- 25 1月, 2017 4 次提交
-
-
由 Song Liu 提交于
write-back cache in degraded mode introduces corner cases to the array. Although we try to cover all these corner cases, it is safer to just disable write-back cache when the array is in degraded mode. In this patch, we disable writeback cache for degraded mode: 1. On device failure, if the array enters degraded mode, raid5_error() will submit async job r5c_disable_writeback_async to disable writeback; 2. In r5c_journal_mode_store(), it is invalid to enable writeback in degraded mode; 3. In r5c_try_caching_write(), stripes with s->failed>0 will be handled in write-through mode. Signed-off-by: NSong Liu <songliubraving@fb.com> Signed-off-by: NShaohua Li <shli@fb.com>
-
由 Song Liu 提交于
For safer operation, all arrays start in write-through mode, which has been better tested and is more mature. And actually the write-through/write-mode isn't persistent after array restarted, so we always start array in write-through mode. However, if recovery found data-only stripes before the shutdown (from previous write-back mode), it is not safe to start the array in write-through mode, as write-through mode can not handle stripes with data in write-back cache. To solve this problem, we flush all data-only stripes in r5l_recovery_log(). When r5l_recovery_log() returns, the array starts with empty cache in write-through mode. This logic is implemented in r5c_recovery_flush_data_only_stripes(): 1. enable write back cache 2. flush all stripes 3. wake up conf->mddev->thread 4. wait for all stripes get flushed (reuse wait_for_quiescent) 5. disable write back cache The wait in 4 will be waked up in release_inactive_stripe_list() when conf->active_stripes reaches 0. It is safe to wake up mddev->thread here because all the resource required for the thread has been initialized. Signed-off-by: NSong Liu <songliubraving@fb.com> Signed-off-by: NShaohua Li <shli@fb.com>
-
由 Song Liu 提交于
With write back cache, we use orig_page to do prexor. This patch makes sure we read data into orig_page for it. Flag R5_OrigPageUPTDODATE is added to show whether orig_page has the latest data from raid disk. We introduce a helper function uptodate_for_rmw() to simplify the a couple conditions in handle_stripe_dirtying(). Signed-off-by: NSong Liu <songliubraving@fb.com> Signed-off-by: NShaohua Li <shli@fb.com>
-
由 Shaohua Li 提交于
sector_t is unsigned long, it's never < 0 Reported-by: NJulia Lawall <julia.lawall@lip6.fr> Signed-off-by: NShaohua Li <shli@fb.com>
-
- 06 1月, 2017 4 次提交
-
-
由 Colin Ian King 提交于
Trivial fix to spelling mistake "recoverying" to "recovering" in pr_dbg message. Signed-off-by: NColin Ian King <colin.king@canonical.com> Signed-off-by: NShaohua Li <shli@fb.com>
-
由 Song Liu 提交于
r5l_load_log() calls functions that requires a proper conf->log, for example, r5c_is_writeback(). Therefore, we should set conf->log before calling r5l_load_log(). If r5l_load_log() fails, conf->log is set back to NULL. Signed-off-by: NSong Liu <songliubraving@fb.com> Signed-off-by: NShaohua Li <shli@fb.com>
-
由 Song Liu 提交于
We only need to update sh->log_start at the end of recovery, which is r5c_recovery_rewrite_data_only_stripes(), so it is not necessary to set it before that. In this patch, log_start is removed from r5c_recovery_alloc_stripe(). After updating all sh->log_start, rewrite_data_only_stripes() also updates log->next_checkpoints to the last sh->log_start. Signed-off-by: NSong Liu <songliubraving@fb.com> Signed-off-by: NShaohua Li <shli@fb.com>
-
由 JackieLiu 提交于
The write-through mode has been returned in front of the function, do not need to do it again. Signed-off-by: NJackieLiu <liuyun01@kylinos.cn> Reviewed-by: NSong Liu <songliubraving@fb.com> Signed-off-by: NShaohua Li <shli@fb.com>
-
- 09 12月, 2016 4 次提交
-
-
由 Shaohua Li 提交于
The mddev->flags are used for different purposes. There are a lot of places we check/change the flags without masking unrelated flags, we could check/change unrelated flags. These usage are most for superblock write, so spearate superblock related flags. This should make the code clearer and also fix real bugs. Reviewed-by: NNeilBrown <neilb@suse.com> Signed-off-by: NShaohua Li <shli@fb.com>
-
由 Song Liu 提交于
Currently, we increase journal entry seq by 10 after recovery. However, this is not sufficient in the following case. After crash the journal looks like | seq+0 | +1 | +2 | +3 | +4 | +5 | +6 | +7 | ... | +11 | +12 | If +1 is not valid, we dropped all entries from +1 to +12; and write seq+10: | seq+0 | +10 | +2 | +3 | +4 | +5 | +6 | +7 | ... | +11 | +12 | However, if we write a big journal entry with seq+11, it will connect with some stale journal entry: | seq+0 | +10 | +11 | +12 | To reduce the risk of this issue, we increase seq by 10000 instead. Shaohua: use 10000 instead of 1000. The risk should be very unlikely. The total stripe cache size is less than 2k typically, and several stripes can fit into one meta data block. So the total inflight meta data blocks would be quite small, which means the the total sequence number used should be quite small. The 10000 sequence number increase should be far more than safe. Signed-off-by: NSong Liu <songliubraving@fb.com> Signed-off-by: NShaohua Li <shli@fb.com>
-
由 Song Liu 提交于
r5l_recovery_create_empty_meta_block() creates crc for the empty metablock. After the metablock is updated, we need clear the checksum before recalculate it. Shaohua: moved checksum calculation out of r5l_recovery_create_empty_meta_block. We should calculate it after all fields are updated. Signed-off-by: NSong Liu <songliubraving@fb.com> Signed-off-by: NShaohua Li <shli@fb.com>
-
由 JackieLiu 提交于
When create the super-block information, We do not need to do this recovery stage, only need to initialize some variables. Signed-off-by: NJackieLiu <liuyun01@kylinos.cn> Reviewed-by: NSong Liu <songliubraving@fb.com> Signed-off-by: NShaohua Li <shli@fb.com>
-
- 06 12月, 2016 2 次提交
-
-
由 Zhengyuan Liu 提交于
We should update log state after we did a log recovery, current completion may get wrong log state since log->log_start wasn't initalized until we called r5l_recovery_log. At log recovery stage, no lock needed as there is no race conditon. next_checkpoint field will be initialized in r5l_recovery_log too. Signed-off-by: NZhengyuan Liu <liuzhengyuan@kylinos.cn> Signed-off-by: NShaohua Li <shli@fb.com>
-
由 JackieLiu 提交于
When recovery is complete, we write an empty block and record his position first, then make the data-only stripes rewritten done, the location of the empty block as the last checkpoint position to write into the super block. And we should update last_checkpoint to this empty block position. ------------------------------------------------------------------ | old log | empty block | data only stripes | invalid log | ------------------------------------------------------------------ ^ ^ ^ | |- log->last_checkpoint |- log->log_start | |- log->last_cp_seq |- log->next_checkpoint |- log->seq=n |- log->seq=10+n At the same time, if there is no data-only stripes, this scene may appear, | meta1 | meta2 | meta3 | meta 1 is valid, meta 2 is invalid. meta 3 could be valid. so we should The solution is we create a new meta in meta2 with its seq == meta1's seq + 10 and let superblock points to meta2. Signed-off-by: NJackieLiu <liuyun01@kylinos.cn> Reviewed-by: NZhengyuan Liu <liuzhengyuan@kylinos.cn> Reviewed-by: NSong Liu <songliubraving@fb.com> Signed-off-by: NShaohua Li <shli@fb.com>
-
- 03 12月, 2016 1 次提交
-
-
由 Song Liu 提交于
With writeback cache, we define log space critical as free_space < 2 * reclaim_required_space So the deassert of R5C_LOG_CRITICAL could happen when 1. free_space increases 2. reclaim_required_space decreases Currently, run_no_space_stripes() is called when 1 happens, but not (always) when 2 happens. With this patch, run_no_space_stripes() is call when R5C_LOG_CRITICAL is cleared. Signed-off-by: NSong Liu <songliubraving@fb.com> Signed-off-by: NShaohua Li <shli@fb.com>
-
- 30 11月, 2016 7 次提交
-
-
由 JackieLiu 提交于
R5c_make_stripe_write_out has set this flag, do not need to set again. Signed-off-by: NJackieLiu <liuyun01@kylinos.cn> Signed-off-by: NShaohua Li <shli@fb.com>
-
由 JackieLiu 提交于
The next_cp_seq field is useless, remove it. Signed-off-by: NJackieLiu <liuyun01@kylinos.cn> Signed-off-by: NShaohua Li <shli@fb.com>
-
由 JackieLiu 提交于
If we released the 'stripe_head' in r5c_recovery_flush_log, ctx->cached_list will both release the data-parity stripes and data-only stripes, which will become empty. And we also need to use the data-only stripes in r5c_recovery_rewrite_data_only_stripes, so we should wait util rewrite data-only stripes is done before releasing them. Reviewed-by: NZhengyuan Liu <liuzhengyuan@kylinos.cn> Reviewed-by: NSong Liu <songliubraving@fb.com> Signed-off-by: NJackieLiu <liuyun01@kylinos.cn> Signed-off-by: NShaohua Li <shli@fb.com>
-
由 JackieLiu 提交于
'write_pos' must be protected with 'r5l_ring_add', or it may overflow Signed-off-by: NJackieLiu <liuyun01@kylinos.cn> Reviewed-by: NSong Liu <songliubraving@fb.com> Signed-off-by: NShaohua Li <shli@fb.com>
-
由 JackieLiu 提交于
The function parameter 'recovery_list' is not used in body, we can delete it Signed-off-by: NJackieLiu <liuyun01@kylinos.cn> Reviewed-by: NSong Liu <songliubraving@fb.com> Signed-off-by: NShaohua Li <shli@fb.com>
-
由 Zhengyuan Liu 提交于
r5c_recovery_load_one_stripe should not set STRIPE_R5C_PARTIAL_STRIPE flag,as the data-only stripe may be STRIPE_R5C_FULL_STRIPE stripe. The state machine would release the stripe later and add it into neither r5c_cached_full_stripes list or r5c_cached_partial_stripes list and set correct flag. Reviewed-by: NJackieLiu <liuyun01@kylinos.cn> Signed-off-by: NZhengyuan Liu <liuzhengyuan@kylinos.cn> Signed-off-by: NShaohua Li <shli@fb.com>
-
由 Zhengyuan Liu 提交于
New stripe that was just allocated has no STRIPE_R5C_CACHING state too, add this check condition could avoid unnecessary replaying for empty stripe. r5l_recovery_replay_one_stripe would reset stripe for any case, delete it to make code more clean. Signed-off-by: NZhengyuan Liu <liuzhengyuan@kylinos.cn> Signed-off-by: NShaohua Li <shli@fb.com>
-
- 28 11月, 2016 2 次提交
-
-
由 Dan Carpenter 提交于
We need to re-enable the IRQs here before returning. Fixes: a39f7afd ("md/r5cache: write-out phase and reclaim support") Signed-off-by: NDan Carpenter <dan.carpenter@oracle.com> Signed-off-by: NShaohua Li <shli@fb.com>
-
由 Song Liu 提交于
RMW of r5c write back cache uses an extra page to store old data for prexor. handle_stripe_dirtying() allocates this page by calling alloc_page(). However, alloc_page() may fail. To handle alloc_page() failures, this patch adds an extra page to disk_info. When alloc_page fails, handle_stripe() trys to use these pages. When these pages are used by other stripe (R5C_EXTRA_PAGE_IN_USE), the stripe is added to delayed_list. Signed-off-by: NSong Liu <songliubraving@fb.com> Reviewed-by: NNeilBrown <neilb@suse.com> Signed-off-by: NShaohua Li <shli@fb.com>
-
- 24 11月, 2016 1 次提交
-
-
由 Shaohua Li 提交于
There is mechanism to suspend a kernel thread. Use it instead of playing create/destroy game. Signed-off-by: NShaohua Li <shli@fb.com> Reviewed-by: NNeilBrown <neilb@suse.de> Cc: Song Liu <songliubraving@fb.com>
-
- 22 11月, 2016 1 次提交
-
-
由 Ming Lei 提交于
Some drivers often use external bvec table, so introduce this helper for this case. It is always safe to access the bio->bi_io_vec in this way for this case. After converting to this usage, it will becomes a bit easier to evaluate the remaining direct access to bio->bi_io_vec, so it can help to prepare for the following multipage bvec support. Signed-off-by: NMing Lei <tom.leiming@gmail.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Fixed up the new O_DIRECT cases. Signed-off-by: NJens Axboe <axboe@fb.com>
-
- 19 11月, 2016 9 次提交
-
-
由 Song Liu 提交于
With raid5 cache, we committing data from journal device. When there is flush request, we need to flush journal device's cache. This was not needed in raid5 journal, because we will flush the journal before committing data to raid disks. This is similar to FUA, except that we also need flush journal for FUA. Otherwise, corruptions in earlier meta data will stop recovery from reaching FUA data. slightly changed the code by Shaohua Signed-off-by: NSong Liu <songliubraving@fb.com> Signed-off-by: NShaohua Li <shli@fb.com>
-
由 Song Liu 提交于
1. In previous patch, we: - add new data to r5l_recovery_ctx - add new functions to recovery write-back cache The new functions are not used in this patch, so this patch does not change the behavior of recovery. 2. In this patchpatch, we: - modify main recovery procedure r5l_recovery_log() to call new functions - remove old functions Signed-off-by: NSong Liu <songliubraving@fb.com> Signed-off-by: NShaohua Li <shli@fb.com>
-
由 Song Liu 提交于
Recovery of write-back cache has different logic to write-through only cache. Specifically, for write-back cache, the recovery need to scan through all active journal entries before flushing data out. Therefore, large portion of the recovery logic is rewritten here. To make the diffs cleaner, we split the rewrite as follows: 1. In this patch, we: - add new data to r5l_recovery_ctx - add new functions to recovery write-back cache The new functions are not used in this patch, so this patch does not change the behavior of recovery. 2. In next patch, we: - modify main recovery procedure r5l_recovery_log() to call new functions - remove old functions With cache feature, there are 2 different scenarios of recovery: 1. Data-Parity stripe: a stripe with complete parity in journal. 2. Data-Only stripe: a stripe with only data in journal (or partial parity). The code differentiate Data-Parity stripe from Data-Only stripe with flag STRIPE_R5C_CACHING. For Data-Parity stripes, we use the same procedure as raid5 journal, where all the data and parity are replayed to the RAID devices. For Data-Only strips, we need to finish complete calculate parity and finish the full reconstruct write or RMW write. For simplicity, in the recovery, we load the stripe to stripe cache. Once the array is started, the stripe cache state machine will handle these stripes through normal write path. r5c_recovery_flush_log contains the main procedure of recovery. The recovery code first scans through the journal and loads data to stripe cache. The code keeps tracks of all these stripes in a list (use sh->lru and ctx->cached_list), stripes in the list are organized in the order of its first appearance on the journal. During the scan, the recovery code assesses each stripe as Data-Parity or Data-Only. During scan, the array may run out of stripe cache. In these cases, the recovery code will also call raid5_set_cache_size to increase stripe cache size. If the array still runs out of stripe cache because there isn't enough memory, the array will not assemble. At the end of scan, the recovery code replays all Data-Parity stripes, and sets proper states for Data-Only stripes. The recovery code also increases seq number by 10 and rewrites all Data-Only stripes to journal. This is to avoid confusion after repeated crashes. More details is explained in raid5-cache.c before r5c_recovery_rewrite_data_only_stripes(). Signed-off-by: NSong Liu <songliubraving@fb.com> Signed-off-by: NShaohua Li <shli@fb.com>
-
由 Song Liu 提交于
1. rename r5l_read_meta_block() as r5l_recovery_read_meta_block(); 2. pull the code that initialize r5l_meta_block from r5l_log_write_empty_meta_block() to a separate function r5l_recovery_create_empty_meta_block(), so that we can reuse this piece of code. Signed-off-by: NSong Liu <songliubraving@fb.com> Signed-off-by: NShaohua Li <shli@fb.com>
-
由 Song Liu 提交于
With write cache, journal_mode is the knob to switch between write-back and write-through. Below is an example: root@virt-test:~/# cat /sys/block/md0/md/journal_mode [write-through] write-back root@virt-test:~/# echo write-back > /sys/block/md0/md/journal_mode root@virt-test:~/# cat /sys/block/md0/md/journal_mode write-through [write-back] Signed-off-by: NSong Liu <songliubraving@fb.com> Signed-off-by: NShaohua Li <shli@fb.com>
-
由 Song Liu 提交于
There are two limited resources, stripe cache and journal disk space. For better performance, we priotize reclaim of full stripe writes. To free up more journal space, we free earliest data on the journal. In current implementation, reclaim happens when: 1. Periodically (every R5C_RECLAIM_WAKEUP_INTERVAL, 30 seconds) reclaim if there is no reclaim in the past 5 seconds. 2. when there are R5C_FULL_STRIPE_FLUSH_BATCH (256) cached full stripes, or cached stripes is enough for a full stripe (chunk size / 4k) (r5c_check_cached_full_stripe) 3. when there is pressure on stripe cache (r5c_check_stripe_cache_usage) 4. when there is pressure on journal space (r5l_write_stripe, r5c_cache_data) r5c_do_reclaim() contains new logic of reclaim. For stripe cache: When stripe cache pressure is high (more than 3/4 stripes are cached, or there is empty inactive lists), flush all full stripe. If fewer than R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2) full stripes are flushed, flush some paritial stripes. When stripe cache pressure is moderate (1/2 to 3/4 of stripes are cached), flush all full stripes. For log space: To avoid deadlock due to log space, we need to reserve enough space to flush cached data. The size of required log space depends on total number of cached stripes (stripe_in_journal_count). In current implementation, the writing-out phase automatically include pending data writes with parity writes (similar to write through case). Therefore, we need up to (conf->raid_disks + 1) pages for each cached stripe (1 page for meta data, raid_disks pages for all data and parity). r5c_log_required_to_flush_cache() calculates log space required to flush cache. In the following, we refer to the space calculated by r5c_log_required_to_flush_cache() as reclaim_required_space. Two flags are added to r5conf->cache_state: R5C_LOG_TIGHT and R5C_LOG_CRITICAL. R5C_LOG_TIGHT is set when free space on the log device is less than 3x of reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log device is less than 2x of reclaim_required_space. r5c_cache keeps all data in cache (not fully committed to RAID) in a list (stripe_in_journal_list). These stripes are in the order of their first appearance on the journal. So the log tail (last_checkpoint) should point to the journal_start of the first item in the list. When R5C_LOG_TIGHT is set, r5l_reclaim_thread starts flushing out stripes at the head of stripe_in_journal. When R5C_LOG_CRITICAL is set, the state machine only writes data that are already in the log device (in stripe_in_journal_list). This patch includes a fix to improve performance by Shaohua Li <shli@fb.com>. Signed-off-by: NSong Liu <songliubraving@fb.com> Signed-off-by: NShaohua Li <shli@fb.com>
-
由 Song Liu 提交于
As described in previous patch, write back cache operates in two phases: caching and writing-out. The caching phase works as: 1. write data to journal (r5c_handle_stripe_dirtying, r5c_cache_data) 2. call bio_endio (r5c_handle_data_cached, r5c_return_dev_pending_writes). Then the writing-out phase is as: 1. Mark the stripe as write-out (r5c_make_stripe_write_out) 2. Calcualte parity (reconstruct or RMW) 3. Write parity (and maybe some other data) to journal device 4. Write data and parity to RAID disks This patch implements caching phase. The cache is integrated with stripe cache of raid456. It leverages code of r5l_log to write data to journal device. Writing-out phase of the cache is implemented in the next patch. With r5cache, write operation does not wait for parity calculation and write out, so the write latency is lower (1 write to journal device vs. read and then write to raid disks). Also, r5cache will reduce RAID overhead (multipile IO due to read-modify-write of parity) and provide more opportunities of full stripe writes. This patch adds 2 flags to stripe_head.state: - STRIPE_R5C_PARTIAL_STRIPE, - STRIPE_R5C_FULL_STRIPE, Instead of inactive_list, stripes with cached data are tracked in r5conf->r5c_full_stripe_list and r5conf->r5c_partial_stripe_list. STRIPE_R5C_FULL_STRIPE and STRIPE_R5C_PARTIAL_STRIPE are flags for stripes in these lists. Note: stripes in r5c_full/partial_stripe_list are not considered as "active". For RMW, the code allocates an extra page for each data block being updated. This is stored in r5dev->orig_page and the old data is read into it. Then the prexor calculation subtracts ->orig_page from the parity block, and the reconstruct calculation adds the ->page data back into the parity block. r5cache naturally excludes SkipCopy. When the array has write back cache, async_copy_data() will not skip copy. There are some known limitations of the cache implementation: 1. Write cache only covers full page writes (R5_OVERWRITE). Writes of smaller granularity are write through. 2. Only one log io (sh->log_io) for each stripe at anytime. Later writes for the same stripe have to wait. This can be improved by moving log_io to r5dev. 3. With writeback cache, read path must enter state machine, which is a significant bottleneck for some workloads. 4. There is no per stripe checkpoint (with r5l_payload_flush) in the log, so recovery code has to replay more than necessary data (sometimes all the log from last_checkpoint). This reduces availability of the array. This patch includes a fix proposed by ZhengYuan Liu <liuzhengyuan@kylinos.cn> Signed-off-by: NSong Liu <songliubraving@fb.com> Signed-off-by: NShaohua Li <shli@fb.com>
-
由 Song Liu 提交于
This patch adds state machine for raid5-cache. With log device, the raid456 array could operate in two different modes (r5c_journal_mode): - write-back (R5C_MODE_WRITE_BACK) - write-through (R5C_MODE_WRITE_THROUGH) Existing code of raid5-cache only has write-through mode. For write-back cache, it is necessary to extend the state machine. With write-back cache, every stripe could operate in two different phases: - caching - writing-out In caching phase, the stripe handles writes as: - write to journal - return IO In writing-out phase, the stripe behaviors as a stripe in write through mode R5C_MODE_WRITE_THROUGH. STRIPE_R5C_CACHING is added to sh->state to differentiate caching and writing-out phase. Please note: this is a "no-op" patch for raid5-cache write-through mode. The following detailed explanation is copied from the raid5-cache.c: /* * raid5 cache state machine * * With rhe RAID cache, each stripe works in two phases: * - caching phase * - writing-out phase * * These two phases are controlled by bit STRIPE_R5C_CACHING: * if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase * if STRIPE_R5C_CACHING == 1, the stripe is in caching phase * * When there is no journal, or the journal is in write-through mode, * the stripe is always in writing-out phase. * * For write-back journal, the stripe is sent to caching phase on write * (r5c_handle_stripe_dirtying). r5c_make_stripe_write_out() kicks off * the write-out phase by clearing STRIPE_R5C_CACHING. * * Stripes in caching phase do not write the raid disks. Instead, all * writes are committed from the log device. Therefore, a stripe in * caching phase handles writes as: * - write to log device * - return IO * * Stripes in writing-out phase handle writes as: * - calculate parity * - write pending data and parity to journal * - write data and parity to raid disks * - return IO for pending writes */ Signed-off-by: NSong Liu <songliubraving@fb.com> Signed-off-by: NShaohua Li <shli@fb.com>
-
由 Song Liu 提交于
Currently, r5l_write_stripe checks meta size for each stripe write, which is not necessary. With this patch, r5l_init_log checks maximal meta size of the array, which is (r5l_meta_block + raid_disks x r5l_payload_data_parity). If this is too big to fit in one page, r5l_init_log aborts. With current meta data, r5l_log support raid_disks up to 203. Signed-off-by: NSong Liu <songliubraving@fb.com> Signed-off-by: NShaohua Li <shli@fb.com>
-
- 18 11月, 2016 1 次提交
-
-
由 Shaohua Li 提交于
lockdep reports warning of the rcu_dereference usage. Using normal rdev access pattern to avoid the warning. Signed-off-by: NShaohua Li <shli@fb.com>
-
- 08 11月, 2016 1 次提交
-
-
由 JackieLiu 提交于
We can calculate this offset by using ctx->meta_total_blocks, without passing in from the function Signed-off-by: NJackieLiu <liuyun01@kylinos.cn> Signed-off-by: NShaohua Li <shli@fb.com>
-
- 01 11月, 2016 1 次提交
-
-
由 Christoph Hellwig 提交于
Remove the WRITE_* and READ_SYNC wrappers, and just use the flags directly. Where applicable this also drops usage of the bio_set_op_attrs wrapper. Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NJens Axboe <axboe@fb.com>
-
- 29 10月, 2016 1 次提交
-
-
由 Shaohua Li 提交于
As long as we recover one metadata block, we should write the empty metadata write. The original code could make recovery corrupted if only one meta is valid. Reported-by: NZhengyuan Liu <liuzhengyuan@kylinos.cn> Signed-off-by: NShaohua Li <shli@fb.com>
-
- 25 10月, 2016 1 次提交
-
-
由 Zhengyuan Liu 提交于
If superblock points to an invalid meta block, r5l_load_log will set create_super with true and create an new superblock, this runtime path would always happen if we do no writing I/O to this array since it was created. Writing an empty meta block could avoid this unnecessary action at the first time we created log superblock. Another reason is for the corretness of log recovery. Currently we have bellow code to guarantee log revocery to be correct. if (ctx.seq > log->last_cp_seq + 1) { int ret; ret = r5l_log_write_empty_meta_block(log, ctx.pos, ctx.seq + 10); if (ret) return ret; log->seq = ctx.seq + 11; log->log_start = r5l_ring_add(log, ctx.pos, BLOCK_SECTORS); r5l_write_super(log, ctx.pos); } else { log->log_start = ctx.pos; log->seq = ctx.seq; } If we just created a array with a journal device, log->log_start and log->last_checkpoint should all be 0, then we write three meta block which are valid except mid one and supposed crash happened. The ctx.seq would equal to log->last_cp_seq + 1 and log->log_start would be set to position of mid invalid meta block after we did a recovery, this will lead to problems which could be avoided with this patch. Signed-off-by: NZhengyuan Liu <liuzhengyuan@kylinos.cn> Signed-off-by: NShaohua Li <shli@fb.com>
-