1. 31 10月, 2018 24 次提交
  2. 27 10月, 2018 16 次提交
    • M
      hugetlbfs: dirty pages as they are added to pagecache · 22146c3c
      Mike Kravetz 提交于
      Some test systems were experiencing negative huge page reserve counts and
      incorrect file block counts.  This was traced to /proc/sys/vm/drop_caches
      removing clean pages from hugetlbfs file pagecaches.  When non-hugetlbfs
      explicit code removes the pages, the appropriate accounting is not
      performed.
      
      This can be recreated as follows:
       fallocate -l 2M /dev/hugepages/foo
       echo 1 > /proc/sys/vm/drop_caches
       fallocate -l 2M /dev/hugepages/foo
       grep -i huge /proc/meminfo
         AnonHugePages:         0 kB
         ShmemHugePages:        0 kB
         HugePages_Total:    2048
         HugePages_Free:     2047
         HugePages_Rsvd:    18446744073709551615
         HugePages_Surp:        0
         Hugepagesize:       2048 kB
         Hugetlb:         4194304 kB
       ls -lsh /dev/hugepages/foo
         4.0M -rw-r--r--. 1 root root 2.0M Oct 17 20:05 /dev/hugepages/foo
      
      To address this issue, dirty pages as they are added to pagecache.  This
      can easily be reproduced with fallocate as shown above.  Read faulted
      pages will eventually end up being marked dirty.  But there is a window
      where they are clean and could be impacted by code such as drop_caches.
      So, just dirty them all as they are added to the pagecache.
      
      Link: http://lkml.kernel.org/r/b5be45b8-5afe-56cd-9482-28384699a049@oracle.com
      Fixes: 6bda666a ("hugepages: fold find_or_alloc_pages into huge_no_page()")
      Signed-off-by: NMike Kravetz <mike.kravetz@oracle.com>
      Acked-by: NMihcla Hocko <mhocko@suse.com>
      Reviewed-by: NKhalid Aziz <khalid.aziz@oracle.com>
      Cc: Hugh Dickins <hughd@google.com>
      Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
      Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
      Cc: Andrea Arcangeli <aarcange@redhat.com>
      Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
      Cc: Davidlohr Bueso <dave@stgolabs.net>
      Cc: Alexander Viro <viro@zeniv.linux.org.uk>
      Cc: <stable@vger.kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      22146c3c
    • O
      mm: export add_swap_extent() · aa8aa8a3
      Omar Sandoval 提交于
      Btrfs currently does not support swap files because swap's use of bmap
      does not work with copy-on-write and multiple devices.  See 35054394
      ("Btrfs: stop providing a bmap operation to avoid swapfile corruptions").
      
      However, the swap code has a mechanism for the filesystem to manually add
      swap extents using add_swap_extent() from the ->swap_activate() aop.
      iomap has done this since 67482129 ("iomap: add a swapfile activation
      function").  Btrfs will do the same in a later patch, so export
      add_swap_extent().
      
      Link: http://lkml.kernel.org/r/bb1208575e02829aae51b538709476964f97b1ea.1536704650.git.osandov@fb.comSigned-off-by: NOmar Sandoval <osandov@fb.com>
      Reviewed-by: NAndrew Morton <akpm@linux-foundation.org>
      Cc: David Sterba <dsterba@suse.cz>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Nikolay Borisov <nborisov@suse.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      aa8aa8a3
    • O
      mm: split SWP_FILE into SWP_ACTIVATED and SWP_FS · bc4ae27d
      Omar Sandoval 提交于
      The SWP_FILE flag serves two purposes: to make swap_{read,write}page() go
      through the filesystem, and to make swapoff() call ->swap_deactivate().
      For Btrfs, we want the latter but not the former, so split this flag into
      two.  This makes us always call ->swap_deactivate() if ->swap_activate()
      succeeded, not just if it didn't add any swap extents itself.
      
      This also resolves the issue of the very misleading name of SWP_FILE,
      which is only used for swap files over NFS.
      
      Link: http://lkml.kernel.org/r/6d63d8668c4287a4f6d203d65696e96f80abdfc7.1536704650.git.osandov@fb.comSigned-off-by: NOmar Sandoval <osandov@fb.com>
      Reviewed-by: NNikolay Borisov <nborisov@suse.com>
      Reviewed-by: NAndrew Morton <akpm@linux-foundation.org>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: David Sterba <dsterba@suse.cz>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      bc4ae27d
    • A
      mm: thp: relocate flush_cache_range() in migrate_misplaced_transhuge_page() · 7eef5f97
      Andrea Arcangeli 提交于
      There should be no cache left by the time we overwrite the old transhuge
      pmd with the new one.  It's already too late to flush through the virtual
      address because we already copied the page data to the new physical
      address.
      
      So flush the cache before the data copy.
      
      Also delete the "end" variable to shutoff a "unused variable" warning on
      x86 where flush_cache_range() is a noop.
      
      Link: http://lkml.kernel.org/r/20181015202311.7209-1-aarcange@redhat.comSigned-off-by: NAndrea Arcangeli <aarcange@redhat.com>
      Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com>
      Cc: Aaron Tomlin <atomlin@redhat.com>
      Cc: Jerome Glisse <jglisse@redhat.com>
      Cc: Mel Gorman <mgorman@suse.de>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      7eef5f97
    • A
      mm: thp: fix mmu_notifier in migrate_misplaced_transhuge_page() · 7066f0f9
      Andrea Arcangeli 提交于
      change_huge_pmd() after arming the numa/protnone pmd doesn't flush the TLB
      right away.  do_huge_pmd_numa_page() flushes the TLB before calling
      migrate_misplaced_transhuge_page().  By the time do_huge_pmd_numa_page()
      runs some CPU could still access the page through the TLB.
      
      change_huge_pmd() before arming the numa/protnone transhuge pmd calls
      mmu_notifier_invalidate_range_start().  So there's no need of
      mmu_notifier_invalidate_range_start()/mmu_notifier_invalidate_range_only_end()
      sequence in migrate_misplaced_transhuge_page() too, because by the time
      migrate_misplaced_transhuge_page() runs, the pmd mapping has already been
      invalidated in the secondary MMUs.  It has to or if a secondary MMU can
      still write to the page, the migrate_page_copy() would lose data.
      
      However an explicit mmu_notifier_invalidate_range() is needed before
      migrate_misplaced_transhuge_page() starts copying the data of the
      transhuge page or the below can happen for MMU notifier users sharing the
      primary MMU pagetables and only implementing ->invalidate_range:
      
      CPU0		CPU1		GPU sharing linux pagetables using
                                      only ->invalidate_range
      -----------	------------	---------
      				GPU secondary MMU writes to the page
      				mapped by the transhuge pmd
      change_pmd_range()
      mmu..._range_start()
      ->invalidate_range_start() noop
      change_huge_pmd()
      set_pmd_at(numa/protnone)
      pmd_unlock()
      		do_huge_pmd_numa_page()
      		CPU TLB flush globally (1)
      		CPU cannot write to page
      		migrate_misplaced_transhuge_page()
      				GPU writes to the page...
      		migrate_page_copy()
      				...GPU stops writing to the page
      CPU TLB flush (2)
      mmu..._range_end() (3)
      ->invalidate_range_stop() noop
      ->invalidate_range()
      				GPU secondary MMU is invalidated
      				and cannot write to the page anymore
      				(too late)
      
      Just like we need a CPU TLB flush (1) because the TLB flush (2) arrives
      too late, we also need a mmu_notifier_invalidate_range() before calling
      migrate_misplaced_transhuge_page(), because the ->invalidate_range() in
      (3) also arrives too late.
      
      This requirement is the result of the lazy optimization in
      change_huge_pmd() that releases the pmd_lock without first flushing the
      TLB and without first calling mmu_notifier_invalidate_range().
      
      Even converting the removed mmu_notifier_invalidate_range_only_end() into
      a mmu_notifier_invalidate_range_end() would not have been enough to fix
      this, because it run after migrate_page_copy().
      
      After the hugepage data copy is done migrate_misplaced_transhuge_page()
      can proceed and call set_pmd_at without having to flush the TLB nor any
      secondary MMUs because the secondary MMU invalidate, just like the CPU TLB
      flush, has to happen before the migrate_page_copy() is called or it would
      be a bug in the first place (and it was for drivers using
      ->invalidate_range()).
      
      KVM is unaffected because it doesn't implement ->invalidate_range().
      
      The standard PAGE_SIZEd migrate_misplaced_page is less accelerated and
      uses the generic migrate_pages which transitions the pte from
      numa/protnone to a migration entry in try_to_unmap_one() and flushes TLBs
      and all mmu notifiers there before copying the page.
      
      Link: http://lkml.kernel.org/r/20181013002430.698-3-aarcange@redhat.comSigned-off-by: NAndrea Arcangeli <aarcange@redhat.com>
      Acked-by: NMel Gorman <mgorman@suse.de>
      Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com>
      Reviewed-by: NAaron Tomlin <atomlin@redhat.com>
      Cc: Jerome Glisse <jglisse@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      7066f0f9
    • A
      mm: thp: fix MADV_DONTNEED vs migrate_misplaced_transhuge_page race condition · d7c33934
      Andrea Arcangeli 提交于
      Patch series "migrate_misplaced_transhuge_page race conditions".
      
      Aaron found a new instance of the THP MADV_DONTNEED race against
      pmdp_clear_flush* variants, that was apparently left unfixed.
      
      While looking into the race found by Aaron, I may have found two more
      issues in migrate_misplaced_transhuge_page.
      
      These race conditions would not cause kernel instability, but they'd
      corrupt userland data or leave data non zero after MADV_DONTNEED.
      
      I did only minor testing, and I don't expect to be able to reproduce this
      (especially the lack of ->invalidate_range before migrate_page_copy,
      requires the latest iommu hardware or infiniband to reproduce).  The last
      patch is noop for x86 and it needs further review from maintainers of
      archs that implement flush_cache_range() (not in CC yet).
      
      To avoid confusion, it's not the first patch that introduces the bug fixed
      in the second patch, even before removing the
      pmdp_huge_clear_flush_notify, that _notify suffix was called after
      migrate_page_copy already run.
      
      This patch (of 3):
      
      This is a corollary of ced10803 ("thp: fix MADV_DONTNEED vs.  numa
      balancing race"), 58ceeb6b ("thp: fix MADV_DONTNEED vs.  MADV_FREE
      race") and 5b7abeae ("thp: fix MADV_DONTNEED vs clear soft dirty
      race).
      
      When the above three fixes where posted Dave asked
      https://lkml.kernel.org/r/929b3844-aec2-0111-fef7-8002f9d4e2b9@intel.com
      but apparently this was missed.
      
      The pmdp_clear_flush* in migrate_misplaced_transhuge_page() was introduced
      in a54a407f ("mm: Close races between THP migration and PMD numa
      clearing").
      
      The important part of such commit is only the part where the page lock is
      not released until the first do_huge_pmd_numa_page() finished disarming
      the pagenuma/protnone.
      
      The addition of pmdp_clear_flush() wasn't beneficial to such commit and
      there's no commentary about such an addition either.
      
      I guess the pmdp_clear_flush() in such commit was added just in case for
      safety, but it ended up introducing the MADV_DONTNEED race condition found
      by Aaron.
      
      At that point in time nobody thought of such kind of MADV_DONTNEED race
      conditions yet (they were fixed later) so the code may have looked more
      robust by adding the pmdp_clear_flush().
      
      This specific race condition won't destabilize the kernel, but it can
      confuse userland because after MADV_DONTNEED the memory won't be zeroed
      out.
      
      This also optimizes the code and removes a superfluous TLB flush.
      
      [akpm@linux-foundation.org: reflow comment to 80 cols, fix grammar and typo (beacuse)]
      Link: http://lkml.kernel.org/r/20181013002430.698-2-aarcange@redhat.comSigned-off-by: NAndrea Arcangeli <aarcange@redhat.com>
      Reported-by: NAaron Tomlin <atomlin@redhat.com>
      Acked-by: NMel Gorman <mgorman@suse.de>
      Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com>
      Cc: Jerome Glisse <jglisse@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      d7c33934
    • C
      mm/kasan/quarantine.c: make quarantine_lock a raw_spinlock_t · 026d1eaf
      Clark Williams 提交于
      The static lock quarantine_lock is used in quarantine.c to protect the
      quarantine queue datastructures.  It is taken inside quarantine queue
      manipulation routines (quarantine_put(), quarantine_reduce() and
      quarantine_remove_cache()), with IRQs disabled.  This is not a problem on
      a stock kernel but is problematic on an RT kernel where spin locks are
      sleeping spinlocks, which can sleep and can not be acquired with disabled
      interrupts.
      
      Convert the quarantine_lock to a raw spinlock_t.  The usage of
      quarantine_lock is confined to quarantine.c and the work performed while
      the lock is held is used for debug purpose.
      
      [bigeasy@linutronix.de: slightly altered the commit message]
      Link: http://lkml.kernel.org/r/20181010214945.5owshc3mlrh74z4b@linutronix.deSigned-off-by: NClark Williams <williams@redhat.com>
      Signed-off-by: NSebastian Andrzej Siewior <bigeasy@linutronix.de>
      Acked-by: NSebastian Andrzej Siewior <bigeasy@linutronix.de>
      Acked-by: NDmitry Vyukov <dvyukov@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      026d1eaf
    • K
      mm/gup: cache dev_pagemap while pinning pages · df06b37f
      Keith Busch 提交于
      Getting pages from ZONE_DEVICE memory needs to check the backing device's
      live-ness, which is tracked in the device's dev_pagemap metadata.  This
      metadata is stored in a radix tree and looking it up adds measurable
      software overhead.
      
      This patch avoids repeating this relatively costly operation when
      dev_pagemap is used by caching the last dev_pagemap while getting user
      pages.  The gup_benchmark kernel self test reports this reduces time to
      get user pages to as low as 1/3 of the previous time.
      
      Link: http://lkml.kernel.org/r/20181012173040.15669-1-keith.busch@intel.comSigned-off-by: NKeith Busch <keith.busch@intel.com>
      Reviewed-by: NDan Williams <dan.j.williams@intel.com>
      Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com>
      Cc: Dave Hansen <dave.hansen@intel.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      df06b37f
    • P
      mm: return zero_resv_unavail optimization · ec393a0f
      Pavel Tatashin 提交于
      When checking for valid pfns in zero_resv_unavail(), it is not necessary
      to verify that pfns within pageblock_nr_pages ranges are valid, only the
      first one needs to be checked.  This is because memory for pages are
      allocated in contiguous chunks that contain pageblock_nr_pages struct
      pages.
      
      Link: http://lkml.kernel.org/r/20181002143821.5112-3-msys.mizuma@gmail.comSigned-off-by: NPavel Tatashin <pavel.tatashin@microsoft.com>
      Signed-off-by: NMasayoshi Mizuma <m.mizuma@jp.fujitsu.com>
      Reviewed-by: NMasayoshi Mizuma <m.mizuma@jp.fujitsu.com>
      Acked-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com>
      Reviewed-by: NOscar Salvador <osalvador@suse.de>
      Cc: Ingo Molnar <mingo@kernel.org>
      Cc: Michal Hocko <mhocko@kernel.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      ec393a0f
    • N
      mm: zero remaining unavailable struct pages · 907ec5fc
      Naoya Horiguchi 提交于
      Patch series "mm: Fix for movable_node boot option", v3.
      
      This patch series contains a fix for the movable_node boot option issue
      which was introduced by commit 124049de ("x86/e820: put !E820_TYPE_RAM
      regions into memblock.reserved").
      
      The commit breaks the option because it changed the memory gap range to
      reserved memblock.  So, the node is marked as Normal zone even if the SRAT
      has Hot pluggable affinity.
      
      First and second patch fix the original issue which the commit tried to
      fix, then revert the commit.
      
      This patch (of 3):
      
      There is a kernel panic that is triggered when reading /proc/kpageflags on
      the kernel booted with kernel parameter 'memmap=nn[KMG]!ss[KMG]':
      
        BUG: unable to handle kernel paging request at fffffffffffffffe
        PGD 9b20e067 P4D 9b20e067 PUD 9b210067 PMD 0
        Oops: 0000 [#1] SMP PTI
        CPU: 2 PID: 1728 Comm: page-types Not tainted 4.17.0-rc6-mm1-v4.17-rc6-180605-0816-00236-g2dfb086ef02c+ #160
        Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.11.0-2.fc28 04/01/2014
        RIP: 0010:stable_page_flags+0x27/0x3c0
        Code: 00 00 00 0f 1f 44 00 00 48 85 ff 0f 84 a0 03 00 00 41 54 55 49 89 fc 53 48 8b 57 08 48 8b 2f 48 8d 42 ff 83 e2 01 48 0f 44 c7 <48> 8b 00 f6 c4 01 0f 84 10 03 00 00 31 db 49 8b 54 24 08 4c 89 e7
        RSP: 0018:ffffbbd44111fde0 EFLAGS: 00010202
        RAX: fffffffffffffffe RBX: 00007fffffffeff9 RCX: 0000000000000000
        RDX: 0000000000000001 RSI: 0000000000000202 RDI: ffffed1182fff5c0
        RBP: ffffffffffffffff R08: 0000000000000001 R09: 0000000000000001
        R10: ffffbbd44111fed8 R11: 0000000000000000 R12: ffffed1182fff5c0
        R13: 00000000000bffd7 R14: 0000000002fff5c0 R15: ffffbbd44111ff10
        FS:  00007efc4335a500(0000) GS:ffff93a5bfc00000(0000) knlGS:0000000000000000
        CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
        CR2: fffffffffffffffe CR3: 00000000b2a58000 CR4: 00000000001406e0
        Call Trace:
         kpageflags_read+0xc7/0x120
         proc_reg_read+0x3c/0x60
         __vfs_read+0x36/0x170
         vfs_read+0x89/0x130
         ksys_pread64+0x71/0x90
         do_syscall_64+0x5b/0x160
         entry_SYSCALL_64_after_hwframe+0x44/0xa9
        RIP: 0033:0x7efc42e75e23
        Code: 09 00 ba 9f 01 00 00 e8 ab 81 f4 ff 66 2e 0f 1f 84 00 00 00 00 00 90 83 3d 29 0a 2d 00 00 75 13 49 89 ca b8 11 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 34 c3 48 83 ec 08 e8 db d3 01 00 48 89 04 24
      
      According to kernel bisection, this problem became visible due to commit
      f7f99100 which changes how struct pages are initialized.
      
      Memblock layout affects the pfn ranges covered by node/zone.  Consider
      that we have a VM with 2 NUMA nodes and each node has 4GB memory, and the
      default (no memmap= given) memblock layout is like below:
      
        MEMBLOCK configuration:
         memory size = 0x00000001fff75c00 reserved size = 0x000000000300c000
         memory.cnt  = 0x4
         memory[0x0]     [0x0000000000001000-0x000000000009efff], 0x000000000009e000 bytes on node 0 flags: 0x0
         memory[0x1]     [0x0000000000100000-0x00000000bffd6fff], 0x00000000bfed7000 bytes on node 0 flags: 0x0
         memory[0x2]     [0x0000000100000000-0x000000013fffffff], 0x0000000040000000 bytes on node 0 flags: 0x0
         memory[0x3]     [0x0000000140000000-0x000000023fffffff], 0x0000000100000000 bytes on node 1 flags: 0x0
         ...
      
      If you give memmap=1G!4G (so it just covers memory[0x2]),
      the range [0x100000000-0x13fffffff] is gone:
      
        MEMBLOCK configuration:
         memory size = 0x00000001bff75c00 reserved size = 0x000000000300c000
         memory.cnt  = 0x3
         memory[0x0]     [0x0000000000001000-0x000000000009efff], 0x000000000009e000 bytes on node 0 flags: 0x0
         memory[0x1]     [0x0000000000100000-0x00000000bffd6fff], 0x00000000bfed7000 bytes on node 0 flags: 0x0
         memory[0x2]     [0x0000000140000000-0x000000023fffffff], 0x0000000100000000 bytes on node 1 flags: 0x0
         ...
      
      This causes shrinking node 0's pfn range because it is calculated by the
      address range of memblock.memory.  So some of struct pages in the gap
      range are left uninitialized.
      
      We have a function zero_resv_unavail() which does zeroing the struct pages
      outside memblock.memory, but currently it covers only the reserved
      unavailable range (i.e.  memblock.memory && !memblock.reserved).  This
      patch extends it to cover all unavailable range, which fixes the reported
      issue.
      
      Link: http://lkml.kernel.org/r/20181002143821.5112-2-msys.mizuma@gmail.com
      Fixes: f7f99100 ("mm: stop zeroing memory during allocation in vmemmap")
      Signed-off-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com>
      Signed-off-by-by: NMasayoshi Mizuma <m.mizuma@jp.fujitsu.com>
      Tested-by: NOscar Salvador <osalvador@suse.de>
      Tested-by: NMasayoshi Mizuma <m.mizuma@jp.fujitsu.com>
      Reviewed-by: NPavel Tatashin <pavel.tatashin@microsoft.com>
      Cc: Ingo Molnar <mingo@kernel.org>
      Cc: Michal Hocko <mhocko@kernel.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      907ec5fc
    • K
      mm/gup_benchmark.c: add additional pinning methods · 714a3a1e
      Keith Busch 提交于
      Provide new gup benchmark ioctl commands to run different user page
      pinning methods, get_user_pages_longterm() and get_user_pages(), in
      addition to the existing get_user_pages_fast().
      
      Link: http://lkml.kernel.org/r/20181010195605.10689-2-keith.busch@intel.comSigned-off-by: NKeith Busch <keith.busch@intel.com>
      Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com>
      Reviewed-by: NAndrew Morton <akpm@linux-foundation.org>
      Cc: Dave Hansen <dave.hansen@intel.com>
      Cc: Dan Williams <dan.j.williams@intel.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      714a3a1e
    • K
      mm/gup_benchmark.c: time put_page() · 26db3d09
      Keith Busch 提交于
      We'd like to measure time to unpin user pages, so this adds a second
      benchmark timer on put_page, separate from get_page.
      
      Adding the field breaks this ioctl ABI, but should be okay since this an
      in-tree kernel selftest.
      
      [akpm@linux-foundation.org: add expansion to struct gup_benchmark for future use]
      Link: http://lkml.kernel.org/r/20181010195605.10689-1-keith.busch@intel.comSigned-off-by: NKeith Busch <keith.busch@intel.com>
      Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com>
      Reviewed-by: NAndrew Morton <akpm@linux-foundation.org>
      Cc: Dave Hansen <dave.hansen@intel.com>
      Cc: Dan Williams <dan.j.williams@intel.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      26db3d09
    • R
      mm: don't raise MEMCG_OOM event due to failed high-order allocation · 7a1adfdd
      Roman Gushchin 提交于
      It was reported that on some of our machines containers were restarted
      with OOM symptoms without an obvious reason.  Despite there were almost no
      memory pressure and plenty of page cache, MEMCG_OOM event was raised
      occasionally, causing the container management software to think, that OOM
      has happened.  However, no tasks have been killed.
      
      The following investigation showed that the problem is caused by a failing
      attempt to charge a high-order page.  In such case, the OOM killer is
      never invoked.  As shown below, it can happen under conditions, which are
      very far from a real OOM: e.g.  there is plenty of clean page cache and no
      memory pressure.
      
      There is no sense in raising an OOM event in this case, as it might
      confuse a user and lead to wrong and excessive actions (e.g.  restart the
      workload, as in my case).
      
      Let's look at the charging path in try_charge().  If the memory usage is
      about memory.max, which is absolutely natural for most memory cgroups, we
      try to reclaim some pages.  Even if we were able to reclaim enough memory
      for the allocation, the following check can fail due to a race with
      another concurrent allocation:
      
          if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
              goto retry;
      
      For regular pages the following condition will save us from triggering
      the OOM:
      
         if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
             goto retry;
      
      But for high-order allocation this condition will intentionally fail.  The
      reason behind is that we'll likely fall to regular pages anyway, so it's
      ok and even preferred to return ENOMEM.
      
      In this case the idea of raising MEMCG_OOM looks dubious.
      
      Fix this by moving MEMCG_OOM raising to mem_cgroup_oom() after allocation
      order check, so that the event won't be raised for high order allocations.
      This change doesn't affect regular pages allocation and charging.
      
      Link: http://lkml.kernel.org/r/20181004214050.7417-1-guro@fb.comSigned-off-by: NRoman Gushchin <guro@fb.com>
      Acked-by: NDavid Rientjes <rientjes@google.com>
      Acked-by: NMichal Hocko <mhocko@kernel.org>
      Acked-by: NJohannes Weiner <hannes@cmpxchg.org>
      Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      7a1adfdd
    • D
      mm/page-writeback.c: fix range_cyclic writeback vs writepages deadlock · 64081362
      Dave Chinner 提交于
      We've recently seen a workload on XFS filesystems with a repeatable
      deadlock between background writeback and a multi-process application
      doing concurrent writes and fsyncs to a small range of a file.
      
      range_cyclic
      writeback		Process 1		Process 2
      
      xfs_vm_writepages
        write_cache_pages
          writeback_index = 2
          cycled = 0
          ....
          find page 2 dirty
          lock Page 2
          ->writepage
            page 2 writeback
            page 2 clean
            page 2 added to bio
          no more pages
      			write()
      			locks page 1
      			dirties page 1
      			locks page 2
      			dirties page 1
      			fsync()
      			....
      			xfs_vm_writepages
      			write_cache_pages
      			  start index 0
      			  find page 1 towrite
      			  lock Page 1
      			  ->writepage
      			    page 1 writeback
      			    page 1 clean
      			    page 1 added to bio
      			  find page 2 towrite
      			  lock Page 2
      			  page 2 is writeback
      			  <blocks>
      						write()
      						locks page 1
      						dirties page 1
      						fsync()
      						....
      						xfs_vm_writepages
      						write_cache_pages
      						  start index 0
      
          !done && !cycled
            sets index to 0, restarts lookup
          find page 1 dirty
      						  find page 1 towrite
      						  lock Page 1
      						  page 1 is writeback
      						  <blocks>
      
          lock Page 1
          <blocks>
      
      DEADLOCK because:
      
      	- process 1 needs page 2 writeback to complete to make
      	  enough progress to issue IO pending for page 1
      	- writeback needs page 1 writeback to complete so process 2
      	  can progress and unlock the page it is blocked on, then it
      	  can issue the IO pending for page 2
      	- process 2 can't make progress until process 1 issues IO
      	  for page 1
      
      The underlying cause of the problem here is that range_cyclic writeback is
      processing pages in descending index order as we hold higher index pages
      in a structure controlled from above write_cache_pages().  The
      write_cache_pages() caller needs to be able to submit these pages for IO
      before write_cache_pages restarts writeback at mapping index 0 to avoid
      wcp inverting the page lock/writeback wait order.
      
      generic_writepages() is not susceptible to this bug as it has no private
      context held across write_cache_pages() - filesystems using this
      infrastructure always submit pages in ->writepage immediately and so there
      is no problem with range_cyclic going back to mapping index 0.
      
      However:
      	mpage_writepages() has a private bio context,
      	exofs_writepages() has page_collect
      	fuse_writepages() has fuse_fill_wb_data
      	nfs_writepages() has nfs_pageio_descriptor
      	xfs_vm_writepages() has xfs_writepage_ctx
      
      All of these ->writepages implementations can hold pages under writeback
      in their private structures until write_cache_pages() returns, and hence
      they are all susceptible to this deadlock.
      
      Also worth noting is that ext4 has it's own bastardised version of
      write_cache_pages() and so it /may/ have an equivalent deadlock.  I looked
      at the code long enough to understand that it has a similar retry loop for
      range_cyclic writeback reaching the end of the file and then promptly ran
      away before my eyes bled too much.  I'll leave it for the ext4 developers
      to determine if their code is actually has this deadlock and how to fix it
      if it has.
      
      There's a few ways I can see avoid this deadlock.  There's probably more,
      but these are the first I've though of:
      
      1. get rid of range_cyclic altogether
      
      2. range_cyclic always stops at EOF, and we start again from
      writeback index 0 on the next call into write_cache_pages()
      
      2a. wcp also returns EAGAIN to ->writepages implementations to
      indicate range cyclic has hit EOF. writepages implementations can
      then flush the current context and call wpc again to continue. i.e.
      lift the retry into the ->writepages implementation
      
      3. range_cyclic uses trylock_page() rather than lock_page(), and it
      skips pages it can't lock without blocking. It will already do this
      for pages under writeback, so this seems like a no-brainer
      
      3a. all non-WB_SYNC_ALL writeback uses trylock_page() to avoid
      blocking as per pages under writeback.
      
      I don't think #1 is an option - range_cyclic prevents frequently
      dirtied lower file offset from starving background writeback of
      rarely touched higher file offsets.
      
      #2 is simple, and I don't think it will have any impact on
      performance as going back to the start of the file implies an
      immediate seek. We'll have exactly the same number of seeks if we
      switch writeback to another inode, and then come back to this one
      later and restart from index 0.
      
      #2a is pretty much "status quo without the deadlock". Moving the
      retry loop up into the wcp caller means we can issue IO on the
      pending pages before calling wcp again, and so avoid locking or
      waiting on pages in the wrong order. I'm not convinced we need to do
      this given that we get the same thing from #2 on the next writeback
      call from the writeback infrastructure.
      
      #3 is really just a band-aid - it doesn't fix the access/wait
      inversion problem, just prevents it from becoming a deadlock
      situation. I'd prefer we fix the inversion, not sweep it under the
      carpet like this.
      
      #3a is really an optimisation that just so happens to include the
      band-aid fix of #3.
      
      So it seems that the simplest way to fix this issue is to implement
      solution #2
      
      Link: http://lkml.kernel.org/r/20181005054526.21507-1-david@fromorbit.comSigned-off-by: NDave Chinner <dchinner@redhat.com>
      Reviewed-by: NJan Kara <jack@suse.de>
      Cc: Nicholas Piggin <npiggin@gmail.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      64081362
    • P
      mm: move mirrored memory specific code outside of memmap_init_zone · a9a9e77f
      Pavel Tatashin 提交于
      memmap_init_zone, is getting complex, because it is called from different
      contexts: hotplug, and during boot, and also because it must handle some
      architecture quirks.  One of them is mirrored memory.
      
      Move the code that decides whether to skip mirrored memory outside of
      memmap_init_zone, into a separate function.
      
      [pasha.tatashin@oracle.com: uninline overlap_memmap_init()]
        Link: http://lkml.kernel.org/r/20180726193509.3326-4-pasha.tatashin@oracle.com
      Link: http://lkml.kernel.org/r/20180724235520.10200-4-pasha.tatashin@oracle.comSigned-off-by: NPavel Tatashin <pasha.tatashin@oracle.com>
      Reviewed-by: NOscar Salvador <osalvador@suse.de>
      Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
      Cc: Abdul Haleem <abdhalee@linux.vnet.ibm.com>
      Cc: Baoquan He <bhe@redhat.com>
      Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
      Cc: Dan Williams <dan.j.williams@intel.com>
      Cc: Dave Hansen <dave.hansen@intel.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
      Cc: Ingo Molnar <mingo@kernel.org>
      Cc: Jan Kara <jack@suse.cz>
      Cc: Jérôme Glisse <jglisse@redhat.com>
      Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
      Cc: Michael Ellerman <mpe@ellerman.id.au>
      Cc: Michal Hocko <mhocko@suse.com>
      Cc: Souptick Joarder <jrdr.linux@gmail.com>
      Cc: Steven Sistare <steven.sistare@oracle.com>
      Cc: Vlastimil Babka <vbabka@suse.cz>
      Cc: Wei Yang <richard.weiyang@gmail.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      a9a9e77f
    • P
      mm: calculate deferred pages after skipping mirrored memory · d3035be4
      Pavel Tatashin 提交于
      update_defer_init() should be called only when struct page is about to be
      initialized. Because it counts number of initialized struct pages, but
      there we may skip struct pages if there is some mirrored memory.
      
      So move, update_defer_init() after checking for mirrored memory.
      
      Also, rename update_defer_init() to defer_init() and reverse the return
      boolean to emphasize that this is a boolean function, that tells that the
      reset of memmap initialization should be deferred.
      
      Make this function self-contained: do not pass number of already
      initialized pages in this zone by using static counters.
      
      I found this bug by reading the code.  The effect is that fewer than
      expected struct pages are initialized early in boot, and it is possible
      that in some corner cases we may fail to boot when mirrored pages are
      used.  The deferred on demand code should somewhat mitigate this.  But
      this still brings some inconsistencies compared to when booting without
      mirrored pages, so it is better to fix.
      
      [pasha.tatashin@oracle.com: add comment about defer_init's lack of locking]
        Link: http://lkml.kernel.org/r/20180726193509.3326-3-pasha.tatashin@oracle.com
      [akpm@linux-foundation.org: make defer_init non-inline, __meminit]
      Link: http://lkml.kernel.org/r/20180724235520.10200-3-pasha.tatashin@oracle.comSigned-off-by: NPavel Tatashin <pasha.tatashin@oracle.com>
      Reviewed-by: NOscar Salvador <osalvador@suse.de>
      Cc: Abdul Haleem <abdhalee@linux.vnet.ibm.com>
      Cc: Baoquan He <bhe@redhat.com>
      Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
      Cc: Dan Williams <dan.j.williams@intel.com>
      Cc: Dave Hansen <dave.hansen@intel.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
      Cc: Ingo Molnar <mingo@kernel.org>
      Cc: Jan Kara <jack@suse.cz>
      Cc: Jérôme Glisse <jglisse@redhat.com>
      Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
      Cc: Michael Ellerman <mpe@ellerman.id.au>
      Cc: Michal Hocko <mhocko@suse.com>
      Cc: Souptick Joarder <jrdr.linux@gmail.com>
      Cc: Steven Sistare <steven.sistare@oracle.com>
      Cc: Vlastimil Babka <vbabka@suse.cz>
      Cc: Wei Yang <richard.weiyang@gmail.com>
      Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      d3035be4