1. 18 7月, 2007 6 次提交
    • M
      Create the ZONE_MOVABLE zone · 2a1e274a
      Mel Gorman 提交于
      The following 8 patches against 2.6.20-mm2 create a zone called ZONE_MOVABLE
      that is only usable by allocations that specify both __GFP_HIGHMEM and
      __GFP_MOVABLE.  This has the effect of keeping all non-movable pages within a
      single memory partition while allowing movable allocations to be satisfied
      from either partition.  The patches may be applied with the list-based
      anti-fragmentation patches that groups pages together based on mobility.
      
      The size of the zone is determined by a kernelcore= parameter specified at
      boot-time.  This specifies how much memory is usable by non-movable
      allocations and the remainder is used for ZONE_MOVABLE.  Any range of pages
      within ZONE_MOVABLE can be released by migrating the pages or by reclaiming.
      
      When selecting a zone to take pages from for ZONE_MOVABLE, there are two
      things to consider.  First, only memory from the highest populated zone is
      used for ZONE_MOVABLE.  On the x86, this is probably going to be ZONE_HIGHMEM
      but it would be ZONE_DMA on ppc64 or possibly ZONE_DMA32 on x86_64.  Second,
      the amount of memory usable by the kernel will be spread evenly throughout
      NUMA nodes where possible.  If the nodes are not of equal size, the amount of
      memory usable by the kernel on some nodes may be greater than others.
      
      By default, the zone is not as useful for hugetlb allocations because they are
      pinned and non-migratable (currently at least).  A sysctl is provided that
      allows huge pages to be allocated from that zone.  This means that the huge
      page pool can be resized to the size of ZONE_MOVABLE during the lifetime of
      the system assuming that pages are not mlocked.  Despite huge pages being
      non-movable, we do not introduce additional external fragmentation of note as
      huge pages are always the largest contiguous block we care about.
      
      Credit goes to Andy Whitcroft for catching a large variety of problems during
      review of the patches.
      
      This patch creates an additional zone, ZONE_MOVABLE.  This zone is only usable
      by allocations which specify both __GFP_HIGHMEM and __GFP_MOVABLE.  Hot-added
      memory continues to be placed in their existing destination as there is no
      mechanism to redirect them to a specific zone.
      
      [y-goto@jp.fujitsu.com: Fix section mismatch of memory hotplug related code]
      [akpm@linux-foundation.org: various fixes]
      Signed-off-by: NMel Gorman <mel@csn.ul.ie>
      Cc: Andy Whitcroft <apw@shadowen.org>
      Signed-off-by: NYasunori Goto <y-goto@jp.fujitsu.com>
      Cc: William Lee Irwin III <wli@holomorphy.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      2a1e274a
    • M
      Add __GFP_MOVABLE for callers to flag allocations from high memory that may be migrated · 769848c0
      Mel Gorman 提交于
      It is often known at allocation time whether a page may be migrated or not.
      This patch adds a flag called __GFP_MOVABLE and a new mask called
      GFP_HIGH_MOVABLE.  Allocations using the __GFP_MOVABLE can be either migrated
      using the page migration mechanism or reclaimed by syncing with backing
      storage and discarding.
      
      An API function very similar to alloc_zeroed_user_highpage() is added for
      __GFP_MOVABLE allocations called alloc_zeroed_user_highpage_movable().  The
      flags used by alloc_zeroed_user_highpage() are not changed because it would
      change the semantics of an existing API.  After this patch is applied there
      are no in-kernel users of alloc_zeroed_user_highpage() so it probably should
      be marked deprecated if this patch is merged.
      
      Note that this patch includes a minor cleanup to the use of __GFP_ZERO in
      shmem.c to keep all flag modifications to inode->mapping in the
      shmem_dir_alloc() helper function.  This clean-up suggestion is courtesy of
      Hugh Dickens.
      
      Additional credit goes to Christoph Lameter and Linus Torvalds for shaping the
      concept.  Credit to Hugh Dickens for catching issues with shmem swap vector
      and ramfs allocations.
      
      [akpm@linux-foundation.org: build fix]
      [hugh@veritas.com: __GFP_ZERO cleanup]
      Signed-off-by: NMel Gorman <mel@csn.ul.ie>
      Cc: Andy Whitcroft <apw@shadowen.org>
      Cc: Christoph Lameter <clameter@sgi.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      769848c0
    • N
      Fix read/truncate race · a32ea1e1
      NeilBrown 提交于
      do_generic_mapping_read currently samples the i_size at the start and doesn't
      do so again unless it needs to call ->readpage to load a page.  After
      ->readpage it has to re-sample i_size as a truncate may have caused that page
      to be filled with zeros, and the read() call should not see these.
      
      However there are other activities that might cause ->readpage to be called on
      a page between the time that do_generic_mapping_read samples i_size and when
      it finds that it has an uptodate page.  These include at least read-ahead and
      possibly another thread performing a read.
      
      So do_generic_mapping_read must sample i_size *after* it has an uptodate page.
       Thus the current sampling at the start and after a read can be replaced with
      a sampling before the copy-out.
      
      The same change applied to __generic_file_splice_read.
      
      Note that this fixes any race with truncate_complete_page, but does not fix a
      possible race with truncate_partial_page.  If a partial truncate happens after
      do_generic_mapping_read samples i_size and before the copy_out, the nuls that
      truncate_partial_page place in the page could be copied out incorrectly.
      
      I think the best fix for that is to *not* zero out parts of the page in
      truncate_partial_page, but rather to zero out the tail of a page when
      increasing i_size.
      Signed-off-by: NNeil Brown <neilb@suse.de>
      Cc: Jens Axboe <jens.axboe@oracle.com>
      Acked-by: NNick Piggin <npiggin@suse.de>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      a32ea1e1
    • M
      mm: remove ptep_test_and_clear_dirty and ptep_clear_flush_dirty · e21ea246
      Martin Schwidefsky 提交于
      Nobody is using ptep_test_and_clear_dirty and ptep_clear_flush_dirty.  Remove
      the functions from all architectures.
      Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
      Cc: Hugh Dickins <hugh@veritas.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      e21ea246
    • M
      mm: remove ptep_establish() · f0e47c22
      Martin Schwidefsky 提交于
      The last user of ptep_establish in mm/ is long gone.  Remove the architecture
      primitive as well.
      Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
      Cc: Hugh Dickins <hugh@veritas.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      f0e47c22
    • Y
      parse error, drivers/i2c/busses/i2c-pmcmsp.c · 5ee403f5
      Yoann Padioleau 提交于
      Signed-off-by: NYoann Padioleau <padator@wanadoo.fr>
      Cc: Jean Delvare <khali@linux-fr.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      5ee403f5
  2. 17 7月, 2007 34 次提交