1. 14 3月, 2020 1 次提交
  2. 23 11月, 2019 2 次提交
  3. 14 11月, 2019 1 次提交
  4. 11 11月, 2019 12 次提交
  5. 30 10月, 2019 1 次提交
  6. 29 6月, 2019 2 次提交
  7. 07 6月, 2018 1 次提交
    • D
      xfs: convert to SPDX license tags · 0b61f8a4
      Dave Chinner 提交于
      Remove the verbose license text from XFS files and replace them
      with SPDX tags. This does not change the license of any of the code,
      merely refers to the common, up-to-date license files in LICENSES/
      
      This change was mostly scripted. fs/xfs/Makefile and
      fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
      and modified by the following command:
      
      for f in `git grep -l "GNU General" fs/xfs/` ; do
      	echo $f
      	cat $f | awk -f hdr.awk > $f.new
      	mv -f $f.new $f
      done
      
      And the hdr.awk script that did the modification (including
      detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
      is as follows:
      
      $ cat hdr.awk
      BEGIN {
      	hdr = 1.0
      	tag = "GPL-2.0"
      	str = ""
      }
      
      /^ \* This program is free software/ {
      	hdr = 2.0;
      	next
      }
      
      /any later version./ {
      	tag = "GPL-2.0+"
      	next
      }
      
      /^ \*\// {
      	if (hdr > 0.0) {
      		print "// SPDX-License-Identifier: " tag
      		print str
      		print $0
      		str=""
      		hdr = 0.0
      		next
      	}
      	print $0
      	next
      }
      
      /^ \* / {
      	if (hdr > 1.0)
      		next
      	if (hdr > 0.0) {
      		if (str != "")
      			str = str "\n"
      		str = str $0
      		next
      	}
      	print $0
      	next
      }
      
      /^ \*/ {
      	if (hdr > 0.0)
      		next
      	print $0
      	next
      }
      
      // {
      	if (hdr > 0.0) {
      		if (str != "")
      			str = str "\n"
      		str = str $0
      		next
      	}
      	print $0
      }
      
      END { }
      $
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com>
      Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
      0b61f8a4
  8. 18 1月, 2018 1 次提交
  9. 07 11月, 2017 1 次提交
  10. 27 10月, 2017 1 次提交
  11. 21 6月, 2017 1 次提交
  12. 20 6月, 2017 1 次提交
    • D
      xfs: remove double-underscore integer types · c8ce540d
      Darrick J. Wong 提交于
      This is a purely mechanical patch that removes the private
      __{u,}int{8,16,32,64}_t typedefs in favor of using the system
      {u,}int{8,16,32,64}_t typedefs.  This is the sed script used to perform
      the transformation and fix the resulting whitespace and indentation
      errors:
      
      s/typedef\t__uint8_t/typedef __uint8_t\t/g
      s/typedef\t__uint/typedef __uint/g
      s/typedef\t__int\([0-9]*\)_t/typedef int\1_t\t/g
      s/__uint8_t\t/__uint8_t\t\t/g
      s/__uint/uint/g
      s/__int\([0-9]*\)_t\t/__int\1_t\t\t/g
      s/__int/int/g
      /^typedef.*int[0-9]*_t;$/d
      Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
      Reviewed-by: NChristoph Hellwig <hch@lst.de>
      c8ce540d
  13. 19 6月, 2017 1 次提交
  14. 26 4月, 2017 2 次提交
    • B
      xfs: prevent multi-fsb dir readahead from reading random blocks · cb52ee33
      Brian Foster 提交于
      Directory block readahead uses a complex iteration mechanism to map
      between high-level directory blocks and underlying physical extents.
      This mechanism attempts to traverse the higher-level dir blocks in a
      manner that handles multi-fsb directory blocks and simultaneously
      maintains a reference to the corresponding physical blocks.
      
      This logic doesn't handle certain (discontiguous) physical extent
      layouts correctly with multi-fsb directory blocks. For example,
      consider the case of a 4k FSB filesystem with a 2 FSB (8k) directory
      block size and a directory with the following extent layout:
      
       EXT: FILE-OFFSET      BLOCK-RANGE      AG AG-OFFSET        TOTAL
         0: [0..7]:          88..95            0 (88..95)             8
         1: [8..15]:         80..87            0 (80..87)             8
         2: [16..39]:        168..191          0 (168..191)          24
         3: [40..63]:        5242952..5242975  1 (72..95)            24
      
      Directory block 0 spans physical extents 0 and 1, dirblk 1 lies
      entirely within extent 2 and dirblk 2 spans extents 2 and 3. Because
      extent 2 is larger than the directory block size, the readahead code
      erroneously assumes the block is contiguous and issues a readahead
      based on the physical mapping of the first fsb of the dirblk. This
      results in read verifier failure and a spurious corruption or crc
      failure, depending on the filesystem format.
      
      Further, the subsequent readahead code responsible for walking
      through the physical table doesn't correctly advance the physical
      block reference for dirblk 2. Instead of advancing two physical
      filesystem blocks, the first iteration of the loop advances 1 block
      (correctly), but the subsequent iteration advances 2 more physical
      blocks because the next physical extent (extent 3, above) happens to
      cover more than dirblk 2. At this point, the higher-level directory
      block walking is completely off the rails of the actual physical
      layout of the directory for the respective mapping table.
      
      Update the contiguous dirblock logic to consider the current offset
      in the physical extent to avoid issuing directory readahead to
      unrelated blocks. Also, update the mapping table advancing code to
      consider the current offset within the current dirblock to avoid
      advancing the mapping reference too far beyond the dirblock.
      Signed-off-by: NBrian Foster <bfoster@redhat.com>
      Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com>
      Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
      cb52ee33
    • E
      xfs: handle array index overrun in xfs_dir2_leaf_readbuf() · 023cc840
      Eric Sandeen 提交于
      Carlos had a case where "find" seemed to start spinning
      forever and never return.
      
      This was on a filesystem with non-default multi-fsb (8k)
      directory blocks, and a fragmented directory with extents
      like this:
      
      0:[0,133646,2,0]
      1:[2,195888,1,0]
      2:[3,195890,1,0]
      3:[4,195892,1,0]
      4:[5,195894,1,0]
      5:[6,195896,1,0]
      6:[7,195898,1,0]
      7:[8,195900,1,0]
      8:[9,195902,1,0]
      9:[10,195908,1,0]
      10:[11,195910,1,0]
      11:[12,195912,1,0]
      12:[13,195914,1,0]
      ...
      
      i.e. the first extent is a contiguous 2-fsb dir block, but
      after that it is fragmented into 1 block extents.
      
      At the top of the readdir path, we allocate a mapping array
      which (for this filesystem geometry) can hold 10 extents; see
      the assignment to map_info->map_size.  During readdir, we are
      therefore able to map extents 0 through 9 above into the array
      for readahead purposes.  If we count by 2, we see that the last
      mapped index (9) is the first block of a 2-fsb directory block.
      
      At the end of xfs_dir2_leaf_readbuf() we have 2 loops to fill
      more readahead; the outer loop assumes one full dir block is
      processed each loop iteration, and an inner loop that ensures
      that this is so by advancing to the next extent until a full
      directory block is mapped.
      
      The problem is that this inner loop may step past the last
      extent in the mapping array as it tries to reach the end of
      the directory block.  This will read garbage for the extent
      length, and as a result the loop control variable 'j' may
      become corrupted and never fail the loop conditional.
      
      The number of valid mappings we have in our array is stored
      in map->map_valid, so stop this inner loop based on that limit.
      
      There is an ASSERT at the top of the outer loop for this
      same condition, but we never made it out of the inner loop,
      so the ASSERT never fired.
      
      Huge appreciation for Carlos for debugging and isolating
      the problem.
      Debugged-and-analyzed-by: NCarlos Maiolino <cmaiolino@redhat.com>
      Signed-off-by: NEric Sandeen <sandeen@redhat.com>
      Tested-by: NCarlos Maiolino <cmaiolino@redhat.com>
      Reviewed-by: NCarlos Maiolino <cmaiolino@redhat.com>
      Reviewed-by: NBill O'Donnell <billodo@redhat.com>
      Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com>
      Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
      023cc840
  15. 15 3月, 2017 1 次提交
  16. 30 11月, 2016 1 次提交
  17. 04 10月, 2016 1 次提交
  18. 19 5月, 2016 1 次提交
    • D
      xfs: concurrent readdir hangs on data buffer locks · 9f541801
      Dave Chinner 提交于
      There's a three-process deadlock involving shared/exclusive barriers
      and inverted lock orders in the directory readdir implementation.
      It's a pre-existing problem with lock ordering, exposed by the
      VFS parallelisation code.
      
      process 1               process 2               process 3
      ---------               ---------               ---------
      readdir
      iolock(shared)
        get_leaf_dents
          iterate entries
             ilock(shared)
             map, lock and read buffer
             iunlock(shared)
             process entries in buffer
             .....
                                                      readdir
                                                      iolock(shared)
                                                        get_leaf_dents
                                                          iterate entries
                                                            ilock(shared)
                                                            map, lock buffer
                                                            <blocks>
                              finish ->iterate_shared
                              file_accessed()
                                ->update_time
                                  start transaction
                                  ilock(excl)
                                  <blocks>
              .....
              finishes processing buffer
              get next buffer
                ilock(shared)
                <blocks>
      
      And that's the deadlock.
      
      Fix this by dropping the current buffer lock in process 1 before
      trying to map the next buffer. This means we keep the lock order of
      ilock -> buffer lock intact and hence will allow process 3 to make
      progress and drop it's ilock(shared) once it is done.
      Reported-by: NXiong Zhou <xzhou@redhat.com>
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      9f541801
  19. 09 2月, 2016 1 次提交
  20. 12 10月, 2015 1 次提交
    • B
      xfs: per-filesystem stats counter implementation · ff6d6af2
      Bill O'Donnell 提交于
      This patch modifies the stats counting macros and the callers
      to those macros to properly increment, decrement, and add-to
      the xfs stats counts. The counts for global and per-fs stats
      are correctly advanced, and cleared by writing a "1" to the
      corresponding clear file.
      
      global counts: /sys/fs/xfs/stats/stats
      per-fs counts: /sys/fs/xfs/sda*/stats/stats
      
      global clear:  /sys/fs/xfs/stats/stats_clear
      per-fs clear:  /sys/fs/xfs/sda*/stats/stats_clear
      
      [dchinner: cleaned up macro variables, removed CONFIG_FS_PROC around
       stats structures and macros. ]
      Signed-off-by: NBill O'Donnell <billodo@redhat.com>
      Reviewed-by: NEric Sandeen <sandeen@redhat.com>
      Signed-off-by: NDave Chinner <david@fromorbit.com>
      ff6d6af2
  21. 19 8月, 2015 1 次提交
    • D
      xfs: stop holding ILOCK over filldir callbacks · dbad7c99
      Dave Chinner 提交于
      The recent change to the readdir locking made in 40194ecc ("xfs:
      reinstate the ilock in xfs_readdir") for CXFS directory sanity was
      probably the wrong thing to do. Deep in the readdir code we
      can take page faults in the filldir callback, and so taking a page
      fault while holding an inode ilock creates a new set of locking
      issues that lockdep warns all over the place about.
      
      The locking order for regular inodes w.r.t. page faults is io_lock
      -> pagefault -> mmap_sem -> ilock. The directory readdir code now
      triggers ilock -> page fault -> mmap_sem. While we cannot deadlock
      at this point, it inverts all the locking patterns that lockdep
      normally sees on XFS inodes, and so triggers lockdep. We worked
      around this with commit 93a8614e ("xfs: fix directory inode iolock
      lockdep false positive"), but that then just moved the lockdep
      warning to deeper in the page fault path and triggered on security
      inode locks. Fixing the shmem issue there just moved the lockdep
      reports somewhere else, and now we are getting false positives from
      filesystem freezing annotations getting confused.
      
      Further, if we enter memory reclaim in a readdir path, we now get
      lockdep warning about potential deadlocks because the ilock is held
      when we enter reclaim. This, again, is different to a regular file
      in that we never allow memory reclaim to run while holding the ilock
      for regular files. Hence lockdep now throws
      ilock->kmalloc->reclaim->ilock warnings.
      
      Basically, the problem is that the ilock is being used to protect
      the directory data and the inode metadata, whereas for a regular
      file the iolock protects the data and the ilock protects the
      metadata. From the VFS perspective, the i_mutex serialises all
      accesses to the directory data, and so not holding the ilock for
      readdir doesn't matter. The issue is that CXFS doesn't access
      directory data via the VFS, so it has no "data serialisaton"
      mechanism. Hence we need to hold the IOLOCK in the correct places to
      provide this low level directory data access serialisation.
      
      The ilock can then be used just when the extent list needs to be
      read, just like we do for regular files. The directory modification
      code can take the iolock exclusive when the ilock is also taken,
      and this then ensures that readdir is correct excluded while
      modifications are in progress.
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NBrian Foster <bfoster@redhat.com>
      Signed-off-by: NDave Chinner <david@fromorbit.com>
      dbad7c99
  22. 04 12月, 2014 1 次提交
  23. 28 11月, 2014 3 次提交
  24. 25 6月, 2014 1 次提交
    • D
      xfs: global error sign conversion · 2451337d
      Dave Chinner 提交于
      Convert all the errors the core XFs code to negative error signs
      like the rest of the kernel and remove all the sign conversion we
      do in the interface layers.
      
      Errors for conversion (and comparison) found via searches like:
      
      $ git grep " E" fs/xfs
      $ git grep "return E" fs/xfs
      $ git grep " E[A-Z].*;$" fs/xfs
      
      Negation points found via searches like:
      
      $ git grep "= -[a-z,A-Z]" fs/xfs
      $ git grep "return -[a-z,A-D,F-Z]" fs/xfs
      $ git grep " -[a-z].*;" fs/xfs
      
      [ with some bits I missed from Brian Foster ]
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NBrian Foster <bfoster@redhat.com>
      Signed-off-by: NDave Chinner <david@fromorbit.com>
      2451337d