1. 09 11月, 2018 1 次提交
  2. 05 10月, 2018 1 次提交
  3. 28 9月, 2018 2 次提交
  4. 04 9月, 2018 2 次提交
  5. 31 5月, 2018 2 次提交
    • E
      crypto: x86/salsa20 - remove x86 salsa20 implementations · b7b73cd5
      Eric Biggers 提交于
      The x86 assembly implementations of Salsa20 use the frame base pointer
      register (%ebp or %rbp), which breaks frame pointer convention and
      breaks stack traces when unwinding from an interrupt in the crypto code.
      Recent (v4.10+) kernels will warn about this, e.g.
      
      WARNING: kernel stack regs at 00000000a8291e69 in syzkaller047086:4677 has bad 'bp' value 000000001077994c
      [...]
      
      But after looking into it, I believe there's very little reason to still
      retain the x86 Salsa20 code.  First, these are *not* vectorized
      (SSE2/SSSE3/AVX2) implementations, which would be needed to get anywhere
      close to the best Salsa20 performance on any remotely modern x86
      processor; they're just regular x86 assembly.  Second, it's still
      unclear that anyone is actually using the kernel's Salsa20 at all,
      especially given that now ChaCha20 is supported too, and with much more
      efficient SSSE3 and AVX2 implementations.  Finally, in benchmarks I did
      on both Intel and AMD processors with both gcc 8.1.0 and gcc 4.9.4, the
      x86_64 salsa20-asm is actually slightly *slower* than salsa20-generic
      (~3% slower on Skylake, ~10% slower on Zen), while the i686 salsa20-asm
      is only slightly faster than salsa20-generic (~15% faster on Skylake,
      ~20% faster on Zen).  The gcc version made little difference.
      
      So, the x86_64 salsa20-asm is pretty clearly useless.  That leaves just
      the i686 salsa20-asm, which based on my tests provides a 15-20% speed
      boost.  But that's without updating the code to not use %ebp.  And given
      the maintenance cost, the small speed difference vs. salsa20-generic,
      the fact that few people still use i686 kernels, the doubt that anyone
      is even using the kernel's Salsa20 at all, and the fact that a SSE2
      implementation would almost certainly be much faster on any remotely
      modern x86 processor yet no one has cared enough to add one yet, I don't
      think it's worthwhile to keep.
      
      Thus, just remove both the x86_64 and i686 salsa20-asm implementations.
      
      Reported-by: syzbot+ffa3a158337bbc01ff09@syzkaller.appspotmail.com
      Signed-off-by: NEric Biggers <ebiggers@google.com>
      Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
      b7b73cd5
    • O
      crypto: morus - Mark MORUS SIMD glue as x86-specific · 2808f173
      Ondrej Mosnacek 提交于
      Commit 56e8e57f ("crypto: morus - Add common SIMD glue code for
      MORUS") accidetally consiedered the glue code to be usable by different
      architectures, but it seems to be only usable on x86.
      
      This patch moves it under arch/x86/crypto and adds 'depends on X86' to
      the Kconfig options and also removes the prompt to hide these internal
      options from the user.
      Reported-by: Nkbuild test robot <lkp@intel.com>
      Signed-off-by: NOndrej Mosnacek <omosnacek@gmail.com>
      Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
      2808f173
  6. 19 5月, 2018 5 次提交
  7. 21 4月, 2018 1 次提交
    • N
      crypto: zstd - Add zstd support · d28fc3db
      Nick Terrell 提交于
      Adds zstd support to crypto and scompress. Only supports the default
      level.
      
      Previously we held off on this patch, since there weren't any users.
      Now zram is ready for zstd support, but depends on CONFIG_CRYPTO_ZSTD,
      which isn't defined until this patch is in. I also see a patch adding
      zstd to pstore [0], which depends on crypto zstd.
      
      [0] lkml.kernel.org/r/9c9416b2dff19f05fb4c35879aaa83d11ff72c92.1521626182.git.geliangtang@gmail.com
      Signed-off-by: NNick Terrell <terrelln@fb.com>
      Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
      d28fc3db
  8. 16 3月, 2018 1 次提交
  9. 09 3月, 2018 1 次提交
  10. 03 3月, 2018 23 次提交
  11. 22 2月, 2018 1 次提交
    • E
      crypto: speck - add support for the Speck block cipher · da7a0ab5
      Eric Biggers 提交于
      Add a generic implementation of Speck, including the Speck128 and
      Speck64 variants.  Speck is a lightweight block cipher that can be much
      faster than AES on processors that don't have AES instructions.
      
      We are planning to offer Speck-XTS (probably Speck128/256-XTS) as an
      option for dm-crypt and fscrypt on Android, for low-end mobile devices
      with older CPUs such as ARMv7 which don't have the Cryptography
      Extensions.  Currently, such devices are unencrypted because AES is not
      fast enough, even when the NEON bit-sliced implementation of AES is
      used.  Other AES alternatives such as Twofish, Threefish, Camellia,
      CAST6, and Serpent aren't fast enough either; it seems that only a
      modern ARX cipher can provide sufficient performance on these devices.
      
      This is a replacement for our original proposal
      (https://patchwork.kernel.org/patch/10101451/) which was to offer
      ChaCha20 for these devices.  However, the use of a stream cipher for
      disk/file encryption with no space to store nonces would have been much
      more insecure than we thought initially, given that it would be used on
      top of flash storage as well as potentially on top of F2FS, neither of
      which is guaranteed to overwrite data in-place.
      
      Speck has been somewhat controversial due to its origin.  Nevertheless,
      it has a straightforward design (it's an ARX cipher), and it appears to
      be the leading software-optimized lightweight block cipher currently,
      with the most cryptanalysis.  It's also easy to implement without side
      channels, unlike AES.  Moreover, we only intend Speck to be used when
      the status quo is no encryption, due to AES not being fast enough.
      
      We've also considered a novel length-preserving encryption mode based on
      ChaCha20 and Poly1305.  While theoretically attractive, such a mode
      would be a brand new crypto construction and would be more complicated
      and difficult to implement efficiently in comparison to Speck-XTS.
      
      There is confusion about the byte and word orders of Speck, since the
      original paper doesn't specify them.  But we have implemented it using
      the orders the authors recommended in a correspondence with them.  The
      test vectors are taken from the original paper but were mapped to byte
      arrays using the recommended byte and word orders.
      Signed-off-by: NEric Biggers <ebiggers@google.com>
      Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
      da7a0ab5