_pgmap_owner' field to 'owner' and create a new notifier initialisation function to initialise this field. Link: https://lkml.kernel.org/r/20210616105937.23201-6-apopple@nvidia.comSigned-off-by: NAlistair Popple <apopple@nvidia.com> Suggested-by: NPeter Xu <peterx@redhat.com> Reviewed-by: NPeter Xu <peterx@redhat.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Shakeel Butt <shakeelb@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Alistair Popple 提交于
Migration is currently implemented as a mode of operation for try_to_unmap_one() generally specified by passing the TTU_MIGRATION flag or in the case of splitting a huge anonymous page TTU_SPLIT_FREEZE. However it does not have much in common with the rest of the unmap functionality of try_to_unmap_one() and thus splitting it into a separate function reduces the complexity of try_to_unmap_one() making it more readable. Several simplifications can also be made in try_to_migrate_one() based on the following observations: - All users of TTU_MIGRATION also set TTU_IGNORE_MLOCK. - No users of TTU_MIGRATION ever set TTU_IGNORE_HWPOISON. - No users of TTU_MIGRATION ever set TTU_BATCH_FLUSH. TTU_SPLIT_FREEZE is a special case of migration used when splitting an anonymous page. This is most easily dealt with by calling the correct function from unmap_page() in mm/huge_memory.c - either try_to_migrate() for PageAnon or try_to_unmap(). Link: https://lkml.kernel.org/r/20210616105937.23201-5-apopple@nvidia.comSigned-off-by: NAlistair Popple <apopple@nvidia.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NRalph Campbell <rcampbell@nvidia.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Peter Xu <peterx@redhat.com> Cc: Shakeel Butt <shakeelb@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Alistair Popple 提交于
The behaviour of try_to_unmap_one() is difficult to follow because it performs different operations based on a fairly large set of flags used in different combinations. TTU_MUNLOCK is one such flag. However it is exclusively used by try_to_munlock() which specifies no other flags. Therefore rather than overload try_to_unmap_one() with unrelated behaviour split this out into it's own function and remove the flag. Link: https://lkml.kernel.org/r/20210616105937.23201-4-apopple@nvidia.comSigned-off-by: NAlistair Popple <apopple@nvidia.com> Reviewed-by: NRalph Campbell <rcampbell@nvidia.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Peter Xu <peterx@redhat.com> Cc: Shakeel Butt <shakeelb@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Alistair Popple 提交于
Both migration and device private pages use special swap entries that are manipluated by a range of inline functions. The arguments to these are somewhat inconsistent so rework them to remove flag type arguments and to make the arguments similar for both read and write entry creation. Link: https://lkml.kernel.org/r/20210616105937.23201-3-apopple@nvidia.comSigned-off-by: NAlistair Popple <apopple@nvidia.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NJason Gunthorpe <jgg@nvidia.com> Reviewed-by: NRalph Campbell <rcampbell@nvidia.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Peter Xu <peterx@redhat.com> Cc: Shakeel Butt <shakeelb@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Alistair Popple 提交于
Patch series "Add support for SVM atomics in Nouveau", v11. Introduction ============ Some devices have features such as atomic PTE bits that can be used to implement atomic access to system memory. To support atomic operations to a shared virtual memory page such a device needs access to that page which is exclusive of the CPU. This series introduces a mechanism to temporarily unmap pages granting exclusive access to a device. These changes are required to support OpenCL atomic operations in Nouveau to shared virtual memory (SVM) regions allocated with the CL_MEM_SVM_ATOMICS clSVMAlloc flag. A more complete description of the OpenCL SVM feature is available at https://www.khronos.org/registry/OpenCL/specs/3.0-unified/html/ OpenCL_API.html#_shared_virtual_memory . Implementation ============== Exclusive device access is implemented by adding a new swap entry type (SWAP_DEVICE_EXCLUSIVE) which is similar to a migration entry. The main difference is that on fault the original entry is immediately restored by the fault handler instead of waiting. Restoring the entry triggers calls to MMU notifers which allows a device driver to revoke the atomic access permission from the GPU prior to the CPU finalising the entry. Patches ======= Patches 1 & 2 refactor existing migration and device private entry functions. Patches 3 & 4 rework try_to_unmap_one() by splitting out unrelated functionality into separate functions - try_to_migrate_one() and try_to_munlock_one(). Patch 5 renames some existing code but does not introduce functionality. Patch 6 is a small clean-up to swap entry handling in copy_pte_range(). Patch 7 contains the bulk of the implementation for device exclusive memory. Patch 8 contains some additions to the HMM selftests to ensure everything works as expected. Patch 9 is a cleanup for the Nouveau SVM implementation. Patch 10 contains the implementation of atomic access for the Nouveau driver. Testing ======= This has been tested with upstream Mesa 21.1.0 and a simple OpenCL program which checks that GPU atomic accesses to system memory are atomic. Without this series the test fails as there is no way of write-protecting the page mapping which results in the device clobbering CPU writes. For reference the test is available at https://ozlabs.org/~apopple/opencl_svm_atomics/ Further testing has been performed by adding support for testing exclusive access to the hmm-tests kselftests. This patch (of 10): Remove multiple similar inline functions for dealing with different types of special swap entries. Both migration and device private swap entries use the swap offset to store a pfn. Instead of multiple inline functions to obtain a struct page for each swap entry type use a common function pfn_swap_entry_to_page(). Also open-code the various entry_to_pfn() functions as this results is shorter code that is easier to understand. Link: https://lkml.kernel.org/r/20210616105937.23201-1-apopple@nvidia.com Link: https://lkml.kernel.org/r/20210616105937.23201-2-apopple@nvidia.comSigned-off-by: NAlistair Popple <apopple@nvidia.com> Reviewed-by: NRalph Campbell <rcampbell@nvidia.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Peter Xu <peterx@redhat.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Marco Elver 提交于
Unconditionally use unbound work queue, and not just if wq_power_efficient is true. Because if the system is idle, KFENCE may wait, and by being run on the unbound work queue, we permit the scheduler to make better scheduling decisions and not require pinning KFENCE to the same CPU upon waking up. Link: https://lkml.kernel.org/r/20210521111630.472579-1-elver@google.com Fixes: 36f0b35d ("kfence: use power-efficient work queue to run delayed work") Signed-off-by: NMarco Elver <elver@google.com> Reported-by: NHillf Danton <hdanton@sina.com> Reviewed-by: NAlexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
make W=1 generates the following warning in mmap_lock.c for allnoconfig mm/page_alloc.c:2670:5: warning: no previous prototype for `find_suitable_fallback' [-Wmissing-prototypes] int find_suitable_fallback(struct free_area *area, unsigned int order, ^~~~~~~~~~~~~~~~~~~~~~ find_suitable_fallback is only shared outside of page_alloc.c for CONFIG_COMPACTION but to suppress the warning, move the protype outside of CONFIG_COMPACTION. It is not worth the effort at this time to find a clever way of allowing compaction.c to share the code or avoid the use entirely as the function is called on relatively slow paths. Link: https://lkml.kernel.org/r/20210520084809.8576-14-mgorman@techsingularity.netSigned-off-by: NMel Gorman <mgorman@techsingularity.net> Reviewed-by: NYang Shi <shy828301@gmail.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Cc: Dan Streetman <ddstreet@ieee.org> Cc: David Hildenbrand <david@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
make W=1 generates the following warning in mmap_lock.c for allnoconfig mm/mmap_lock.c:213:6: warning: no previous prototype for `__mmap_lock_do_trace_start_locking' [-Wmissing-prototypes] void __mmap_lock_do_trace_start_locking(struct mm_struct *mm, bool write) ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ mm/mmap_lock.c:219:6: warning: no previous prototype for `__mmap_lock_do_trace_acquire_returned' [-Wmissing-prototypes] void __mmap_lock_do_trace_acquire_returned(struct mm_struct *mm, bool write, ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ mm/mmap_lock.c:226:6: warning: no previous prototype for `__mmap_lock_do_trace_released' [-Wmissing-prototypes] void __mmap_lock_do_trace_released(struct mm_struct *mm, bool write) On !CONFIG_TRACING configurations, the code is dead so put it behind an #ifdef. [cuibixuan@huawei.com: fix warning when CONFIG_TRACING is not defined] Link: https://lkml.kernel.org/r/20210531033426.74031-1-cuibixuan@huawei.com Link: https://lkml.kernel.org/r/20210520084809.8576-13-mgorman@techsingularity.netSigned-off-by: NMel Gorman <mgorman@techsingularity.net> Signed-off-by: NBixuan Cui <cuibixuan@huawei.com> Reviewed-by: NYang Shi <shy828301@gmail.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Cc: Dan Streetman <ddstreet@ieee.org> Cc: David Hildenbrand <david@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
make W=1 generates the following warning for z3fold_pool mm/z3fold.c:171: warning: Function parameter or member 'zpool' not described in 'z3fold_pool' mm/z3fold.c:171: warning: Function parameter or member 'zpool_ops' not described in 'z3fold_pool' Commit 9a001fc1 ("z3fold: the 3-fold allocator for compressed pages") simply did not document the fields at the time. Add rudimentary documentation. Link: https://lkml.kernel.org/r/20210520084809.8576-11-mgorman@techsingularity.netSigned-off-by: NMel Gorman <mgorman@techsingularity.net> Reviewed-by: NYang Shi <shy828301@gmail.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Cc: Dan Streetman <ddstreet@ieee.org> Cc: David Hildenbrand <david@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
make W=1 generates the following warning for zbud_pool mm/zbud.c:105: warning: Function parameter or member 'zpool' not described in 'zbud_pool' mm/zbud.c:105: warning: Function parameter or member 'zpool_ops' not described in 'zbud_pool' Commit 479305fd ("zpool: remove zpool_evict()") removed the zpool_evict helper and added the associated zpool and operations structure in struct zbud_pool but did not add documentation for the fields. Add rudimentary documentation. Link: https://lkml.kernel.org/r/20210520084809.8576-10-mgorman@techsingularity.net Fixes: 479305fd ("zpool: remove zpool_evict()") Signed-off-by: NMel Gorman <mgorman@techsingularity.net> Reviewed-by: NYang Shi <shy828301@gmail.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Cc: Dan Streetman <ddstreet@ieee.org> Cc: David Hildenbrand <david@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
make W=1 generates the following warning for __remove_memory mm/memory_hotplug.c:2044: warning: expecting prototype for remove_memory(). Prototype was for __remove_memory() instead Commit eca499ab ("mm/hotplug: make remove_memory() interface usable") introduced the kerneldoc comment and function but the kerneldoc name and function name did not match. Link: https://lkml.kernel.org/r/20210520084809.8576-9-mgorman@techsingularity.net Fixes: eca499ab ("mm/hotplug: make remove_memory() interface usable") Signed-off-by: NMel Gorman <mgorman@techsingularity.net> Reviewed-by: NDavid Hildenbrand <david@redhat.com> Reviewed-by: NYang Shi <shy828301@gmail.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
make W=1 generates the following warning for try_online_node mm/memory_hotplug.c:1087: warning: expecting prototype for try_online_node(). Prototype was for __try_online_node() instead Commit b9ff0360 ("mm/memory_hotplug.c: make add_memory_resource use __try_online_node") renamed the function but did not update the associated kerneldoc. The function is static and somewhat specialised in nature so it's not clear it warrants being a kerneldoc by moving the comment to try_online_node. Hence, leave the comment of the internal helper in place but leave it out of kerneldoc and correct the function name in the comment. Link: https://lkml.kernel.org/r/20210520084809.8576-8-mgorman@techsingularity.net Fixes: Commit b9ff0360 ("mm/memory_hotplug.c: make add_memory_resource use __try_online_node") Signed-off-by: NMel Gorman <mgorman@techsingularity.net> Reviewed-by: NDavid Hildenbrand <david@redhat.com> Reviewed-by: NYang Shi <shy828301@gmail.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
make W=1 generates the following warning for mem_cgroup_calculate_protection mm/memcontrol.c:6468: warning: expecting prototype for mem_cgroup_protected(). Prototype was for mem_cgroup_calculate_protection() instead Commit 45c7f7e1 ("mm, memcg: decouple e{low,min} state mutations from protection checks") changed the function definition but not the associated kerneldoc comment. Link: https://lkml.kernel.org/r/20210520084809.8576-7-mgorman@techsingularity.net Fixes: 45c7f7e1 ("mm, memcg: decouple e{low,min} state mutations from protection checks") Signed-off-by: NMel Gorman <mgorman@techsingularity.net> Reviewed-by: NYang Shi <shy828301@gmail.com> Acked-by: NChris Down <chris@chrisdown.name> Acked-by: NVlastimil Babka <vbabka@suse.cz> Cc: Dan Streetman <ddstreet@ieee.org> Cc: David Hildenbrand <david@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
make W=1 generates the following warning for mm/mapping_dirty_helpers.c mm/mapping_dirty_helpers.c:325: warning: duplicate section name 'Note' The helper function is very specific to one driver -- vmwgfx. While the two notes are separate, all of it needs to be taken into account when using the helper so make it one note. Link: https://lkml.kernel.org/r/20210520084809.8576-5-mgorman@techsingularity.netSigned-off-by: NMel Gorman <mgorman@techsingularity.net> Reviewed-by: NYang Shi <shy828301@gmail.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Cc: Dan Streetman <ddstreet@ieee.org> Cc: David Hildenbrand <david@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
make W=1 generates the following warning for mm/page_alloc.c mm/page_alloc.c:3651:15: warning: no previous prototype for `should_fail_alloc_page' [-Wmissing-prototypes] noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) ^~~~~~~~~~~~~~~~~~~~~~ This function is deliberately split out for BPF to allow errors to be injected. The function is not used anywhere else so it is local to the file. Make it static which should still allow error injection to be used similar to how block/blk-core.c:should_fail_bio() works. Link: https://lkml.kernel.org/r/20210520084809.8576-4-mgorman@techsingularity.netSigned-off-by: NMel Gorman <mgorman@techsingularity.net> Reviewed-by: NYang Shi <shy828301@gmail.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Cc: Dan Streetman <ddstreet@ieee.org> Cc: David Hildenbrand <david@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
make W=1 generates the following warning for mm/vmalloc.c mm/vmalloc.c:1599:6: warning: no previous prototype for `set_iounmap_nonlazy' [-Wmissing-prototypes] void set_iounmap_nonlazy(void) ^~~~~~~~~~~~~~~~~~~ This is an arch-generic function only used by x86. On other arches, it's dead code. Include the header with the definition and make it x86-64 specific. Link: https://lkml.kernel.org/r/20210520084809.8576-3-mgorman@techsingularity.netSigned-off-by: NMel Gorman <mgorman@techsingularity.net> Reviewed-by: NYang Shi <shy828301@gmail.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Cc: Dan Streetman <ddstreet@ieee.org> Cc: David Hildenbrand <david@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
Patch series "Clean W=1 build warnings for mm/". This is a janitorial only. During development of a tool to catch build warnings early to avoid tripping the Intel lkp-robot, I noticed that mm/ is not clean for W=1. This is generally harmless but there is no harm in cleaning it up. It disrupts git blame a little but on relatively obvious lines that are unlikely to be git blame targets. This patch (of 13): make W=1 generates the following warning for vmscan.c mm/vmscan.c:1814: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst It is not a kerneldoc comment and isolate_lru_pages() is a static function. While the detailed comment is nice, it does not need to be exposed via kernel-doc. Link: https://lkml.kernel.org/r/20210520084809.8576-1-mgorman@techsingularity.net Link: https://lkml.kernel.org/r/20210520084809.8576-2-mgorman@techsingularity.netSigned-off-by: NMel Gorman <mgorman@techsingularity.net> Reviewed-by: NYang Shi <shy828301@gmail.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@kernel.org> Cc: David Hildenbrand <david@redhat.com> Cc: Dan Streetman <ddstreet@ieee.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Zhen Lei 提交于
Fix some spelling mistakes in comments: each having differents usage ==> each has a different usage statments ==> statements adresses ==> addresses aggresive ==> aggressive datas ==> data posion ==> poison higer ==> higher precisly ==> precisely wont ==> won't We moves tha ==> We move the endianess ==> endianness Link: https://lkml.kernel.org/r/20210519065853.7723-2-thunder.leizhen@huawei.comSigned-off-by: NZhen Lei <thunder.leizhen@huawei.com> Reviewed-by: NSouptick Joarder <jrdr.linux@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Hyeonggon Yoo 提交于
We moves tha -> We move that in mm/swap.c statments -> statements in include/linux/mm.h Link: https://lkml.kernel.org/r/20210509063444.GA24745@hyeyooSigned-off-by: NHyeonggon Yoo <42.hyeyoo@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Miaohe Lin 提交于
The class is extracted from pool->size_class[class_idx] again before calling __free_zspage(). It looks like class will change after we fetch the class lock. But this is misleading as class will stay unchanged. Link: https://lkml.kernel.org/r/20210624123930.1769093-4-linmiaohe@huawei.comSigned-off-by: NMiaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-