1. 30 7月, 2018 2 次提交
  2. 31 3月, 2018 1 次提交
  3. 20 1月, 2018 1 次提交
  4. 02 11月, 2017 1 次提交
    • G
      License cleanup: add SPDX GPL-2.0 license identifier to files with no license · b2441318
      Greg Kroah-Hartman 提交于
      Many source files in the tree are missing licensing information, which
      makes it harder for compliance tools to determine the correct license.
      
      By default all files without license information are under the default
      license of the kernel, which is GPL version 2.
      
      Update the files which contain no license information with the 'GPL-2.0'
      SPDX license identifier.  The SPDX identifier is a legally binding
      shorthand, which can be used instead of the full boiler plate text.
      
      This patch is based on work done by Thomas Gleixner and Kate Stewart and
      Philippe Ombredanne.
      
      How this work was done:
      
      Patches were generated and checked against linux-4.14-rc6 for a subset of
      the use cases:
       - file had no licensing information it it.
       - file was a */uapi/* one with no licensing information in it,
       - file was a */uapi/* one with existing licensing information,
      
      Further patches will be generated in subsequent months to fix up cases
      where non-standard license headers were used, and references to license
      had to be inferred by heuristics based on keywords.
      
      The analysis to determine which SPDX License Identifier to be applied to
      a file was done in a spreadsheet of side by side results from of the
      output of two independent scanners (ScanCode & Windriver) producing SPDX
      tag:value files created by Philippe Ombredanne.  Philippe prepared the
      base worksheet, and did an initial spot review of a few 1000 files.
      
      The 4.13 kernel was the starting point of the analysis with 60,537 files
      assessed.  Kate Stewart did a file by file comparison of the scanner
      results in the spreadsheet to determine which SPDX license identifier(s)
      to be applied to the file. She confirmed any determination that was not
      immediately clear with lawyers working with the Linux Foundation.
      
      Criteria used to select files for SPDX license identifier tagging was:
       - Files considered eligible had to be source code files.
       - Make and config files were included as candidates if they contained >5
         lines of source
       - File already had some variant of a license header in it (even if <5
         lines).
      
      All documentation files were explicitly excluded.
      
      The following heuristics were used to determine which SPDX license
      identifiers to apply.
      
       - when both scanners couldn't find any license traces, file was
         considered to have no license information in it, and the top level
         COPYING file license applied.
      
         For non */uapi/* files that summary was:
      
         SPDX license identifier                            # files
         ---------------------------------------------------|-------
         GPL-2.0                                              11139
      
         and resulted in the first patch in this series.
      
         If that file was a */uapi/* path one, it was "GPL-2.0 WITH
         Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:
      
         SPDX license identifier                            # files
         ---------------------------------------------------|-------
         GPL-2.0 WITH Linux-syscall-note                        930
      
         and resulted in the second patch in this series.
      
       - if a file had some form of licensing information in it, and was one
         of the */uapi/* ones, it was denoted with the Linux-syscall-note if
         any GPL family license was found in the file or had no licensing in
         it (per prior point).  Results summary:
      
         SPDX license identifier                            # files
         ---------------------------------------------------|------
         GPL-2.0 WITH Linux-syscall-note                       270
         GPL-2.0+ WITH Linux-syscall-note                      169
         ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
         ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
         LGPL-2.1+ WITH Linux-syscall-note                      15
         GPL-1.0+ WITH Linux-syscall-note                       14
         ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
         LGPL-2.0+ WITH Linux-syscall-note                       4
         LGPL-2.1 WITH Linux-syscall-note                        3
         ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
         ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1
      
         and that resulted in the third patch in this series.
      
       - when the two scanners agreed on the detected license(s), that became
         the concluded license(s).
      
       - when there was disagreement between the two scanners (one detected a
         license but the other didn't, or they both detected different
         licenses) a manual inspection of the file occurred.
      
       - In most cases a manual inspection of the information in the file
         resulted in a clear resolution of the license that should apply (and
         which scanner probably needed to revisit its heuristics).
      
       - When it was not immediately clear, the license identifier was
         confirmed with lawyers working with the Linux Foundation.
      
       - If there was any question as to the appropriate license identifier,
         the file was flagged for further research and to be revisited later
         in time.
      
      In total, over 70 hours of logged manual review was done on the
      spreadsheet to determine the SPDX license identifiers to apply to the
      source files by Kate, Philippe, Thomas and, in some cases, confirmation
      by lawyers working with the Linux Foundation.
      
      Kate also obtained a third independent scan of the 4.13 code base from
      FOSSology, and compared selected files where the other two scanners
      disagreed against that SPDX file, to see if there was new insights.  The
      Windriver scanner is based on an older version of FOSSology in part, so
      they are related.
      
      Thomas did random spot checks in about 500 files from the spreadsheets
      for the uapi headers and agreed with SPDX license identifier in the
      files he inspected. For the non-uapi files Thomas did random spot checks
      in about 15000 files.
      
      In initial set of patches against 4.14-rc6, 3 files were found to have
      copy/paste license identifier errors, and have been fixed to reflect the
      correct identifier.
      
      Additionally Philippe spent 10 hours this week doing a detailed manual
      inspection and review of the 12,461 patched files from the initial patch
      version early this week with:
       - a full scancode scan run, collecting the matched texts, detected
         license ids and scores
       - reviewing anything where there was a license detected (about 500+
         files) to ensure that the applied SPDX license was correct
       - reviewing anything where there was no detection but the patch license
         was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
         SPDX license was correct
      
      This produced a worksheet with 20 files needing minor correction.  This
      worksheet was then exported into 3 different .csv files for the
      different types of files to be modified.
      
      These .csv files were then reviewed by Greg.  Thomas wrote a script to
      parse the csv files and add the proper SPDX tag to the file, in the
      format that the file expected.  This script was further refined by Greg
      based on the output to detect more types of files automatically and to
      distinguish between header and source .c files (which need different
      comment types.)  Finally Greg ran the script using the .csv files to
      generate the patches.
      Reviewed-by: NKate Stewart <kstewart@linuxfoundation.org>
      Reviewed-by: NPhilippe Ombredanne <pombredanne@nexb.com>
      Reviewed-by: NThomas Gleixner <tglx@linutronix.de>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
      b2441318
  5. 31 3月, 2017 1 次提交
  6. 07 2月, 2017 1 次提交
  7. 25 1月, 2017 1 次提交
    • M
      powerpc: Fix build failure with clang due to BUILD_BUG_ON() · b5fa0f7f
      Michael Ellerman 提交于
      Anton says: In commit 4db73271 ("powerpc: Add option to use jump
      label for cpu_has_feature()") and commit c12e6f24 ("powerpc: Add
      option to use jump label for mmu_has_feature()") we added:
      
        BUILD_BUG_ON(!__builtin_constant_p(feature))
      
      to cpu_has_feature() and mmu_has_feature() in order to catch usage
      issues (such as cpu_has_feature(cpu_has_feature(X), which has happened
      once in the past). Unfortunately LLVM isn't smart enough to resolve
      this, and it errors out.
      
      I work around it in my clang/LLVM builds of the kernel, but I have just
      discovered that it causes a lot of issues for the bcc (eBPF) trace tool
      (which uses LLVM).
      
      For now just #ifdef it away for clang builds.
      
      Fixes: 4db73271 ("powerpc: Add option to use jump label for cpu_has_feature()")
      Fixes: c12e6f24 ("powerpc: Add option to use jump label for mmu_has_feature()")
      Cc: stable@vger.kernel.org # v4.8+
      Reported-by: NAnton Blanchard <anton@samba.org>
      Tested-by: NNaveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
      Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
      b5fa0f7f
  8. 10 12月, 2016 1 次提交
    • C
      powerpc/8xx: Implement support of hugepages · 4b914286
      Christophe Leroy 提交于
      8xx uses a two level page table with two different linux page size
      support (4k and 16k). 8xx also support two different hugepage sizes
      512k and 8M. In order to support them on linux we define two different
      page table layout.
      
      The size of pages is in the PGD entry, using PS field (bits 28-29):
      00 : Small pages (4k or 16k)
      01 : 512k pages
      10 : reserved
      11 : 8M pages
      
      For 512K hugepage size a pgd entry have the below format
      [<hugepte address >0101] . The hugepte table allocated will contain 8
      entries pointing to 512K huge pte in 4k pages mode and 64 entries in
      16k pages mode.
      
      For 8M in 16k mode, a pgd entry have the below format
      [<hugepte address >1101] . The hugepte table allocated will contain 8
      entries pointing to 8M huge pte.
      
      For 8M in 4k mode, multiple pgd entries point to the same hugepte
      address and pgd entry will have the below format
      [<hugepte address>1101]. The hugepte table allocated will only have one
      entry.
      
      For the time being, we do not support CPU15 ERRATA when HUGETLB is
      selected
      Signed-off-by: NChristophe Leroy <christophe.leroy@c-s.fr>
      Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> (v3, for the generic bits)
      Signed-off-by: NScott Wood <oss@buserror.net>
      4b914286
  9. 25 11月, 2016 1 次提交
  10. 23 11月, 2016 1 次提交
    • P
      powerpc/64: Provide functions for accessing POWER9 partition table · 9d661958
      Paul Mackerras 提交于
      POWER9 requires the host to set up a partition table, which is a
      table in memory indexed by logical partition ID (LPID) which
      contains the pointers to page tables and process tables for the
      host and each guest.
      
      This factors out the initialization of the partition table into
      a single function.  This code was previously duplicated between
      hash_utils_64.c and pgtable-radix.c.
      
      This provides a function for setting a partition table entry,
      which is used in early MMU initialization, and will be used by
      KVM whenever a guest is created.  This function includes a tlbie
      instruction which will flush all TLB entries for the LPID and
      all caches of the partition table entry for the LPID, across the
      system.
      
      This also moves a call to memblock_set_current_limit(), which was
      in radix_init_partition_table(), but has nothing to do with the
      partition table.  By analogy with the similar code for hash, the
      call gets moved to near the end of radix__early_init_mmu().  It
      now gets called when running as a guest, whereas previously it
      would only be called if the kernel is running as the host.
      Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
      Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
      9d661958
  11. 23 9月, 2016 1 次提交
  12. 09 9月, 2016 1 次提交
    • P
      powerpc/mm: Speed up computation of base and actual page size for a HPTE · 0eeede0c
      Paul Mackerras 提交于
      This replaces a 2-D search through an array with a simple 8-bit table
      lookup for determining the actual and/or base page size for a HPT entry.
      
      The encoding in the second doubleword of the HPTE is designed to encode
      the actual and base page sizes without using any more bits than would be
      needed for a 4k page number, by using between 1 and 8 low-order bits of
      the RPN (real page number) field to encode the page sizes.  A single
      "large page" bit in the first doubleword indicates that these low-order
      bits are to be interpreted like this.
      
      We can determine the page sizes by using the low-order 8 bits of the RPN
      to look up a 256-entry table.  For actual page sizes less than 1MB, some
      of the upper bits of these 8 bits are going to be real address bits, but
      we can cope with that by replicating the entries for those smaller page
      sizes.
      
      While we're at it, let's move the hpte_page_size() and hpte_base_page_size()
      functions from a KVM-specific header to a header for 64-bit HPT systems,
      since this computation doesn't have anything specifically to do with KVM.
      Reviewed-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
      Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
      0eeede0c
  13. 01 8月, 2016 8 次提交
  14. 17 7月, 2016 1 次提交
  15. 11 5月, 2016 2 次提交
    • A
      powerpc/mm/radix: Add MMU_FTR_RADIX · a8ed87c9
      Aneesh Kumar K.V 提交于
      We are going to add asm changes in the follow up patches. Add the
      feature bit now so that we can get it all build.
      
      mpe: When CONFIG_PPC_RADIX_MMU=n we omit MMU_FTR_RADIX from the
      MMU_FTRS_POSSIBLE mask. This allows the compiler to work out that those
      checks will always be false and so the code can be elided completely.
      
      Note we do *not* define MMU_FTR_RADIX to 0 in the RADIX_MMU=n case,
      because that doesn't work with the ASM_FTR patching. In particular an
      IF_SET section will result in a mask and value of zero, which is always
      true, meaning the section *won't* be patched, which is the opposite of
      what we want.
      Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
      Acked-by: NBalbir Singh <bsingharora@gmail.com>
      Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
      a8ed87c9
    • M
      powerpc/mm: Add mask of possible MMU features · 773edead
      Michael Ellerman 提交于
      Follow the example of the cpu feature code, and add a mask of possible
      MMU features, MMU_FTRS_POSSIBLE.
      
      This is used in mmu_has_feature(), which allows the possible mask to act
      as a shortcut for any features that are not possible, but still allows
      the feature bit itself to be defined.
      
      We will use this in the next commit to allow MMU_FTR_RADIX checks to be
      elided when MMU_FTR_RADIX is not possible.
      Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
      773edead
  16. 01 5月, 2016 3 次提交
  17. 03 3月, 2016 1 次提交
  18. 22 2月, 2016 1 次提交
    • M
      powerpc: Add POWER9 cputable entry · c3ab300e
      Michael Neuling 提交于
      Add a cputable entry for POWER9.  More code is required to actually
      boot and run on a POWER9 but this gets the base piece in which we can
      start building on.
      
      Copies over from POWER8 except for:
      - Adds a new CPU_FTR_ARCH_300 bit to start hanging new architecture
         features from (in subsequent patches).
      - Advertises new user features bits PPC_FEATURE2_ARCH_3_00 &
        HAS_IEEE128 when on POWER9.
      - Drops CPU_FTR_SUBCORE.
      - Drops PMU code and machine check.
      Signed-off-by: NMichael Neuling <mikey@neuling.org>
      Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
      c3ab300e
  19. 28 7月, 2014 1 次提交
  20. 11 7月, 2014 1 次提交
  21. 10 1月, 2014 1 次提交
    • S
      powerpc/e6500: TLB miss handler with hardware tablewalk support · 28efc35f
      Scott Wood 提交于
      There are a few things that make the existing hw tablewalk handlers
      unsuitable for e6500:
      
       - Indirect entries go in TLB1 (though the resulting direct entries go in
         TLB0).
      
       - It has threads, but no "tlbsrx." -- so we need a spinlock and
         a normal "tlbsx".  Because we need this lock, hardware tablewalk
         is mandatory on e6500 unless we want to add spinlock+tlbsx to
         the normal bolted TLB miss handler.
      
       - TLB1 has no HES (nor next-victim hint) so we need software round robin
         (TODO: integrate this round robin data with hugetlb/KVM)
      
       - The existing tablewalk handlers map half of a page table at a time,
         because IBM hardware has a fixed 1MiB indirect page size.  e6500
         has variable size indirect entries, with a minimum of 2MiB.
         So we can't do the half-page indirect mapping, and even if we
         could it would be less efficient than mapping the full page.
      
       - Like on e5500, the linear mapping is bolted, so we don't need the
         overhead of supporting nested tlb misses.
      
      Note that hardware tablewalk does not work in rev1 of e6500.
      We do not expect to support e6500 rev1 in mainline Linux.
      Signed-off-by: NScott Wood <scottwood@freescale.com>
      Cc: Mihai Caraman <mihai.caraman@freescale.com>
      28efc35f
  22. 15 11月, 2012 1 次提交
  23. 17 9月, 2012 1 次提交
  24. 03 7月, 2012 1 次提交
  25. 20 9月, 2011 1 次提交
    • B
      powerpc: Hugetlb for BookE · 41151e77
      Becky Bruce 提交于
      Enable hugepages on Freescale BookE processors.  This allows the kernel to
      use huge TLB entries to map pages, which can greatly reduce the number of
      TLB misses and the amount of TLB thrashing experienced by applications with
      large memory footprints.  Care should be taken when using this on FSL
      processors, as the number of large TLB entries supported by the core is low
      (16-64) on current processors.
      
      The supported set of hugepage sizes include 4m, 16m, 64m, 256m, and 1g.
      Page sizes larger than the max zone size are called "gigantic" pages and
      must be allocated on the command line (and cannot be deallocated).
      
      This is currently only fully implemented for Freescale 32-bit BookE
      processors, but there is some infrastructure in the code for
      64-bit BooKE.
      Signed-off-by: NBecky Bruce <beckyb@kernel.crashing.org>
      Signed-off-by: NDavid Gibson <david@gibson.dropbear.id.au>
      Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
      41151e77
  26. 12 7月, 2011 1 次提交
  27. 08 7月, 2011 1 次提交
  28. 04 5月, 2011 1 次提交
  29. 27 4月, 2011 1 次提交