1. 20 5月, 2016 2 次提交
    • C
      KVM: arm/arm64: vgic-new: Synchronize changes to active state · 35a2d585
      Christoffer Dall 提交于
      When modifying the active state of an interrupt via the MMIO interface,
      we should ensure that the write has the intended effect.
      
      If a guest sets an interrupt to active, but that interrupt is already
      flushed into a list register on a running VCPU, then that VCPU will
      write the active state back into the struct vgic_irq upon returning from
      the guest and syncing its state.  This is a non-benign race, because the
      guest can observe that an interrupt is not active, and it can have a
      reasonable expectations that other VCPUs will not ack any IRQs, and then
      set the state to active, and expect it to stay that way.  Currently we
      are not honoring this case.
      
      Thefore, change both the SACTIVE and CACTIVE mmio handlers to stop the
      world, change the irq state, potentially queue the irq if we're setting
      it to active, and then continue.
      
      We take this chance to slightly optimize these functions by not stopping
      the world when touching private interrupts where there is inherently no
      possible race.
      Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
      35a2d585
    • C
      KVM: arm/arm64: Provide functionality to pause and resume a guest · b13216cf
      Christoffer Dall 提交于
      For some rare corner cases in our VGIC emulation later we have to stop
      the guest to make sure the VGIC state is consistent.
      Provide the necessary framework to pause and resume a guest.
      Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
      Signed-off-by: NAndre Przywara <andre.przywara@arm.com>
      b13216cf
  2. 06 4月, 2016 1 次提交
    • M
      arm64: KVM: Warn when PARange is less than 40 bits · 6141570c
      Marc Zyngier 提交于
      We always thought that 40bits of PA range would be the minimum people
      would actually build. Anything less is terrifyingly small.
      
      Turns out that we were both right and wrong. Nobody has ever built
      such a system, but the ARM Foundation Model has a PARange set to 36bits.
      Just because we can. Oh well. Now, the KVM API explicitely says that
      we offer a 40bit PA space to the VM, so we shouldn't run KVM on
      the Foundation Model at all.
      
      That being said, this patch offers a less agressive alternative, and
      loudly warns about the configuration being unsupported. You'll still
      be able to run VMs (at your own risks, though).
      
      This is just a workaround until we have a proper userspace API where
      we report the PARange to userspace.
      Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
      Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
      6141570c
  3. 05 3月, 2016 1 次提交
  4. 01 3月, 2016 17 次提交
  5. 19 2月, 2016 1 次提交
  6. 14 12月, 2015 2 次提交
  7. 23 10月, 2015 4 次提交
    • E
      KVM: arm/arm64: implement kvm_arm_[halt,resume]_guest · 3b92830a
      Eric Auger 提交于
      We introduce kvm_arm_halt_guest and resume functions. They
      will be used for IRQ forward state change.
      
      Halt is synchronous and prevents the guest from being re-entered.
      We use the same mechanism put in place for PSCI former pause,
      now renamed power_off. A new flag is introduced in arch vcpu state,
      pause, only meant to be used by those functions.
      Signed-off-by: NEric Auger <eric.auger@linaro.org>
      Reviewed-by: NChristoffer Dall <christoffer.dall@linaro.org>
      Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
      3b92830a
    • E
      KVM: arm/arm64: rename pause into power_off · 3781528e
      Eric Auger 提交于
      The kvm_vcpu_arch pause field is renamed into power_off to prepare
      for the introduction of a new pause field. Also vcpu_pause is renamed
      into vcpu_sleep since we will sleep until both power_off and pause are
      false.
      Signed-off-by: NEric Auger <eric.auger@linaro.org>
      Reviewed-by: NChristoffer Dall <christoffer.dall@linaro.org>
      Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
      3781528e
    • C
      arm/arm64: KVM: arch_timer: Only schedule soft timer on vcpu_block · d35268da
      Christoffer Dall 提交于
      We currently schedule a soft timer every time we exit the guest if the
      timer did not expire while running the guest.  This is really not
      necessary, because the only work we do in the timer work function is to
      kick the vcpu.
      
      Kicking the vcpu does two things:
      (1) If the vpcu thread is on a waitqueue, make it runnable and remove it
      from the waitqueue.
      (2) If the vcpu is running on a different physical CPU from the one
      doing the kick, it sends a reschedule IPI.
      
      The second case cannot happen, because the soft timer is only ever
      scheduled when the vcpu is not running.  The first case is only relevant
      when the vcpu thread is on a waitqueue, which is only the case when the
      vcpu thread has called kvm_vcpu_block().
      
      Therefore, we only need to make sure a timer is scheduled for
      kvm_vcpu_block(), which we do by encapsulating all calls to
      kvm_vcpu_block() with kvm_timer_{un}schedule calls.
      
      Additionally, we only schedule a soft timer if the timer is enabled and
      unmasked, since it is useless otherwise.
      
      Note that theoretically userspace can use the SET_ONE_REG interface to
      change registers that should cause the timer to fire, even if the vcpu
      is blocked without a scheduled timer, but this case was not supported
      before this patch and we leave it for future work for now.
      Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
      d35268da
    • C
      KVM: Add kvm_arch_vcpu_{un}blocking callbacks · 3217f7c2
      Christoffer Dall 提交于
      Some times it is useful for architecture implementations of KVM to know
      when the VCPU thread is about to block or when it comes back from
      blocking (arm/arm64 needs to know this to properly implement timers, for
      example).
      
      Therefore provide a generic architecture callback function in line with
      what we do elsewhere for KVM generic-arch interactions.
      Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com>
      Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
      3217f7c2
  8. 25 9月, 2015 1 次提交
  9. 17 9月, 2015 1 次提交
    • M
      arm/arm64: KVM: Remove 'config KVM_ARM_MAX_VCPUS' · ef748917
      Ming Lei 提交于
      This patch removes config option of KVM_ARM_MAX_VCPUS,
      and like other ARCHs, just choose the maximum allowed
      value from hardware, and follows the reasons:
      
      1) from distribution view, the option has to be
      defined as the max allowed value because it need to
      meet all kinds of virtulization applications and
      need to support most of SoCs;
      
      2) using a bigger value doesn't introduce extra memory
      consumption, and the help text in Kconfig isn't accurate
      because kvm_vpu structure isn't allocated until request
      of creating VCPU is sent from QEMU;
      
      3) the main effect is that the field of vcpus[] in 'struct kvm'
      becomes a bit bigger(sizeof(void *) per vcpu) and need more cache
      lines to hold the structure, but 'struct kvm' is one generic struct,
      and it has worked well on other ARCHs already in this way. Also,
      the world switch frequecy is often low, for example, it is ~2000
      when running kernel building load in VM from APM xgene KVM host,
      so the effect is very small, and the difference can't be observed
      in my test at all.
      
      Cc: Dann Frazier <dann.frazier@canonical.com>
      Signed-off-by: NMing Lei <ming.lei@canonical.com>
      Reviewed-by: NChristoffer Dall <christoffer.dall@linaro.org>
      Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
      ef748917
  10. 16 9月, 2015 1 次提交
    • P
      KVM: add halt_attempted_poll to VCPU stats · 62bea5bf
      Paolo Bonzini 提交于
      This new statistic can help diagnosing VCPUs that, for any reason,
      trigger bad behavior of halt_poll_ns autotuning.
      
      For example, say halt_poll_ns = 480000, and wakeups are spaced exactly
      like 479us, 481us, 479us, 481us. Then KVM always fails polling and wastes
      10+20+40+80+160+320+480 = 1110 microseconds out of every
      479+481+479+481+479+481+479 = 3359 microseconds. The VCPU then
      is consuming about 30% more CPU than it would use without
      polling.  This would show as an abnormally high number of
      attempted polling compared to the successful polls.
      
      Acked-by: Christian Borntraeger <borntraeger@de.ibm.com<
      Reviewed-by: NDavid Matlack <dmatlack@google.com>
      Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
      62bea5bf
  11. 12 8月, 2015 1 次提交
  12. 21 7月, 2015 4 次提交
  13. 12 6月, 2015 1 次提交
  14. 13 3月, 2015 1 次提交
    • M
      arm/arm64: KVM: Implement Stage-2 page aging · 35307b9a
      Marc Zyngier 提交于
      Until now, KVM/arm didn't care much for page aging (who was swapping
      anyway?), and simply provided empty hooks to the core KVM code. With
      server-type systems now being available, things are quite different.
      
      This patch implements very simple support for page aging, by clearing
      the Access flag in the Stage-2 page tables. On access fault, the current
      fault handling will write the PTE or PMD again, putting the Access flag
      back on.
      
      It should be possible to implement a much faster handling for Access
      faults, but that's left for a later patch.
      
      With this in place, performance in VMs is degraded much more gracefully.
      Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
      Acked-by: NChristoffer Dall <christoffer.dall@linaro.org>
      Signed-off-by: NChristoffer Dall <christoffer.dall@linaro.org>
      35307b9a
  15. 12 3月, 2015 1 次提交
  16. 06 2月, 2015 1 次提交
    • P
      kvm: add halt_poll_ns module parameter · f7819512
      Paolo Bonzini 提交于
      This patch introduces a new module parameter for the KVM module; when it
      is present, KVM attempts a bit of polling on every HLT before scheduling
      itself out via kvm_vcpu_block.
      
      This parameter helps a lot for latency-bound workloads---in particular
      I tested it with O_DSYNC writes with a battery-backed disk in the host.
      In this case, writes are fast (because the data doesn't have to go all
      the way to the platters) but they cannot be merged by either the host or
      the guest.  KVM's performance here is usually around 30% of bare metal,
      or 50% if you use cache=directsync or cache=writethrough (these
      parameters avoid that the guest sends pointless flush requests, and
      at the same time they are not slow because of the battery-backed cache).
      The bad performance happens because on every halt the host CPU decides
      to halt itself too.  When the interrupt comes, the vCPU thread is then
      migrated to a new physical CPU, and in general the latency is horrible
      because the vCPU thread has to be scheduled back in.
      
      With this patch performance reaches 60-65% of bare metal and, more
      important, 99% of what you get if you use idle=poll in the guest.  This
      means that the tunable gets rid of this particular bottleneck, and more
      work can be done to improve performance in the kernel or QEMU.
      
      Of course there is some price to pay; every time an otherwise idle vCPUs
      is interrupted by an interrupt, it will poll unnecessarily and thus
      impose a little load on the host.  The above results were obtained with
      a mostly random value of the parameter (500000), and the load was around
      1.5-2.5% CPU usage on one of the host's core for each idle guest vCPU.
      
      The patch also adds a new stat, /sys/kernel/debug/kvm/halt_successful_poll,
      that can be used to tune the parameter.  It counts how many HLT
      instructions received an interrupt during the polling period; each
      successful poll avoids that Linux schedules the VCPU thread out and back
      in, and may also avoid a likely trip to C1 and back for the physical CPU.
      
      While the VM is idle, a Linux 4 VCPU VM halts around 10 times per second.
      Of these halts, almost all are failed polls.  During the benchmark,
      instead, basically all halts end within the polling period, except a more
      or less constant stream of 50 per second coming from vCPUs that are not
      running the benchmark.  The wasted time is thus very low.  Things may
      be slightly different for Windows VMs, which have a ~10 ms timer tick.
      
      The effect is also visible on Marcelo's recently-introduced latency
      test for the TSC deadline timer.  Though of course a non-RT kernel has
      awful latency bounds, the latency of the timer is around 8000-10000 clock
      cycles compared to 20000-120000 without setting halt_poll_ns.  For the TSC
      deadline timer, thus, the effect is both a smaller average latency and
      a smaller variance.
      Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
      f7819512