1. 29 3月, 2023 1 次提交
    • D
      xfs, iomap: limit individual ioend chain lengths in writeback · c5883137
      Dave Chinner 提交于
      mainline inclusion
      from mainline-v5.17-rc3
      commit ebb7fb15
      category: bugfix
      bugzilla: https://gitee.com/openeuler/kernel/issues/I4KIAO
      CVE: NA
      
      Reference: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=ebb7fb1557b1d03b906b668aa2164b51e6b7d19a
      
      --------------------------------
      
      Trond Myklebust reported soft lockups in XFS IO completion such as
      this:
      
       watchdog: BUG: soft lockup - CPU#12 stuck for 23s! [kworker/12:1:3106]
       CPU: 12 PID: 3106 Comm: kworker/12:1 Not tainted 4.18.0-305.10.2.el8_4.x86_64 #1
       Workqueue: xfs-conv/md127 xfs_end_io [xfs]
       RIP: 0010:_raw_spin_unlock_irqrestore+0x11/0x20
       Call Trace:
        wake_up_page_bit+0x8a/0x110
        iomap_finish_ioend+0xd7/0x1c0
        iomap_finish_ioends+0x7f/0xb0
        xfs_end_ioend+0x6b/0x100 [xfs]
        xfs_end_io+0xb9/0xe0 [xfs]
        process_one_work+0x1a7/0x360
        worker_thread+0x1fa/0x390
        kthread+0x116/0x130
        ret_from_fork+0x35/0x40
      
      Ioends are processed as an atomic completion unit when all the
      chained bios in the ioend have completed their IO. Logically
      contiguous ioends can also be merged and completed as a single,
      larger unit.  Both of these things can be problematic as both the
      bio chains per ioend and the size of the merged ioends processed as
      a single completion are both unbound.
      
      If we have a large sequential dirty region in the page cache,
      write_cache_pages() will keep feeding us sequential pages and we
      will keep mapping them into ioends and bios until we get a dirty
      page at a non-sequential file offset. These large sequential runs
      can will result in bio and ioend chaining to optimise the io
      patterns. The pages iunder writeback are pinned within these chains
      until the submission chaining is broken, allowing the entire chain
      to be completed. This can result in huge chains being processed
      in IO completion context.
      
      We get deep bio chaining if we have large contiguous physical
      extents. We will keep adding pages to the current bio until it is
      full, then we'll chain a new bio to keep adding pages for writeback.
      Hence we can build bio chains that map millions of pages and tens of
      gigabytes of RAM if the page cache contains big enough contiguous
      dirty file regions. This long bio chain pins those pages until the
      final bio in the chain completes and the ioend can iterate all the
      chained bios and complete them.
      
      OTOH, if we have a physically fragmented file, we end up submitting
      one ioend per physical fragment that each have a small bio or bio
      chain attached to them. We do not chain these at IO submission time,
      but instead we chain them at completion time based on file
      offset via iomap_ioend_try_merge(). Hence we can end up with unbound
      ioend chains being built via completion merging.
      
      XFS can then do COW remapping or unwritten extent conversion on that
      merged chain, which involves walking an extent fragment at a time
      and running a transaction to modify the physical extent information.
      IOWs, we merge all the discontiguous ioends together into a
      contiguous file range, only to then process them individually as
      discontiguous extents.
      
      This extent manipulation is computationally expensive and can run in
      a tight loop, so merging logically contiguous but physically
      discontigous ioends gains us nothing except for hiding the fact the
      fact we broke the ioends up into individual physical extents at
      submission and then need to loop over those individual physical
      extents at completion.
      
      Hence we need to have mechanisms to limit ioend sizes and
      to break up completion processing of large merged ioend chains:
      
      1. bio chains per ioend need to be bound in length. Pure overwrites
      go straight to iomap_finish_ioend() in softirq context with the
      exact bio chain attached to the ioend by submission. Hence the only
      way to prevent long holdoffs here is to bound ioend submission
      sizes because we can't reschedule in softirq context.
      
      2. iomap_finish_ioends() has to handle unbound merged ioend chains
      correctly. This relies on any one call to iomap_finish_ioend() being
      bound in runtime so that cond_resched() can be issued regularly as
      the long ioend chain is processed. i.e. this relies on mechanism #1
      to limit individual ioend sizes to work correctly.
      
      3. filesystems have to loop over the merged ioends to process
      physical extent manipulations. This means they can loop internally,
      and so we break merging at physical extent boundaries so the
      filesystem can easily insert reschedule points between individual
      extent manipulations.
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Reported-and-tested-by: NTrond Myklebust <trondmy@hammerspace.com>
      Reviewed-by: NDarrick J. Wong <djwong@kernel.org>
      Signed-off-by: NDarrick J. Wong <djwong@kernel.org>
      Conflicts:
      	include/linux/iomap.h
      	fs/iomap/buffered-io.c
      	fs/xfs/xfs_aops.c
      
      	[ 6e552494 ("iomap: remove unused private field from ioend")
      	  is not applied.
      	  95c4cd05 ("iomap: Convert to_iomap_page to take a folio") is
      	  not applied.
      	  8ffd74e9 ("iomap: Convert bio completions to use folios") is
      	  not applied.
      	  044c6449 ("xfs: drop unused ioend private merge and
      	  setfilesize code") is not applied. ]
      Signed-off-by: NZhihao Cheng <chengzhihao1@huawei.com>
      Reviewed-by: NZhang Yi <yi.zhang@huawei.com>
      Signed-off-by: NJialin Zhang <zhangjialin11@huawei.com>
      c5883137
  2. 31 12月, 2021 1 次提交
  3. 05 11月, 2020 1 次提交
    • B
      iomap: support partial page discard on writeback block mapping failure · 763e4cdc
      Brian Foster 提交于
      iomap writeback mapping failure only calls into ->discard_page() if
      the current page has not been added to the ioend. Accordingly, the
      XFS callback assumes a full page discard and invalidation. This is
      problematic for sub-page block size filesystems where some portion
      of a page might have been mapped successfully before a failure to
      map a delalloc block occurs. ->discard_page() is not called in that
      error scenario and the bio is explicitly failed by iomap via the
      error return from ->prepare_ioend(). As a result, the filesystem
      leaks delalloc blocks and corrupts the filesystem block counters.
      
      Since XFS is the only user of ->discard_page(), tweak the semantics
      to invoke the callback unconditionally on mapping errors and provide
      the file offset that failed to map. Update xfs_discard_page() to
      discard the corresponding portion of the file and pass the range
      along to iomap_invalidatepage(). The latter already properly handles
      both full and sub-page scenarios by not changing any iomap or page
      state on sub-page invalidations.
      Signed-off-by: NBrian Foster <bfoster@redhat.com>
      Reviewed-by: NChristoph Hellwig <hch@lst.de>
      Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com>
      Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
      763e4cdc
  4. 28 9月, 2020 1 次提交
  5. 04 6月, 2020 1 次提交
  6. 03 6月, 2020 1 次提交
  7. 25 5月, 2020 1 次提交
  8. 21 10月, 2019 6 次提交
  9. 18 10月, 2019 1 次提交
    • D
      iomap: iomap that extends beyond EOF should be marked dirty · 7684e2c4
      Dave Chinner 提交于
      When doing a direct IO that spans the current EOF, and there are
      written blocks beyond EOF that extend beyond the current write, the
      only metadata update that needs to be done is a file size extension.
      
      However, we don't mark such iomaps as IOMAP_F_DIRTY to indicate that
      there is IO completion metadata updates required, and hence we may
      fail to correctly sync file size extensions made in IO completion
      when O_DSYNC writes are being used and the hardware supports FUA.
      
      Hence when setting IOMAP_F_DIRTY, we need to also take into account
      whether the iomap spans the current EOF. If it does, then we need to
      mark it dirty so that IO completion will call generic_write_sync()
      to flush the inode size update to stable storage correctly.
      
      Fixes: 3460cac1 ("iomap: Use FUA for pure data O_DSYNC DIO writes")
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Signed-off-by: NChristoph Hellwig <hch@lst.de>
      Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com>
      [darrick: removed the ext4 part; they'll handle it separately]
      Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
      7684e2c4
  10. 15 10月, 2019 1 次提交
  11. 20 9月, 2019 2 次提交
  12. 17 7月, 2019 2 次提交
  13. 28 6月, 2019 1 次提交
  14. 01 5月, 2019 1 次提交
  15. 24 2月, 2019 1 次提交
  16. 27 10月, 2018 1 次提交
  17. 12 7月, 2018 1 次提交
    • C
      iomap: add support for sub-pagesize buffered I/O without buffer heads · 9dc55f13
      Christoph Hellwig 提交于
      After already supporting a simple implementation of buffered writes for
      the blocksize == PAGE_SIZE case in the last commit this adds full support
      even for smaller block sizes.   There are three bits of per-block
      information in the buffer_head structure that really matter for the iomap
      read and write path:
      
       - uptodate status (BH_uptodate)
       - marked as currently under read I/O (BH_Async_Read)
       - marked as currently under write I/O (BH_Async_Write)
      
      Instead of having new per-block structures this now adds a per-page
      structure called struct iomap_page to track this information in a slightly
      different form:
      
       - a bitmap for the per-block uptodate status.  For worst case of a 64k
         page size system this bitmap needs to contain 128 bits.  For the
         typical 4k page size case it only needs 8 bits, although we still
         need a full unsigned long due to the way the atomic bitmap API works.
       - two atomic_t counters are used to track the outstanding read and write
         counts
      
      There is quite a bit of boilerplate code as the buffered I/O path uses
      various helper methods, but the actual code is very straight forward.
      Signed-off-by: NChristoph Hellwig <hch@lst.de>
      Reviewed-by: NBrian Foster <bfoster@redhat.com>
      Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com>
      Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
      9dc55f13
  18. 21 6月, 2018 1 次提交
  19. 20 6月, 2018 4 次提交
  20. 02 6月, 2018 4 次提交
  21. 16 5月, 2018 1 次提交
  22. 03 11月, 2017 1 次提交
  23. 02 11月, 2017 1 次提交
    • G
      License cleanup: add SPDX GPL-2.0 license identifier to files with no license · b2441318
      Greg Kroah-Hartman 提交于
      Many source files in the tree are missing licensing information, which
      makes it harder for compliance tools to determine the correct license.
      
      By default all files without license information are under the default
      license of the kernel, which is GPL version 2.
      
      Update the files which contain no license information with the 'GPL-2.0'
      SPDX license identifier.  The SPDX identifier is a legally binding
      shorthand, which can be used instead of the full boiler plate text.
      
      This patch is based on work done by Thomas Gleixner and Kate Stewart and
      Philippe Ombredanne.
      
      How this work was done:
      
      Patches were generated and checked against linux-4.14-rc6 for a subset of
      the use cases:
       - file had no licensing information it it.
       - file was a */uapi/* one with no licensing information in it,
       - file was a */uapi/* one with existing licensing information,
      
      Further patches will be generated in subsequent months to fix up cases
      where non-standard license headers were used, and references to license
      had to be inferred by heuristics based on keywords.
      
      The analysis to determine which SPDX License Identifier to be applied to
      a file was done in a spreadsheet of side by side results from of the
      output of two independent scanners (ScanCode & Windriver) producing SPDX
      tag:value files created by Philippe Ombredanne.  Philippe prepared the
      base worksheet, and did an initial spot review of a few 1000 files.
      
      The 4.13 kernel was the starting point of the analysis with 60,537 files
      assessed.  Kate Stewart did a file by file comparison of the scanner
      results in the spreadsheet to determine which SPDX license identifier(s)
      to be applied to the file. She confirmed any determination that was not
      immediately clear with lawyers working with the Linux Foundation.
      
      Criteria used to select files for SPDX license identifier tagging was:
       - Files considered eligible had to be source code files.
       - Make and config files were included as candidates if they contained >5
         lines of source
       - File already had some variant of a license header in it (even if <5
         lines).
      
      All documentation files were explicitly excluded.
      
      The following heuristics were used to determine which SPDX license
      identifiers to apply.
      
       - when both scanners couldn't find any license traces, file was
         considered to have no license information in it, and the top level
         COPYING file license applied.
      
         For non */uapi/* files that summary was:
      
         SPDX license identifier                            # files
         ---------------------------------------------------|-------
         GPL-2.0                                              11139
      
         and resulted in the first patch in this series.
      
         If that file was a */uapi/* path one, it was "GPL-2.0 WITH
         Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:
      
         SPDX license identifier                            # files
         ---------------------------------------------------|-------
         GPL-2.0 WITH Linux-syscall-note                        930
      
         and resulted in the second patch in this series.
      
       - if a file had some form of licensing information in it, and was one
         of the */uapi/* ones, it was denoted with the Linux-syscall-note if
         any GPL family license was found in the file or had no licensing in
         it (per prior point).  Results summary:
      
         SPDX license identifier                            # files
         ---------------------------------------------------|------
         GPL-2.0 WITH Linux-syscall-note                       270
         GPL-2.0+ WITH Linux-syscall-note                      169
         ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
         ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
         LGPL-2.1+ WITH Linux-syscall-note                      15
         GPL-1.0+ WITH Linux-syscall-note                       14
         ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
         LGPL-2.0+ WITH Linux-syscall-note                       4
         LGPL-2.1 WITH Linux-syscall-note                        3
         ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
         ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1
      
         and that resulted in the third patch in this series.
      
       - when the two scanners agreed on the detected license(s), that became
         the concluded license(s).
      
       - when there was disagreement between the two scanners (one detected a
         license but the other didn't, or they both detected different
         licenses) a manual inspection of the file occurred.
      
       - In most cases a manual inspection of the information in the file
         resulted in a clear resolution of the license that should apply (and
         which scanner probably needed to revisit its heuristics).
      
       - When it was not immediately clear, the license identifier was
         confirmed with lawyers working with the Linux Foundation.
      
       - If there was any question as to the appropriate license identifier,
         the file was flagged for further research and to be revisited later
         in time.
      
      In total, over 70 hours of logged manual review was done on the
      spreadsheet to determine the SPDX license identifiers to apply to the
      source files by Kate, Philippe, Thomas and, in some cases, confirmation
      by lawyers working with the Linux Foundation.
      
      Kate also obtained a third independent scan of the 4.13 code base from
      FOSSology, and compared selected files where the other two scanners
      disagreed against that SPDX file, to see if there was new insights.  The
      Windriver scanner is based on an older version of FOSSology in part, so
      they are related.
      
      Thomas did random spot checks in about 500 files from the spreadsheets
      for the uapi headers and agreed with SPDX license identifier in the
      files he inspected. For the non-uapi files Thomas did random spot checks
      in about 15000 files.
      
      In initial set of patches against 4.14-rc6, 3 files were found to have
      copy/paste license identifier errors, and have been fixed to reflect the
      correct identifier.
      
      Additionally Philippe spent 10 hours this week doing a detailed manual
      inspection and review of the 12,461 patched files from the initial patch
      version early this week with:
       - a full scancode scan run, collecting the matched texts, detected
         license ids and scores
       - reviewing anything where there was a license detected (about 500+
         files) to ensure that the applied SPDX license was correct
       - reviewing anything where there was no detection but the patch license
         was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
         SPDX license was correct
      
      This produced a worksheet with 20 files needing minor correction.  This
      worksheet was then exported into 3 different .csv files for the
      different types of files to be modified.
      
      These .csv files were then reviewed by Greg.  Thomas wrote a script to
      parse the csv files and add the proper SPDX tag to the file, in the
      format that the file expected.  This script was further refined by Greg
      based on the output to detect more types of files automatically and to
      distinguish between header and source .c files (which need different
      comment types.)  Finally Greg ran the script using the .csv files to
      generate the patches.
      Reviewed-by: NKate Stewart <kstewart@linuxfoundation.org>
      Reviewed-by: NPhilippe Ombredanne <pombredanne@nexb.com>
      Reviewed-by: NThomas Gleixner <tglx@linutronix.de>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
      b2441318
  24. 31 10月, 2017 1 次提交
  25. 02 10月, 2017 2 次提交
  26. 03 7月, 2017 1 次提交