- 07 2月, 2017 3 次提交
-
-
由 Christoph Hellwig 提交于
Instead of preallocating all the required COW blocks in the high-level write code do it inside the iomap code, like we do for all other I/O. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Christoph Hellwig 提交于
When we allocate COW fork blocks for direct I/O writes we currently first create a delayed allocation, and then convert it to a real allocation once we've got the delayed one. As there is no good reason for that this patch instead makes use call xfs_bmapi_write from the COW allocation path. The only interesting bits are a few tweaks the low-level allocator to allow for this, most notably the need to remove the call to xfs_bmap_extsize_align for the cowextsize in xfs_bmap_btalloc - for the existing convert case it's a no-op, but for the direct allocation case it would blow up our block reservation way beyond what we reserved for the transaction. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
由 Christoph Hellwig 提交于
We'll need it for the direct I/O code. Also rename the function to xfs_reflink_convert_cow_extent to describe it a bit better. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 03 2月, 2017 1 次提交
-
-
由 Darrick J. Wong 提交于
Christoph Hellwig pointed out that there's a potentially nasty race when performing simultaneous nearby directio cow writes: "Thread 1 writes a range from B to c " B --------- C p "a little later thread 2 writes from A to B " A --------- B p [editor's note: the 'p' denote cowextsize boundaries, which I added to make this more clear] "but the code preallocates beyond B into the range where thread "1 has just written, but ->end_io hasn't been called yet. "But once ->end_io is called thread 2 has already allocated "up to the extent size hint into the write range of thread 1, "so the end_io handler will splice the unintialized blocks from "that preallocation back into the file right after B." We can avoid this race by ensuring that thread 1 cannot accidentally remap the blocks that thread 2 allocated (as part of speculative preallocation) as part of t2's write preparation in t1's end_io handler. The way we make this happen is by taking advantage of the unwritten extent flag as an intermediate step. Recall that when we begin the process of writing data to shared blocks, we create a delayed allocation extent in the CoW fork: D: --RRRRRRSSSRRRRRRRR--- C: ------DDDDDDD--------- When a thread prepares to CoW some dirty data out to disk, it will now convert the delalloc reservation into an /unwritten/ allocated extent in the cow fork. The da conversion code tries to opportunistically allocate as much of a (speculatively prealloc'd) extent as possible, so we may end up allocating a larger extent than we're actually writing out: D: --RRRRRRSSSRRRRRRRR--- U: ------UUUUUUU--------- Next, we convert only the part of the extent that we're actively planning to write to normal (i.e. not unwritten) status: D: --RRRRRRSSSRRRRRRRR--- U: ------UURRUUU--------- If the write succeeds, the end_cow function will now scan the relevant range of the CoW fork for real extents and remap only the real extents into the data fork: D: --RRRRRRRRSRRRRRRRR--- U: ------UU--UUU--------- This ensures that we never obliterate valid data fork extents with unwritten blocks from the CoW fork. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
- 23 12月, 2016 1 次提交
-
-
由 Darrick J. Wong 提交于
Strengthen the checking of pos/len vs. i_size, clarify the return values for the clone prep function, and remove pointless code. Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 10 12月, 2016 1 次提交
-
-
由 Darrick J. Wong 提交于
Hoist both the XFS reflink inode state and preparation code and the XFS file blocks compare functions into the VFS so that ocfs2 can take advantage of it for reflink and dedupe. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 30 11月, 2016 1 次提交
-
-
由 Christoph Hellwig 提交于
This patch drops the XFS-own i_iolock and uses the VFS i_rwsem which recently replaced i_mutex instead. This means we only have to take one lock instead of two in many fast path operations, and we can also shrink the xfs_inode structure. Thanks to the xfs_ilock family there is very little churn, the only thing of note is that we need to switch to use the lock_two_directory helper for taking the i_rwsem on two inodes in a few places to make sure our lock order matches the one used in the VFS. Signed-off-by: NChristoph Hellwig <hch@lst.de> Tested-by: NJens Axboe <axboe@fb.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 28 11月, 2016 3 次提交
-
-
由 Brian Foster 提交于
COW fork reservation is implemented via delayed allocation. The code is modeled after the traditional delalloc allocation code, but is slightly different in terms of how preallocation occurs. Rather than post-eof speculative preallocation, COW fork preallocation is implemented via a COW extent size hint that is designed to minimize fragmentation as a reflinked file is split over time. xfs_reflink_reserve_cow() still uses logic that is oriented towards dealing with post-eof speculative preallocation, however, and is stale or not necessarily correct. First, the EOF alignment to the COW extent size hint is implemented in xfs_bmapi_reserve_delalloc() (which does so correctly by aligning the start and end offsets) and so is not necessary in xfs_reflink_reserve_cow(). The backoff and retry logic on ENOSPC is also ineffective for the same reason, as xfs_bmapi_reserve_delalloc() will simply perform the same allocation request on the retry. Finally, since the COW extent size hint aligns the start and end offset of the range to allocate, the end_fsb != orig_end_fsb logic is not sufficient. Indeed, if a write request happens to end on an aligned offset, it is possible that we do not tag the inode for COW preallocation even though xfs_bmapi_reserve_delalloc() may have preallocated at the start offset. Kill the unnecessary, duplicate code in xfs_reflink_reserve_cow(). Remove the inode tag logic as well since xfs_bmapi_reserve_delalloc() has been updated to tag the inode correctly. Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Brian Foster 提交于
Speculative preallocation is currently processed entirely by the callers of xfs_bmapi_reserve_delalloc(). The caller determines how much preallocation to include, adjusts the extent length and passes down the resulting request. While this works fine for post-eof speculative preallocation, it is not as reliable for COW fork preallocation. COW fork preallocation is implemented via the cowextszhint, which aligns the start offset as well as the length of the extent. Further, it is difficult for the caller to accurately identify when preallocation occurs because the returned extent could have been merged with neighboring extents in the fork. To simplify this situation and facilitate further COW fork preallocation enhancements, update xfs_bmapi_reserve_delalloc() to take a separate preallocation parameter to incorporate into the allocation request. The preallocation blocks value is tacked onto the end of the request and adjusted to accommodate neighboring extents and extent size limits. Since xfs_bmapi_reserve_delalloc() now knows precisely how much preallocation was included in the allocation, it can also tag the inodes appropriately to support preallocation reclaim. Note that xfs_bmapi_reserve_delalloc() callers are not yet updated to use the preallocation mechanism. This patch should not change behavior outside of correctly tagging reflink inodes when start offset preallocation occurs (which the caller does not handle correctly). Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Darrick J. Wong 提交于
It turns out that btrfs and xfs had differing interpretations of what to do when the dedupe length is zero. Change xfs to follow btrfs' semantics so that the userland interface is consistent. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 24 11月, 2016 6 次提交
-
-
由 Christoph Hellwig 提交于
Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Christoph Hellwig 提交于
Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Christoph Hellwig 提交于
And remove the unused return value. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Christoph Hellwig 提交于
Use xfs_iext_lookup_extent to look up the extent, drop a useless check, drop a unneeded return value and clean up the general style a little bit. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Christoph Hellwig 提交于
Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Christoph Hellwig 提交于
We can easily lookup the previous extent for the cases where we need it, which saves the callers from looking it up for us later in the series. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 08 11月, 2016 2 次提交
-
-
由 Eric Sandeen 提交于
The open-coded pattern: ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t) is all over the xfs code; provide a new helper xfs_iext_count(ifp) to count the number of inline extents in an inode fork. [dchinner: pick up several missed conversions] Signed-off-by: NEric Sandeen <sandeen@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Brian Foster 提交于
The cowblocks background scanner currently clears the cowblocks tag for inodes without any real allocations in the cow fork. This excludes inodes with only delalloc blocks in the cow fork. While we might never expect to clear delalloc blocks from the cow fork in the background scanner, it is not necessarily correct to clear the cowblocks tag from such inodes. For example, if the background scanner happens to process an inode between a buffered write and writeback, the scanner catches the inode in a state after delalloc blocks have been allocated to the cow fork but before the delalloc blocks have been converted to real blocks by writeback. The background scanner then incorrectly clears the cowblocks tag, even if part of the aforementioned delalloc reservation will not be remapped to the data fork (i.e., extra blocks due to the cowextsize hint). This means that any such additional blocks in the cow fork might never be reclaimed by the background scanner and could persist until the inode itself is reclaimed. To address this problem, only skip and clear inodes without any cow fork allocations whatsoever from the background scanner. While we generally do not want to cancel delalloc reservations from the background scanner, the pagecache dirty check following the cowblocks check should prevent that situation. If we do end up with delalloc cow fork blocks without a dirty address space mapping, this is probably an indication that something has gone wrong and the blocks should be reclaimed, as they may never be converted to a real allocation. Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 24 10月, 2016 1 次提交
-
-
由 Brian Foster 提交于
The background cowblocks scan job takes care of scanning for inodes with potentially lingering blocks in the cow fork and clearing them out. If the background scanner reclaims the cow fork blocks, however, it doesn't immediately clear the cowblocks tag from the inode. Instead, the inode remains tagged until the background scanner comes around again, discovers the inode cow fork has no blocks, clears the tag and fires the trace_xfs_inode_free_cowblocks_invalid() tracepoint to indicate that the inode may have been incorrectly tagged. This is not a major functional problem as the tag is ultimately cleared. Nonetheless, clear the tag when an inode cow fork is explicitly emptied to avoid the extra round trip through the background scanner and spurious "invalid" tracepoint. Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 20 10月, 2016 8 次提交
-
-
由 Christoph Hellwig 提交于
Instead of doing a full extent list search for each extent that is to be deleted using xfs_bmapi_read and then doing another one inside of xfs_bunmapi_cow use the same scheme that xfs_bumapi uses: look up the last extent to be deleted and then use the extent index to walk downward until we are outside the range to be deleted. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Christoph Hellwig 提交于
Rewrite xfs_reflink_cancel_cow_blocks so that we only do a search for the first extent in the extent list and then iterate over the remaining extents using the extent index, passing the extent we operate on directly to xfs_bmap_del_extent_delay or xfs_bmap_del_extent_cow instead of going through xfs_bunmapi and doing yet another extent list lookup. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Christoph Hellwig 提交于
Split out two helpers for deleting delayed or real extents from the COW fork. This allows to call them directly from xfs_reflink_cow_end_io once that function is refactored to iterate the extent tree. It will also allow to reuse the delalloc deletion from xfs_bunmapi in the future. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Christoph Hellwig 提交于
Instead of reserving space as the first thing in write_begin move it past reading the extent in the data fork. That way we only have to read from the data fork once and can reuse that information for trimming the extent to the shared/unshared boundary. Additionally this allows to easily limit the actual write size to said boundary, and avoid a roundtrip on the ilock. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Christoph Hellwig 提交于
Delalloc extents in the extent list contain the number of reserved indirect blocks in their startblock value and don't use the magic DELAYSTARTBLOCK constant. Ensure that xfs_reflink_trim_around_shared handles them properly by checking for isnullstartblock(). Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Christoph Hellwig 提交于
There is no clear division of responsibility between those functions, so just merge them into one to keep the code simple. Also move xfs_file_wait_for_io to xfs_reflink.c together with its only caller. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Christoph Hellwig 提交于
We need the iolock protection to stabilizie the IS_SWAPFILE and IS_IMMUTABLE values, as well as preventing new buffered writers re-dirtying the file data that we just wrote out. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Geert Uytterhoeven 提交于
with gcc 4.1.2: fs/xfs/xfs_reflink.c: In function xfs_reflink_reserve_cow_range: fs/xfs/xfs_reflink.c:327: warning: error may be used uninitialized in this function Indeed, if "count" is zero, the function will return an uninitialized error value. While "count" is unlikely to be zero, this function is called through the public iomap API. Hence fix this by preinitializing error to zero. Fixes: 2a06705c ("xfs: create delalloc extents in CoW fork") Signed-off-by: NGeert Uytterhoeven <geert@linux-m68k.org> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 10 10月, 2016 4 次提交
-
-
由 Darrick J. Wong 提交于
Eric Sandeen reported a gcc complaint about uninitialized error variables, so fix that. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reported-by: NEric Sandeen <sandeen@redhat.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Darrick J. Wong 提交于
Now that fallocate has an explicit unshare flag again, let's try to remove the inode reflink flag whenever the user unshares any part of a file since checking is cheap compared to the CoW. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reported-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Darrick J. Wong 提交于
The loop in _reflink_clear_inode_flag isn't necessary since we jump out if any part of any extent is shared. Remove the loop and we no longer need two maps, so we can save some stack use. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reported-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Darrick J. Wong 提交于
There are a couple of places where we don't check the inode's reflink flag before calling into the reflink code. Fix those, and add some asserts so we don't make this mistake again. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reported-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 06 10月, 2016 9 次提交
-
-
由 Darrick J. Wong 提交于
Trim CoW reservations made on behalf of a cowextsz hint if they get too old or we run low on quota, so long as we don't have dirty data awaiting writeback or directio operations in progress. Garbage collection of the cowextsize extents are kept separate from prealloc extent reaping because setting the CoW prealloc lifetime to a (much) higher value than the regular prealloc extent lifetime has been useful for combatting CoW fragmentation on VM hosts where the VMs experience bursty write behaviors and we can keep the utilization ratios low enough that we don't start to run out of space. IOWs, it benefits us to keep the CoW fork reservations around for as long as we can unless we run out of blocks or hit inode reclaim. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Darrick J. Wong 提交于
If the AG free space is down to the reserves, refuse to reflink our way out of space. Hopefully userspace will make a real copy and/or go elsewhere. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Darrick J. Wong 提交于
Create a per-inode extent size allocator hint for copy-on-write. This hint is separate from the existing extent size hint so that CoW can take advantage of the fragmentation-reducing properties of extent size hints without disabling delalloc for regular writes. The extent size hint that's fed to the allocator during a copy on write operation is the greater of the cowextsize and regular extsize hint. During reflink, if we're sharing the entire source file to the entire destination file and the destination file doesn't already have a cowextsize hint, propagate the source file's cowextsize hint to the destination file. Furthermore, zero the bulkstat buffer prior to setting the fields so that we don't copy kernel memory contents into userspace. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Darrick J. Wong 提交于
Unshare all shared extents if the user calls fallocate with the new unshare mode flag set, so that we can guarantee that a subsequent write will not ENOSPC. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> [hch: pass inode instead of file to xfs_reflink_dirty_range, use iomap infrastructure for copy up] Signed-off-by: NChristoph Hellwig <hch@lst.de>
-
由 Darrick J. Wong 提交于
Define a VFS function which allows userspace to request that the kernel reflink a range of blocks between two files if the ranges' contents match. The function fits the new VFS ioctl that standardizes the checking for the btrfs EXTENT SAME ioctl. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Darrick J. Wong 提交于
Reflink extents from one file to another; that is to say, iteratively remove the mappings from the destination file, copy the mappings from the source file to the destination file, and increment the reference count of all the blocks that got remapped. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Darrick J. Wong 提交于
Due to the way the CoW algorithm in XFS works, there's an interval during which blocks allocated to handle a CoW can be lost -- if the FS goes down after the blocks are allocated but before the block remapping takes place. This is exacerbated by the cowextsz hint -- allocated reservations can sit around for a while, waiting to get used. Since the refcount btree doesn't normally store records with refcount of 1, we can use it to record these in-progress extents. In-progress blocks cannot be shared because they're not user-visible, so there shouldn't be any conflicts with other programs. This is a better solution than holding EFIs during writeback because (a) EFIs can't be relogged currently, (b) even if they could, EFIs are bound by available log space, which puts an unnecessary upper bound on how much CoW we can have in flight, and (c) we already have a mechanism to track blocks. At mount time, read the refcount records and free anything we find with a refcount of 1 because those were in-progress when the FS went down. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Reviewed-by: NChristoph Hellwig <hch@lst.de>
-
由 Darrick J. Wong 提交于
For O_DIRECT writes to shared blocks, we have to CoW them just like we would with buffered writes. For writes that are not block-aligned, just bounce them to the page cache. For block-aligned writes, however, we can do better than that. Use the same mechanisms that we employ for buffered CoW to set up a delalloc reservation, allocate all the blocks at once, issue the writes against the new blocks and use the same ioend functions to remap the blocks after the write. This should be fairly performant. Christoph discovered that xfs_reflink_allocate_cow_range may stumble over invalid entries in the extent array given that it drops the ilock but still expects the index to be stable. Simple fixing it to a new lookup for every iteration still isn't correct given that xfs_bmapi_allocate will trigger a BUG_ON() if hitting a hole, and there is nothing preventing a xfs_bunmapi_cow call removing extents once we dropped the ilock either. This patch duplicates the inner loop of xfs_bmapi_allocate into a helper for xfs_reflink_allocate_cow_range so that it can be done under the same ilock critical section as our CoW fork delayed allocation. The directio CoW warts will be revisited in a later patch. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NChristoph Hellwig <hch@lst.de>
-
由 Darrick J. Wong 提交于
After the write component of a copy-write operation finishes, clean up the bookkeeping left behind. On error, we simply free the new blocks and pass the error up. If we succeed, however, then we must remove the old data fork mapping and move the cow fork mapping to the data fork. Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> [hch: Call the CoW failure function during xfs_cancel_ioend] Signed-off-by: NChristoph Hellwig <hch@lst.de>
-