- 06 5月, 2021 1 次提交
-
-
由 Yang Shi 提交于
The shrinker map management is not purely memcg specific, it is at the intersection between memory cgroup and shrinkers. It's allocation and assignment of a structure, and the only memcg bit is the map is being stored in a memcg structure. So move the shrinker_maps handling code into vmscan.c for tighter integration with shrinker code, and remove the "memcg_" prefix. There is no functional change. Link: https://lkml.kernel.org/r/20210311190845.9708-3-shy828301@gmail.comSigned-off-by: NYang Shi <shy828301@gmail.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Acked-by: NKirill Tkhai <ktkhai@virtuozzo.com> Acked-by: NRoman Gushchin <guro@fb.com> Reviewed-by: NShakeel Butt <shakeelb@google.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 01 5月, 2021 14 次提交
-
-
由 Muchun Song 提交于
There is only one user of __memcg_kmem_charge(), so manually inline __memcg_kmem_charge() to obj_cgroup_charge_pages(). Similarly manually inline __memcg_kmem_uncharge() into obj_cgroup_uncharge_pages() and call obj_cgroup_uncharge_pages() in obj_cgroup_release(). This is just code cleanup without any functionality changes. Link: https://lkml.kernel.org/r/20210319163821.20704-7-songmuchun@bytedance.comSigned-off-by: NMuchun Song <songmuchun@bytedance.com> Reviewed-by: NShakeel Butt <shakeelb@google.com> Acked-by: NRoman Gushchin <guro@fb.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Muchun Song 提交于
Since Roman's series "The new cgroup slab memory controller" applied. All slab objects are charged via the new APIs of obj_cgroup. The new APIs introduce a struct obj_cgroup to charge slab objects. It prevents long-living objects from pinning the original memory cgroup in the memory. But there are still some corner objects (e.g. allocations larger than order-1 page on SLUB) which are not charged via the new APIs. Those objects (include the pages which are allocated from buddy allocator directly) are charged as kmem pages which still hold a reference to the memory cgroup. We want to reuse the obj_cgroup APIs to charge the kmem pages. If we do that, we should store an object cgroup pointer to page->memcg_data for the kmem pages. Finally, page->memcg_data will have 3 different meanings. 1) For the slab pages, page->memcg_data points to an object cgroups vector. 2) For the kmem pages (exclude the slab pages), page->memcg_data points to an object cgroup. 3) For the user pages (e.g. the LRU pages), page->memcg_data points to a memory cgroup. We do not change the behavior of page_memcg() and page_memcg_rcu(). They are also suitable for LRU pages and kmem pages. Why? Because memory allocations pinning memcgs for a long time - it exists at a larger scale and is causing recurring problems in the real world: page cache doesn't get reclaimed for a long time, or is used by the second, third, fourth, ... instance of the same job that was restarted into a new cgroup every time. Unreclaimable dying cgroups pile up, waste memory, and make page reclaim very inefficient. We can convert LRU pages and most other raw memcg pins to the objcg direction to fix this problem, and then the page->memcg will always point to an object cgroup pointer. At that time, LRU pages and kmem pages will be treated the same. The implementation of page_memcg() will remove the kmem page check. This patch aims to charge the kmem pages by using the new APIs of obj_cgroup. Finally, the page->memcg_data of the kmem page points to an object cgroup. We can use the __page_objcg() to get the object cgroup associated with a kmem page. Or we can use page_memcg() to get the memory cgroup associated with a kmem page, but caller must ensure that the returned memcg won't be released (e.g. acquire the rcu_read_lock or css_set_lock). Link: https://lkml.kernel.org/r/20210401030141.37061-1-songmuchun@bytedance.com Link: https://lkml.kernel.org/r/20210319163821.20704-6-songmuchun@bytedance.comSigned-off-by: NMuchun Song <songmuchun@bytedance.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Reviewed-by: NShakeel Butt <shakeelb@google.com> Acked-by: NRoman Gushchin <guro@fb.com> Reviewed-by: NMiaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> [songmuchun@bytedance.com: fix forget to obtain the ref to objcg in split_page_memcg] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Muchun Song 提交于
Just like assignment to ug->memcg, we only need to update ug->dummy_page if memcg changed. So move it to there. This is a very small optimization. Link: https://lkml.kernel.org/r/20210319163821.20704-5-songmuchun@bytedance.comSigned-off-by: NMuchun Song <songmuchun@bytedance.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Reviewed-by: NShakeel Butt <shakeelb@google.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Roman Gushchin <guro@fb.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Muchun Song 提交于
We know that the unit of slab object charging is bytes, the unit of kmem page charging is PAGE_SIZE. If we want to reuse obj_cgroup APIs to charge the kmem pages, we should pass PAGE_SIZE (as third parameter) to obj_cgroup_charge(). Because the size is already PAGE_SIZE, we can skip touch the objcg stock. And obj_cgroup_{un}charge_pages() are introduced to charge in units of page level. In the latter patch, we also can reuse those two helpers to charge or uncharge a number of kernel pages to a object cgroup. This is just a code movement without any functional changes. Link: https://lkml.kernel.org/r/20210319163821.20704-3-songmuchun@bytedance.comSigned-off-by: NMuchun Song <songmuchun@bytedance.com> Acked-by: NRoman Gushchin <guro@fb.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Reviewed-by: NShakeel Butt <shakeelb@google.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Muchun Song 提交于
Patch series "Use obj_cgroup APIs to charge kmem pages", v5. Since Roman's series "The new cgroup slab memory controller" applied. All slab objects are charged with the new APIs of obj_cgroup. The new APIs introduce a struct obj_cgroup to charge slab objects. It prevents long-living objects from pinning the original memory cgroup in the memory. But there are still some corner objects (e.g. allocations larger than order-1 page on SLUB) which are not charged with the new APIs. Those objects (include the pages which are allocated from buddy allocator directly) are charged as kmem pages which still hold a reference to the memory cgroup. E.g. We know that the kernel stack is charged as kmem pages because the size of the kernel stack can be greater than 2 pages (e.g. 16KB on x86_64 or arm64). If we create a thread (suppose the thread stack is charged to memory cgroup A) and then move it from memory cgroup A to memory cgroup B. Because the kernel stack of the thread hold a reference to the memory cgroup A. The thread can pin the memory cgroup A in the memory even if we remove the cgroup A. If we want to see this scenario by using the following script. We can see that the system has added 500 dying cgroups (This is not a real world issue, just a script to show that the large kmallocs are charged as kmem pages which can pin the memory cgroup in the memory). #!/bin/bash cat /proc/cgroups | grep memory cd /sys/fs/cgroup/memory echo 1 > memory.move_charge_at_immigrate for i in range{1..500} do mkdir kmem_test echo $$ > kmem_test/cgroup.procs sleep 3600 & echo $$ > cgroup.procs echo `cat kmem_test/cgroup.procs` > cgroup.procs rmdir kmem_test done cat /proc/cgroups | grep memory This patchset aims to make those kmem pages to drop the reference to memory cgroup by using the APIs of obj_cgroup. Finally, we can see that the number of the dying cgroups will not increase if we run the above test script. This patch (of 7): The rcu_read_lock/unlock only can guarantee that the memcg will not be freed, but it cannot guarantee the success of css_get (which is in the refill_stock when cached memcg changed) to memcg. rcu_read_lock() memcg = obj_cgroup_memcg(old) __memcg_kmem_uncharge(memcg) refill_stock(memcg) if (stock->cached != memcg) // css_get can change the ref counter from 0 back to 1. css_get(&memcg->css) rcu_read_unlock() This fix is very like the commit: eefbfa7f ("mm: memcg/slab: fix use after free in obj_cgroup_charge") Fix this by holding a reference to the memcg which is passed to the __memcg_kmem_uncharge() before calling __memcg_kmem_uncharge(). Link: https://lkml.kernel.org/r/20210319163821.20704-1-songmuchun@bytedance.com Link: https://lkml.kernel.org/r/20210319163821.20704-2-songmuchun@bytedance.com Fixes: 3de7d4f2 ("mm: memcg/slab: optimize objcg stock draining") Signed-off-by: NMuchun Song <songmuchun@bytedance.com> Reviewed-by: NShakeel Butt <shakeelb@google.com> Acked-by: NRoman Gushchin <guro@fb.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Shakeel Butt 提交于
Currently the kernel adds the page, allocated for swapin, to the swapcache before charging the page. This is fine but now we want a per-memcg swapcache stat which is essential for folks who wants to transparently migrate from cgroup v1's memsw to cgroup v2's memory and swap counters. In addition charging a page before exposing it to other parts of the kernel is a step in the right direction. To correctly maintain the per-memcg swapcache stat, this patch has adopted to charge the page before adding it to swapcache. One challenge in this option is the failure case of add_to_swap_cache() on which we need to undo the mem_cgroup_charge(). Specifically undoing mem_cgroup_uncharge_swap() is not simple. To resolve the issue, this patch decouples the charging for swapin pages from mem_cgroup_charge(). Two new functions are introduced, mem_cgroup_swapin_charge_page() for just charging the swapin page and mem_cgroup_swapin_uncharge_swap() for uncharging the swap slot once the page has been successfully added to the swapcache. [shakeelb@google.com: set page->private before calling swap_readpage] Link: https://lkml.kernel.org/r/20210318015959.2986837-1-shakeelb@google.com Link: https://lkml.kernel.org/r/20210305212639.775498-1-shakeelb@google.comSigned-off-by: NShakeel Butt <shakeelb@google.com> Acked-by: NRoman Gushchin <guro@fb.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NHugh Dickins <hughd@google.com> Tested-by: NHeiko Carstens <hca@linux.ibm.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
There are two functions to flush the per-cpu data of an lruvec into the rest of the cgroup tree: when the cgroup is being freed, and when a CPU disappears during hotplug. The difference is whether all CPUs or just one is being collected, but the rest of the flushing code is the same. Merge them into one function and share the common code. Link: https://lkml.kernel.org/r/20210209163304.77088-8-hannes@cmpxchg.orgSigned-off-by: NJohannes Weiner <hannes@cmpxchg.org> Reviewed-by: NShakeel Butt <shakeelb@google.com> Acked-by: NMichal Hocko <mhocko@suse.com> Acked-by: NRoman Gushchin <guro@fb.com> Cc: Michal Koutný <mkoutny@suse.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
Replace the memory controller's custom hierarchical stats code with the generic rstat infrastructure provided by the cgroup core. The current implementation does batched upward propagation from the write side (i.e. as stats change). The per-cpu batches introduce an error, which is multiplied by the number of subgroups in a tree. In systems with many CPUs and sizable cgroup trees, the error can be large enough to confuse users (e.g. 32 batch pages * 32 CPUs * 32 subgroups results in an error of up to 128M per stat item). This can entirely swallow allocation bursts inside a workload that the user is expecting to see reflected in the statistics. In the past, we've done read-side aggregation, where a memory.stat read would have to walk the entire subtree and add up per-cpu counts. This became problematic with lazily-freed cgroups: we could have large subtrees where most cgroups were entirely idle. Hence the switch to change-driven upward propagation. Unfortunately, it needed to trade accuracy for speed due to the write side being so hot. Rstat combines the best of both worlds: from the write side, it cheaply maintains a queue of cgroups that have pending changes, so that the read side can do selective tree aggregation. This way the reported stats will always be precise and recent as can be, while the aggregation can skip over potentially large numbers of idle cgroups. The way rstat works is that it implements a tree for tracking cgroups with pending local changes, as well as a flush function that walks the tree upwards. The controller then drives this by 1) telling rstat when a local cgroup stat changes (e.g. mod_memcg_state) and 2) when a flush is required to get uptodate hierarchy stats for a given subtree (e.g. when memory.stat is read). The controller also provides a flush callback that is called during the rstat flush walk for each cgroup and aggregates its local per-cpu counters and propagates them upwards. This adds a second vmstats to struct mem_cgroup (MEMCG_NR_STAT + NR_VM_EVENT_ITEMS) to track pending subtree deltas during upward aggregation. It removes 3 words from the per-cpu data. It eliminates memcg_exact_page_state(), since memcg_page_state() is now exact. [akpm@linux-foundation.org: merge fix] [hannes@cmpxchg.org: fix a sleep in atomic section problem] Link: https://lkml.kernel.org/r/20210315234100.64307-1-hannes@cmpxchg.org Link: https://lkml.kernel.org/r/20210209163304.77088-7-hannes@cmpxchg.orgSigned-off-by: NJohannes Weiner <hannes@cmpxchg.org> Reviewed-by: NRoman Gushchin <guro@fb.com> Acked-by: NMichal Hocko <mhocko@suse.com> Reviewed-by: NShakeel Butt <shakeelb@google.com> Reviewed-by: NMichal Koutný <mkoutny@suse.com> Acked-by: NBalbir Singh <bsingharora@gmail.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
There are no users outside of the memory controller itself. The rest of the kernel cares either about node or lruvec stats. Link: https://lkml.kernel.org/r/20210209163304.77088-4-hannes@cmpxchg.orgSigned-off-by: NJohannes Weiner <hannes@cmpxchg.org> Reviewed-by: NShakeel Butt <shakeelb@google.com> Reviewed-by: NRoman Gushchin <guro@fb.com> Acked-by: NMichal Hocko <mhocko@suse.com> Reviewed-by: NMichal Koutný <mkoutny@suse.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
No need to encapsulate a simple struct member access. Link: https://lkml.kernel.org/r/20210209163304.77088-3-hannes@cmpxchg.orgSigned-off-by: NJohannes Weiner <hannes@cmpxchg.org> Reviewed-by: NShakeel Butt <shakeelb@google.com> Reviewed-by: NRoman Gushchin <guro@fb.com> Acked-by: NMichal Hocko <mhocko@suse.com> Reviewed-by: NMichal Koutný <mkoutny@suse.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
Patch series "mm: memcontrol: switch to rstat", v3. This series converts memcg stats tracking to the streamlined rstat infrastructure provided by the cgroup core code. rstat is already used by the CPU controller and the IO controller. This change is motivated by recent accuracy problems in memcg's custom stats code, as well as the benefits of sharing common infra with other controllers. The current memcg implementation does batched tree aggregation on the write side: local stat changes are cached in per-cpu counters, which are then propagated upward in batches when a threshold (32 pages) is exceeded. This is cheap, but the error introduced by the lazy upward propagation adds up: 32 pages times CPUs times cgroups in the subtree. We've had complaints from service owners that the stats do not reliably track and react to allocation behavior as expected, sometimes swallowing the results of entire test applications. The original memcg stat implementation used to do tree aggregation exclusively on the read side: local stats would only ever be tracked in per-cpu counters, and a memory.stat read would iterate the entire subtree and sum those counters up. This didn't keep up with the times: - Cgroup trees are much bigger now. We switched to lazily-freed cgroups, where deleted groups would hang around until their remaining page cache has been reclaimed. This can result in large subtrees that are expensive to walk, while most of the groups are idle and their statistics don't change much anymore. - Automated monitoring increased. With the proliferation of userspace oom killing, proactive reclaim, and higher-resolution logging of workload trends in general, top-level stat files are polled at least once a second in many deployments. - The lifetime of cgroups got shorter. Where most cgroup setups in the past would have a few large policy-oriented cgroups for everything running on the system, newer cgroup deployments tend to create one group per application - which gets deleted again as the processes exit. An aggregation scheme that doesn't retain child data inside the parents loses event history of the subtree. Rstat addresses all three of those concerns through intelligent, persistent read-side aggregation. As statistics change at the local level, rstat tracks - on a per-cpu basis - only those parts of a subtree that have changes pending and require aggregation. The actual aggregation occurs on the colder read side - which can now skip over (potentially large) numbers of recently idle cgroups. === The test_kmem cgroup selftest is currently failing due to excessive cumulative vmstat drift from 100 subgroups: ok 1 test_kmem_basic memory.current = 8810496 slab + anon + file + kernel_stack = 17074568 slab = 6101384 anon = 946176 file = 0 kernel_stack = 10027008 not ok 2 test_kmem_memcg_deletion ok 3 test_kmem_proc_kpagecgroup ok 4 test_kmem_kernel_stacks ok 5 test_kmem_dead_cgroups ok 6 test_percpu_basic As you can see, memory.stat items far exceed memory.current. The kernel stack alone is bigger than all of charged memory. That's because the memory of the test has been uncharged from memory.current, but the negative vmstat deltas are still sitting in the percpu caches. The test at this time isn't even counting percpu, pagetables etc. yet, which would further contribute to the error. The last patch in the series updates the test to include them - as well as reduces the vmstat tolerances in general to only expect page_counter batching. With all patches applied, the (now more stringent) test succeeds: ok 1 test_kmem_basic ok 2 test_kmem_memcg_deletion ok 3 test_kmem_proc_kpagecgroup ok 4 test_kmem_kernel_stacks ok 5 test_kmem_dead_cgroups ok 6 test_percpu_basic === A kernel build test confirms that overhead is comparable. Two kernels are built simultaneously in a nested tree with several idle siblings: root - kernelbuild - one - two - three - four - build-a (defconfig, make -j16) `- build-b (defconfig, make -j16) `- idle-1 `- ... `- idle-9 During the builds, kernelbuild/memory.stat is read once a second. A perf diff shows that the changes in cycle distribution is minimal. Top 10 kernel symbols: 0.09% +0.08% [kernel.kallsyms] [k] __mod_memcg_lruvec_state 0.00% +0.06% [kernel.kallsyms] [k] cgroup_rstat_updated 0.08% -0.05% [kernel.kallsyms] [k] __mod_memcg_state.part.0 0.16% -0.04% [kernel.kallsyms] [k] release_pages 0.00% +0.03% [kernel.kallsyms] [k] __count_memcg_events 0.01% +0.03% [kernel.kallsyms] [k] mem_cgroup_charge_statistics.constprop.0 0.10% -0.02% [kernel.kallsyms] [k] get_mem_cgroup_from_mm 0.05% -0.02% [kernel.kallsyms] [k] mem_cgroup_update_lru_size 0.57% +0.01% [kernel.kallsyms] [k] asm_exc_page_fault === The on-demand aggregated stats are now fully accurate: $ grep -e nr_inactive_file /proc/vmstat | awk '{print($1,$2*4096)}'; \ grep -e inactive_file /sys/fs/cgroup/memory.stat vanilla: patched: nr_inactive_file 1574105088 nr_inactive_file 1027801088 inactive_file 1577410560 inactive_file 1027801088 === This patch (of 8): The memcg hotunplug callback erroneously flushes counts on the local CPU, not the counts of the CPU going away; those counts will be lost. Flush the CPU that is actually going away. Also simplify the code a bit by using mod_memcg_state() and count_memcg_events() instead of open-coding the upward flush - this is comparable to how vmstat.c handles hotunplug flushing. Link: https://lkml.kernel.org/r/20210209163304.77088-1-hannes@cmpxchg.org Link: https://lkml.kernel.org/r/20210209163304.77088-2-hannes@cmpxchg.org Fixes: a983b5eb ("mm: memcontrol: fix excessive complexity in memory.stat reporting") Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Reviewed-by: NShakeel Butt <shakeelb@google.com> Reviewed-by: NRoman Gushchin <guro@fb.com> Reviewed-by: NMichal Koutný <mkoutny@suse.com> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Tejun Heo <tj@kernel.org> Cc: Roman Gushchin <guro@fb.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Shakeel Butt 提交于
In the era of async memcg oom-killer, the commit a0d8b00a ("mm: memcg: do not declare OOM from __GFP_NOFAIL allocations") added the code to skip memcg oom-killer for __GFP_NOFAIL allocations. The reason was that the __GFP_NOFAIL callers will not enter aync oom synchronization path and will keep the task marked as in memcg oom. At that time the tasks marked in memcg oom can bypass the memcg limits and the oom synchronization would have happened later in the later userspace triggered page fault. Thus letting the task marked as under memcg oom bypass the memcg limit for arbitrary time. With the synchronous memcg oom-killer (commit 29ef680a ("memcg, oom: move out_of_memory back to the charge path")) and not letting the task marked under memcg oom to bypass the memcg limits (commit 1f14c1ac ("mm: memcg: do not allow task about to OOM kill to bypass the limit")), we can again allow __GFP_NOFAIL allocations to trigger memcg oom-kill. This will make memcg oom behavior closer to page allocator oom behavior. Link: https://lkml.kernel.org/r/20210223204337.2785120-1-shakeelb@google.comSigned-off-by: NShakeel Butt <shakeelb@google.com> Acked-by: NMichal Hocko <mhocko@suse.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NDavid Rientjes <rientjes@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Shakeel Butt 提交于
Replace the implicit checking of root memcg with explicit root memcg checking i.e. !css->parent with mem_cgroup_is_root(). Link: https://lkml.kernel.org/r/20210223205625.2792891-1-shakeelb@google.comSigned-off-by: NShakeel Butt <shakeelb@google.com> Acked-by: NMichal Hocko <mhocko@suse.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Roman Gushchin <guro@fb.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
Page writeback doesn't hold a page reference, which allows truncate to free a page the second PageWriteback is cleared. This used to require special attention in test_clear_page_writeback(), where we had to be careful not to rely on the unstable page->memcg binding and look up all the necessary information before clearing the writeback flag. Since commit 073861ed ("mm: fix VM_BUG_ON(PageTail) and BUG_ON(PageWriteback)") test_clear_page_writeback() is called with an explicit reference on the page, and this dance is no longer needed. Use unlock_page_memcg() and dec_lruvec_page_state() directly. This removes the last user of the lock_page_memcg() return value, change it to void. Touch up the comments in there as well. This also removes the last extern user of __unlock_page_memcg(), make it static. Further, it removes the last user of dec_lruvec_state(), delete it, along with a few other unused helpers. Link: https://lkml.kernel.org/r/YCQbYAWg4nvBFL6h@cmpxchg.orgSigned-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NHugh Dickins <hughd@google.com> Reviewed-by: NShakeel Butt <shakeelb@google.com> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Roman Gushchin <guro@fb.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 14 3月, 2021 1 次提交
-
-
由 Zhou Guanghui 提交于
Rename mem_cgroup_split_huge_fixup to split_page_memcg and explicitly pass in page number argument. In this way, the interface name is more common and can be used by potential users. In addition, the complete info(memcg and flag) of the memcg needs to be set to the tail pages. Link: https://lkml.kernel.org/r/20210304074053.65527-2-zhouguanghui1@huawei.comSigned-off-by: NZhou Guanghui <zhouguanghui1@huawei.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Reviewed-by: NZi Yan <ziy@nvidia.com> Reviewed-by: NShakeel Butt <shakeelb@google.com> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Hanjun Guo <guohanjun@huawei.com> Cc: Tianhong Ding <dingtianhong@huawei.com> Cc: Weilong Chen <chenweilong@huawei.com> Cc: Rui Xiang <rui.xiang@huawei.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 25 2月, 2021 16 次提交
-
-
由 Muchun Song 提交于
We use a global percpu int_active_memcg variable to store the remote memcg when we are in the interrupt context. But get_active_memcg always return the current->active_memcg or root_mem_cgroup. The remote memcg (set in the interrupt context) is ignored. This is not what we want. So fix it. Link: https://lkml.kernel.org/r/20210223091101.42150-1-songmuchun@bytedance.com Fixes: 37d5985c ("mm: kmem: prepare remote memcg charging infra for interrupt contexts") Signed-off-by: NMuchun Song <songmuchun@bytedance.com> Reviewed-by: NShakeel Butt <shakeelb@google.com> Reviewed-by: NRoman Gushchin <guro@fb.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Muchun Song 提交于
When pages are swapped in, the VM may retain the swap copy to avoid repeated writes in the future. It's also retained if shared pages are faulted back in some processes, but not in others. During that time we have an in-memory copy of the page, as well as an on-swap copy. Cgroup1 and cgroup2 handle these overlapping lifetimes slightly differently due to the nature of how they account memory and swap: Cgroup1 has a unified memory+swap counter that tracks a data page regardless whether it's in-core or swapped out. On swapin, we transfer the charge from the swap entry to the newly allocated swapcache page, even though the swap entry might stick around for a while. That's why we have a mem_cgroup_uncharge_swap() call inside mem_cgroup_charge(). Cgroup2 tracks memory and swap as separate, independent resources and thus has split memory and swap counters. On swapin, we charge the newly allocated swapcache page as memory, while the swap slot in turn must remain charged to the swap counter as long as its allocated too. The cgroup2 logic was broken by commit 2d1c4980 ("mm: memcontrol: make swap tracking an integral part of memory control"), because it accidentally removed the do_memsw_account() check in the branch inside mem_cgroup_uncharge() that was supposed to tell the difference between the charge transfer in cgroup1 and the separate counters in cgroup2. As a result, cgroup2 currently undercounts retained swap to varying degrees: swap slots are cached up to 50% of the configured limit or total available swap space; partially faulted back shared pages are only limited by physical capacity. This in turn allows cgroups to significantly overconsume their alloted swap space. Add the do_memsw_account() check back to fix this problem. Link: https://lkml.kernel.org/r/20210217153237.92484-1-songmuchun@bytedance.com Fixes: 2d1c4980 ("mm: memcontrol: make swap tracking an integral part of memory control") Signed-off-by: NMuchun Song <songmuchun@bytedance.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Reviewed-by: NShakeel Butt <shakeelb@google.com> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: <stable@vger.kernel.org> [5.8+] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
alloc_page_buffers() currently uses get_mem_cgroup_from_page() for charging the buffers to the page owner, which does an rcu-protected page->memcg lookup and acquires a reference. But buffer allocation has the page lock held throughout, which pins the page to the memcg and thereby the memcg - neither rcu nor holding an extra reference during the allocation are necessary. Use a raw page_memcg() instead. This was the last user of get_mem_cgroup_from_page(), delete it. Link: https://lkml.kernel.org/r/20210209190126.97842-1-hannes@cmpxchg.orgSigned-off-by: NJohannes Weiner <hannes@cmpxchg.org> Reported-by: NMuchun Song <songmuchun@bytedance.com> Reviewed-by: NShakeel Butt <shakeelb@google.com> Acked-by: NRoman Gushchin <guro@fb.com> Acked-by: NMichal Hocko <mhocko@suse.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Muchun Song 提交于
The rule of list walk has gone since commit a9d5adee ("mm/memcontrol: allow to uncharge page without using page->lru field") So remove the strange comment and replace the loop with a list_for_each_entry(). There is only one caller of the uncharge_list(). So just fold it into mem_cgroup_uncharge_list() and remove it. Link: https://lkml.kernel.org/r/20210204163055.56080-1-songmuchun@bytedance.comSigned-off-by: NMuchun Song <songmuchun@bytedance.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NRoman Gushchin <guro@fb.com> Reviewed-by: NMiaohe Lin <linmiaohe@huawei.com> Acked-by: NMichal Hocko <mhocko@suse.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Yang Li 提交于
Fix below warnings reported by coccicheck: mm/memcontrol.c:451:3-9: WARNING: NULL check before some freeing functions is not needed. Link: https://lkml.kernel.org/r/1611216029-34397-1-git-send-email-abaci-bugfix@linux.alibaba.comSigned-off-by: NYang Li <abaci-bugfix@linux.alibaba.com> Reported-by: NAbaci Robot <abaci@linux.alibaba.com> Reviewed-by: NAndrew Morton <akpm@linux-foundation.org> Reviewed-by: NDavid Hildenbrand <david@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Roman Gushchin 提交于
I've noticed that __memcg_kmem_charge() and __memcg_kmem_uncharge() are not used anywhere except memcontrol.c. Yet they are not declared as non-static and are declared in memcontrol.h. This patch makes them static. Link: https://lkml.kernel.org/r/20210108020332.4096911-1-guro@fb.comSigned-off-by: NRoman Gushchin <guro@fb.com> Reviewed-by: NShakeel Butt <shakeelb@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Shakeel Butt 提交于
This patch adds swapcache stat for the cgroup v2. The swapcache represents the memory that is accounted against both the memory and the swap limit of the cgroup. The main motivation behind exposing the swapcache stat is for enabling users to gracefully migrate from cgroup v1's memsw counter to cgroup v2's memory and swap counters. Cgroup v1's memsw limit allows users to limit the memory+swap usage of a workload but without control on the exact proportion of memory and swap. Cgroup v2 provides separate limits for memory and swap which enables more control on the exact usage of memory and swap individually for the workload. With some little subtleties, the v1's memsw limit can be switched with the sum of the v2's memory and swap limits. However the alternative for memsw usage is not yet available in cgroup v2. Exposing per-cgroup swapcache stat enables that alternative. Adding the memory usage and swap usage and subtracting the swapcache will approximate the memsw usage. This will help in the transparent migration of the workloads depending on memsw usage and limit to v2' memory and swap counters. The reasons these applications are still interested in this approximate memsw usage are: (1) these applications are not really interested in two separate memory and swap usage metrics. A single usage metric is more simple to use and reason about for them. (2) The memsw usage metric hides the underlying system's swap setup from the applications. Applications with multiple instances running in a datacenter with heterogeneous systems (some have swap and some don't) will keep seeing a consistent view of their usage. [akpm@linux-foundation.org: fix CONFIG_SWAP=n build] Link: https://lkml.kernel.org/r/20210108155813.2914586-3-shakeelb@google.comSigned-off-by: NShakeel Butt <shakeelb@google.com> Acked-by: NMichal Hocko <mhocko@suse.com> Reviewed-by: NRoman Gushchin <guro@fb.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Alex Shi 提交于
lock_page_lruvec() and its variants used rcu_read_lock() with the intention of safeguarding against the mem_cgroup being destroyed concurrently; but so long as they are called under the specified conditions (as they are), there is no way for the page's mem_cgroup to be destroyed. Delete the unnecessary rcu_read_lock() and _unlock(). Hugh Dickins polished the commit log. Thanks a lot! Link: https://lkml.kernel.org/r/1608614453-10739-2-git-send-email-alex.shi@linux.alibaba.comSigned-off-by: NAlex Shi <alex.shi@linux.alibaba.com> Acked-by: NHugh Dickins <hughd@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Alex Shi 提交于
lock_page_lruvec() and its variants are safe to use under the same conditions as commit_charge(): add lock_page_memcg() to the comment. Polished with Hugh Dickins' suggestions, thanks! Link: https://lkml.kernel.org/r/1608614453-10739-1-git-send-email-alex.shi@linux.alibaba.comSigned-off-by: NAlex Shi <alex.shi@linux.alibaba.com> Acked-by: NHugh Dickins <hughd@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Muchun Song 提交于
Although the ratio of the slab is one, we also should read the ratio from the related memory_stats instead of hard-coding. And the local variable of size is already the value of slab_unreclaimable. So we do not need to read again. To do this we need some code like below: if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) { - size = memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) + - memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B); + VM_BUG_ON(i < 1); + VM_BUG_ON(memory_stats[i - 1].idx != NR_SLAB_RECLAIMABLE_B); + size += memcg_page_state(memcg, memory_stats[i - 1].idx) * + memory_stats[i - 1].ratio; It requires a series of VM_BUG_ONs or comments to ensure these two items are actually adjacent and in the right order. So it would probably be easier to implement this using a wrapper that has a big switch() for unit conversion. More details about this discussion can refer to: https://lore.kernel.org/patchwork/patch/1348611/ This would fix the ratio inconsistency and get rid of the order guarantee. Link: https://lkml.kernel.org/r/20201228164110.2838-8-songmuchun@bytedance.comSigned-off-by: NMuchun Song <songmuchun@bytedance.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Feng Tang <feng.tang@intel.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@suse.com> Cc: NeilBrown <neilb@suse.de> Cc: Pankaj Gupta <pankaj.gupta@cloud.ionos.com> Cc: Rafael. J. Wysocki <rafael@kernel.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Roman Gushchin <guro@fb.com> Cc: Sami Tolvanen <samitolvanen@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Muchun Song 提交于
Currently we use struct per_cpu_nodestat to cache the vmstat counters, which leads to inaccurate statistics especially THP vmstat counters. In the systems with hundreds of processors it can be GBs of memory. For example, for a 96 CPUs system, the threshold is the maximum number of 125. And the per cpu counters can cache 23.4375 GB in total. The THP page is already a form of batched addition (it will add 512 worth of memory in one go) so skipping the batching seems like sensible. Although every THP stats update overflows the per-cpu counter, resorting to atomic global updates. But it can make the statistics more accuracy for the THP vmstat counters. So we convert the NR_SHMEM_THPS account to pages. This patch is consistent with 8f182270 ("mm/swap.c: flush lru pvecs on compound page arrival"). Doing this also can make the unit of vmstat counters more unified. Finally, the unit of the vmstat counters are pages, kB and bytes. The B/KB suffix can tell us that the unit is bytes or kB. The rest which is without suffix are pages. Link: https://lkml.kernel.org/r/20201228164110.2838-5-songmuchun@bytedance.comSigned-off-by: NMuchun Song <songmuchun@bytedance.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Feng Tang <feng.tang@intel.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@suse.com> Cc: NeilBrown <neilb@suse.de> Cc: Pankaj Gupta <pankaj.gupta@cloud.ionos.com> Cc: Rafael. J. Wysocki <rafael@kernel.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Roman Gushchin <guro@fb.com> Cc: Sami Tolvanen <samitolvanen@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Muchun Song 提交于
Currently we use struct per_cpu_nodestat to cache the vmstat counters, which leads to inaccurate statistics especially THP vmstat counters. In the systems with if hundreds of processors it can be GBs of memory. For example, for a 96 CPUs system, the threshold is the maximum number of 125. And the per cpu counters can cache 23.4375 GB in total. The THP page is already a form of batched addition (it will add 512 worth of memory in one go) so skipping the batching seems like sensible. Although every THP stats update overflows the per-cpu counter, resorting to atomic global updates. But it can make the statistics more accuracy for the THP vmstat counters. So we convert the NR_FILE_THPS account to pages. This patch is consistent with 8f182270 ("mm/swap.c: flush lru pvecs on compound page arrival"). Doing this also can make the unit of vmstat counters more unified. Finally, the unit of the vmstat counters are pages, kB and bytes. The B/KB suffix can tell us that the unit is bytes or kB. The rest which is without suffix are pages. Link: https://lkml.kernel.org/r/20201228164110.2838-4-songmuchun@bytedance.comSigned-off-by: NMuchun Song <songmuchun@bytedance.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Feng Tang <feng.tang@intel.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@suse.com> Cc: NeilBrown <neilb@suse.de> Cc: Pankaj Gupta <pankaj.gupta@cloud.ionos.com> Cc: Rafael. J. Wysocki <rafael@kernel.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Roman Gushchin <guro@fb.com> Cc: Sami Tolvanen <samitolvanen@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Muchun Song 提交于
Currently we use struct per_cpu_nodestat to cache the vmstat counters, which leads to inaccurate statistics especially THP vmstat counters. In the systems with hundreds of processors it can be GBs of memory. For example, for a 96 CPUs system, the threshold is the maximum number of 125. And the per cpu counters can cache 23.4375 GB in total. The THP page is already a form of batched addition (it will add 512 worth of memory in one go) so skipping the batching seems like sensible. Although every THP stats update overflows the per-cpu counter, resorting to atomic global updates. But it can make the statistics more accuracy for the THP vmstat counters. So we convert the NR_ANON_THPS account to pages. This patch is consistent with 8f182270 ("mm/swap.c: flush lru pvecs on compound page arrival"). Doing this also can make the unit of vmstat counters more unified. Finally, the unit of the vmstat counters are pages, kB and bytes. The B/KB suffix can tell us that the unit is bytes or kB. The rest which is without suffix are pages. Link: https://lkml.kernel.org/r/20201228164110.2838-3-songmuchun@bytedance.comSigned-off-by: NMuchun Song <songmuchun@bytedance.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Rafael. J. Wysocki <rafael@kernel.org> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Roman Gushchin <guro@fb.com> Cc: Sami Tolvanen <samitolvanen@google.com> Cc: Feng Tang <feng.tang@intel.com> Cc: NeilBrown <neilb@suse.de> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Pankaj Gupta <pankaj.gupta@cloud.ionos.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Muchun Song 提交于
Patch series "Convert all THP vmstat counters to pages", v6. This patch series is aimed to convert all THP vmstat counters to pages. The unit of some vmstat counters are pages, some are bytes, some are HPAGE_PMD_NR, and some are KiB. When we want to expose these vmstat counters to the userspace, we have to know the unit of the vmstat counters is which one. When the unit is bytes or kB, both clearly distinguishable by the B/KB suffix. But for the THP vmstat counters, we may make mistakes. For example, the below is some bug fix for the THP vmstat counters: - 7de2e9f1 ("mm: memcontrol: correct the NR_ANON_THPS counter of hierarchical memcg") - The first commit in this series ("fix NR_ANON_THPS accounting in charge moving") This patch series can make the code clear. And make all the unit of the THP vmstat counters in pages. Finally, the unit of the vmstat counters are pages, kB and bytes. The B/KB suffix can tell us that the unit is bytes or kB. The rest which is without suffix are pages. In this series, I changed the following vmstat counters unit from HPAGE_PMD_NR to pages. However, there is no change to the print format of output to user space. - NR_ANON_THPS - NR_FILE_THPS - NR_SHMEM_THPS - NR_SHMEM_PMDMAPPED - NR_FILE_PMDMAPPED Doing this also can make the statistics more accuracy for the THP vmstat counters. This series is consistent with 8f182270 ("mm/swap.c: flush lru pvecs on compound page arrival"). Because we use struct per_cpu_nodestat to cache the vmstat counters, which leads to inaccurate statistics especially THP vmstat counters. In the systems with hundreds of processors it can be GBs of memory. For example, for a 96 CPUs system, the threshold is the maximum number of 125. And the per cpu counters can cache 23.4375 GB in total. The THP page is already a form of batched addition (it will add 512 worth of memory in one go) so skipping the batching seems like sensible. Although every THP stats update overflows the per-cpu counter, resorting to atomic global updates. But it can make the statistics more accuracy for the THP vmstat counters. From this point of view, I think that do this converting is reasonable. Thanks Hugh for mentioning this. This was inspired by Johannes and Roman. Thanks to them. This patch (of 7): The unit of NR_ANON_THPS is HPAGE_PMD_NR already. So it should inc/dec by one rather than nr_pages. Link: https://lkml.kernel.org/r/20201228164110.2838-1-songmuchun@bytedance.com Link: https://lkml.kernel.org/r/20201228164110.2838-2-songmuchun@bytedance.com Fixes: 468c3982 ("mm: memcontrol: switch to native NR_ANON_THPS counter") Signed-off-by: NMuchun Song <songmuchun@bytedance.com> Acked-by: NMichal Hocko <mhocko@suse.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NPankaj Gupta <pankaj.gupta@cloud.ionos.com> Reviewed-by: NRoman Gushchin <guro@fb.com> Reviewed-by: NShakeel Butt <shakeelb@google.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Feng Tang <feng.tang@intel.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Hugh Dickins <hughd@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: NeilBrown <neilb@suse.de> Cc: Rafael. J. Wysocki <rafael@kernel.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Sami Tolvanen <samitolvanen@google.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Muchun Song 提交于
The vmstat threshold is 32 (MEMCG_CHARGE_BATCH), Actually the threshold can be as big as MEMCG_CHARGE_BATCH * PAGE_SIZE. It still fits into s32. So introduce struct batched_lruvec_stat to optimize memory usage. The size of struct lruvec_stat is 304 bytes on 64 bit systems. As it is a per-cpu structure. So with this patch, we can save 304 / 2 * ncpu bytes per-memcg per-node where ncpu is the number of the possible CPU. If there are c memory cgroup (include dying cgroup) and n NUMA node in the system. Finally, we can save (152 * ncpu * c * n) bytes. [akpm@linux-foundation.org: fix typo in comment] Link: https://lkml.kernel.org/r/20201210042121.39665-1-songmuchun@bytedance.comSigned-off-by: NMuchun Song <songmuchun@bytedance.com> Reviewed-by: NShakeel Butt <shakeelb@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Roman Gushchin <guro@fb.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Chris Down <chris@chrisdown.name> Cc: Yafang Shao <laoar.shao@gmail.com> Cc: Wei Yang <richard.weiyang@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Roman Gushchin 提交于
In general it's unknown in advance if a slab page will contain accounted objects or not. In order to avoid memory waste, an obj_cgroup vector is allocated dynamically when a need to account of a new object arises. Such approach is memory efficient, but requires an expensive cmpxchg() to set up the memcg/objcgs pointer, because an allocation can race with a different allocation on another cpu. But in some common cases it's known for sure that a slab page will contain accounted objects: if the page belongs to a slab cache with a SLAB_ACCOUNT flag set. It includes such popular objects like vm_area_struct, anon_vma, task_struct, etc. In such cases we can pre-allocate the objcgs vector and simple assign it to the page without any atomic operations, because at this early stage the page is not visible to anyone else. A very simplistic benchmark (allocating 10000000 64-bytes objects in a row) shows ~15% win. In the real life it seems that most workloads are not very sensitive to the speed of (accounted) slab allocations. [guro@fb.com: open-code set_page_objcgs() and add some comments, by Johannes] Link: https://lkml.kernel.org/r/20201113001926.GA2934489@carbon.dhcp.thefacebook.com [akpm@linux-foundation.org: fix it for mm-slub-call-account_slab_page-after-slab-page-initialization-fix.patch] Link: https://lkml.kernel.org/r/20201110195753.530157-2-guro@fb.comSigned-off-by: NRoman Gushchin <guro@fb.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Reviewed-by: NShakeel Butt <shakeelb@google.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 10 2月, 2021 1 次提交
-
-
由 Johannes Weiner 提交于
This reverts commit 536d3bf2, as it can cause writers to memory.high to get stuck in the kernel forever, performing page reclaim and consuming excessive amounts of CPU cycles. Before the patch, a write to memory.high would first put the new limit in place for the workload, and then reclaim the requested delta. After the patch, the kernel tries to reclaim the delta before putting the new limit into place, in order to not overwhelm the workload with a sudden, large excess over the limit. However, if reclaim is actively racing with new allocations from the uncurbed workload, it can keep the write() working inside the kernel indefinitely. This is causing problems in Facebook production. A privileged system-level daemon that adjusts memory.high for various workloads running on a host can get unexpectedly stuck in the kernel and essentially turn into a sort of involuntary kswapd for one of the workloads. We've observed that daemon busy-spin in a write() for minutes at a time, neglecting its other duties on the system, and expending privileged system resources on behalf of a workload. To remedy this, we have first considered changing the reclaim logic to break out after a couple of loops - whether the workload has converged to the new limit or not - and bound the write() call this way. However, the root cause that inspired the sequence change in the first place has been fixed through other means, and so a revert back to the proven limit-setting sequence, also used by memory.max, is preferable. The sequence was changed to avoid extreme latencies in the workload when the limit was lowered: the sudden, large excess created by the limit lowering would erroneously trigger the penalty sleeping code that is meant to throttle excessive growth from below. Allocating threads could end up sleeping long after the write() had already reclaimed the delta for which they were being punished. However, erroneous throttling also caused problems in other scenarios at around the same time. This resulted in commit b3ff9291 ("mm, memcg: reclaim more aggressively before high allocator throttling"), included in the same release as the offending commit. When allocating threads now encounter large excess caused by a racing write() to memory.high, instead of entering punitive sleeps, they will simply be tasked with helping reclaim down the excess, and will be held no longer than it takes to accomplish that. This is in line with regular limit enforcement - i.e. if the workload allocates up against or over an otherwise unchanged limit from below. With the patch breaking userspace, and the root cause addressed by other means already, revert it again. Link: https://lkml.kernel.org/r/20210122184341.292461-1-hannes@cmpxchg.org Fixes: 536d3bf2 ("mm: memcontrol: avoid workload stalls when lowering memory.high") Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Reported-by: NTejun Heo <tj@kernel.org> Acked-by: NChris Down <chris@chrisdown.name> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Michal Koutný <mkoutny@suse.com> Cc: <stable@vger.kernel.org> [5.8+] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 25 1月, 2021 1 次提交
-
-
由 Roman Gushchin 提交于
Imran Khan reported a 16% regression in hackbench results caused by the commit f2fe7b09 ("mm: memcg/slab: charge individual slab objects instead of pages"). The regression is noticeable in the case of a consequent allocation of several relatively large slab objects, e.g. skb's. As soon as the amount of stocked bytes exceeds PAGE_SIZE, drain_obj_stock() and __memcg_kmem_uncharge() are called, and it leads to a number of atomic operations in page_counter_uncharge(). The corresponding call graph is below (provided by Imran Khan): |__alloc_skb | | | |__kmalloc_reserve.isra.61 | | | | | |__kmalloc_node_track_caller | | | | | | | |slab_pre_alloc_hook.constprop.88 | | | obj_cgroup_charge | | | | | | | | | |__memcg_kmem_charge | | | | | | | | | | | |page_counter_try_charge | | | | | | | | | |refill_obj_stock | | | | | | | | | | | |drain_obj_stock.isra.68 | | | | | | | | | | | | | |__memcg_kmem_uncharge | | | | | | | | | | | | | | | |page_counter_uncharge | | | | | | | | | | | | | | | | | |page_counter_cancel | | | | | | | | | | | |__slab_alloc | | | | | | | | | |___slab_alloc | | | | | | | | |slab_post_alloc_hook Instead of directly uncharging the accounted kernel memory, it's possible to refill the generic page-sized per-cpu stock instead. It's a much faster operation, especially on a default hierarchy. As a bonus, __memcg_kmem_uncharge_page() will also get faster, so the freeing of page-sized kernel allocations (e.g. large kmallocs) will become faster. A similar change has been done earlier for the socket memory by the commit 475d0487 ("mm: memcontrol: use per-cpu stocks for socket memory uncharging"). Link: https://lkml.kernel.org/r/20210106042239.2860107-1-guro@fb.com Fixes: f2fe7b09 ("mm: memcg/slab: charge individual slab objects instead of pages") Signed-off-by: NRoman Gushchin <guro@fb.com> Reported-by: NImran Khan <imran.f.khan@oracle.com> Tested-by: NImran Khan <imran.f.khan@oracle.com> Reviewed-by: NShakeel Butt <shakeelb@google.com> Reviewed-by: NMichal Koutn <mkoutny@suse.com> Cc: Michal Koutný <mkoutny@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 24 1月, 2021 1 次提交
-
-
由 Christian Brauner 提交于
Add two simple helpers to check permissions on a file and path respectively and convert over some callers. It simplifies quite a few codepaths and also reduces the churn in later patches quite a bit. Christoph also correctly points out that this makes codepaths (e.g. ioctls) way easier to follow that would otherwise have to do more complex argument passing than necessary. Link: https://lore.kernel.org/r/20210121131959.646623-4-christian.brauner@ubuntu.com Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-fsdevel@vger.kernel.org Suggested-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NJames Morris <jamorris@linux.microsoft.com> Signed-off-by: NChristian Brauner <christian.brauner@ubuntu.com>
-
- 20 12月, 2020 3 次提交
-
-
由 liulangrenaaa 提交于
mem_cgroup_page_lruvec() in memcontrol.c and mem_cgroup_lruvec() in memcontrol.h is very similar except for the param(page and memcg) which also can be convert to each other. So rewrite mem_cgroup_page_lruvec() with mem_cgroup_lruvec(). [alex.shi@linux.alibaba.com: add missed warning in mem_cgroup_lruvec] Link: https://lkml.kernel.org/r/94f17bb7-ec61-5b72-3555-fabeb5a4d73b@linux.alibaba.com [lstoakes@gmail.com: warn on missing memcg on mem_cgroup_page_lruvec()] Link: https://lkml.kernel.org/r/20201125112202.387009-1-lstoakes@gmail.com Link: https://lkml.kernel.org/r/20201108143731.GA74138@rlkSigned-off-by:
Hui Su <sh_def@163.com> Signed-off-by: NAlex Shi <alex.shi@linux.alibaba.com> Signed-off-by: NLorenzo Stoakes <lstoakes@gmail.com> Acked-by: NMichal Hocko <mhocko@suse.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Reviewed-by: NShakeel Butt <shakeelb@google.com> Acked-by: NRoman Gushchin <guro@fb.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Yafang Shao <laoar.shao@gmail.com> Cc: Chris Down <chris@chrisdown.name> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Alex Shi 提交于
Add VM_WARN_ON_ONCE_PAGE() macro. Since readahead page is charged on memcg too, in theory we don't have to check this exception now. Before safely remove them all, add a warning for the unexpected !memcg. Link: https://lkml.kernel.org/r/1604283436-18880-3-git-send-email-alex.shi@linux.alibaba.comSigned-off-by: NAlex Shi <alex.shi@linux.alibaba.com> Acked-by: NMichal Hocko <mhocko@suse.com> Acked-by: NHugh Dickins <hughd@google.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Alex Shi 提交于
Patch series "bail out early for memcg disable". These 2 patches are indepenedent from per memcg lru lock, and may encounter unexpected warning, so let's move out them from per memcg lru locking patchset. This patch (of 2): We could bail out early when memcg wasn't enabled. Link: https://lkml.kernel.org/r/1604283436-18880-1-git-send-email-alex.shi@linux.alibaba.com Link: https://lkml.kernel.org/r/1604283436-18880-2-git-send-email-alex.shi@linux.alibaba.comSigned-off-by: NAlex Shi <alex.shi@linux.alibaba.com> Reviewed-by: NRoman Gushchin <guro@fb.com> Acked-by: NMichal Hocko <mhocko@suse.com> Acked-by: NHugh Dickins <hughd@google.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 16 12月, 2020 2 次提交
-
-
由 Alex Shi 提交于
This patch moves per node lru_lock into lruvec, thus bring a lru_lock for each of memcg per node. So on a large machine, each of memcg don't have to suffer from per node pgdat->lru_lock competition. They could go fast with their self lru_lock. After move memcg charge before lru inserting, page isolation could serialize page's memcg, then per memcg lruvec lock is stable and could replace per node lru lock. In isolate_migratepages_block(), compact_unlock_should_abort and lock_page_lruvec_irqsave are open coded to work with compact_control. Also add a debug func in locking which may give some clues if there are sth out of hands. Daniel Jordan's testing show 62% improvement on modified readtwice case on his 2P * 10 core * 2 HT broadwell box. https://lore.kernel.org/lkml/20200915165807.kpp7uhiw7l3loofu@ca-dmjordan1.us.oracle.com/ Hugh Dickins helped on the patch polish, thanks! [alex.shi@linux.alibaba.com: fix comment typo] Link: https://lkml.kernel.org/r/5b085715-292a-4b43-50b3-d73dc90d1de5@linux.alibaba.com [alex.shi@linux.alibaba.com: use page_memcg()] Link: https://lkml.kernel.org/r/5a4c2b72-7ee8-2478-fc0e-85eb83aafec4@linux.alibaba.com Link: https://lkml.kernel.org/r/1604566549-62481-18-git-send-email-alex.shi@linux.alibaba.comSigned-off-by: NAlex Shi <alex.shi@linux.alibaba.com> Acked-by: NHugh Dickins <hughd@google.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Rong Chen <rong.a.chen@intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Yang Shi <yang.shi@linux.alibaba.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Alexander Duyck <alexander.duyck@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Mika Penttilä <mika.penttila@nextfour.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Yang <richard.weiyang@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Alex Shi 提交于
Add a debug checking in lock_page_memcg, then we could get alarm if anything wrong here. Link: https://lkml.kernel.org/r/1604566549-62481-9-git-send-email-alex.shi@linux.alibaba.comSuggested-by: NJohannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAlex Shi <alex.shi@linux.alibaba.com> Acked-by: NHugh Dickins <hughd@google.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Alexander Duyck <alexander.duyck@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: "Chen, Rong A" <rong.a.chen@intel.com> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Jann Horn <jannh@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Mika Penttilä <mika.penttila@nextfour.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-