- 11 9月, 2015 1 次提交
-
-
由 Dave Young 提交于
There are two kexec load syscalls, kexec_load another and kexec_file_load. kexec_file_load has been splited as kernel/kexec_file.c. In this patch I split kexec_load syscall code to kernel/kexec.c. And add a new kconfig option KEXEC_CORE, so we can disable kexec_load and use kexec_file_load only, or vice verse. The original requirement is from Ted Ts'o, he want kexec kernel signature being checked with CONFIG_KEXEC_VERIFY_SIG enabled. But kexec-tools use kexec_load syscall can bypass the checking. Vivek Goyal proposed to create a common kconfig option so user can compile in only one syscall for loading kexec kernel. KEXEC/KEXEC_FILE selects KEXEC_CORE so that old config files still work. Because there's general code need CONFIG_KEXEC_CORE, so I updated all the architecture Kconfig with a new option KEXEC_CORE, and let KEXEC selects KEXEC_CORE in arch Kconfig. Also updated general kernel code with to kexec_load syscall. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: NDave Young <dyoung@redhat.com> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Petr Tesarik <ptesarik@suse.cz> Cc: Theodore Ts'o <tytso@mit.edu> Cc: Josh Boyer <jwboyer@fedoraproject.org> Cc: David Howells <dhowells@redhat.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 31 7月, 2015 1 次提交
-
-
由 Ricardo Neri 提交于
Even though it is documented how to specifiy efi parameters, it is possible to cause a kernel panic due to a dereference of a NULL pointer when parsing such parameters if "efi" alone is given: PANIC: early exception 0e rip 10:ffffffff812fb361 error 0 cr2 0 [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 4.2.0-rc1+ #450 [ 0.000000] ffffffff81fe20a9 ffffffff81e03d50 ffffffff8184bb0f 00000000000003f8 [ 0.000000] 0000000000000000 ffffffff81e03e08 ffffffff81f371a1 64656c62616e6520 [ 0.000000] 0000000000000069 000000000000005f 0000000000000000 0000000000000000 [ 0.000000] Call Trace: [ 0.000000] [<ffffffff8184bb0f>] dump_stack+0x45/0x57 [ 0.000000] [<ffffffff81f371a1>] early_idt_handler_common+0x81/0xae [ 0.000000] [<ffffffff812fb361>] ? parse_option_str+0x11/0x90 [ 0.000000] [<ffffffff81f4dd69>] arch_parse_efi_cmdline+0x15/0x42 [ 0.000000] [<ffffffff81f376e1>] do_early_param+0x50/0x8a [ 0.000000] [<ffffffff8106b1b3>] parse_args+0x1e3/0x400 [ 0.000000] [<ffffffff81f37a43>] parse_early_options+0x24/0x28 [ 0.000000] [<ffffffff81f37691>] ? loglevel+0x31/0x31 [ 0.000000] [<ffffffff81f37a78>] parse_early_param+0x31/0x3d [ 0.000000] [<ffffffff81f3ae98>] setup_arch+0x2de/0xc08 [ 0.000000] [<ffffffff8109629a>] ? vprintk_default+0x1a/0x20 [ 0.000000] [<ffffffff81f37b20>] start_kernel+0x90/0x423 [ 0.000000] [<ffffffff81f37495>] x86_64_start_reservations+0x2a/0x2c [ 0.000000] [<ffffffff81f37582>] x86_64_start_kernel+0xeb/0xef [ 0.000000] RIP 0xffffffff81ba2efc This panic is not reproducible with "efi=" as this will result in a non-NULL zero-length string. Thus, verify that the pointer to the parameter string is not NULL. This is consistent with other parameter-parsing functions which check for NULL pointers. Signed-off-by: NRicardo Neri <ricardo.neri-calderon@linux.intel.com> Cc: Dave Young <dyoung@redhat.com> Cc: <stable@vger.kernel.org> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
- 25 6月, 2015 1 次提交
-
-
由 Tony Luck 提交于
UEFI GetMemoryMap() uses a new attribute bit to mark mirrored memory address ranges. See UEFI 2.5 spec pages 157-158: http://www.uefi.org/sites/default/files/resources/UEFI%202_5.pdf On EFI enabled systems scan the memory map and tell memblock about any mirrored ranges. Signed-off-by: NTony Luck <tony.luck@intel.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Hanjun Guo <guohanjun@huawei.com> Cc: Xiexiuqi <xiexiuqi@huawei.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Naoya Horiguchi <nao.horiguchi@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 28 5月, 2015 1 次提交
-
-
由 Dan Williams 提交于
ACPI 6.0 formalizes e820-type-7 and efi-type-14 as persistent memory. Mark it "reserved" and allow it to be claimed by a persistent memory device driver. This definition is in addition to the Linux kernel's existing type-12 definition that was recently added in support of shipping platforms with NVDIMM support that predate ACPI 6.0 (which now classifies type-12 as OEM reserved). Note, /proc/iomem can be consulted for differentiating legacy "Persistent Memory (legacy)" E820_PRAM vs standard "Persistent Memory" E820_PMEM. Cc: Boaz Harrosh <boaz@plexistor.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jens Axboe <axboe@fb.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Acked-by: NJeff Moyer <jmoyer@redhat.com> Acked-by: NAndy Lutomirski <luto@amacapital.net> Reviewed-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Acked-by: NChristoph Hellwig <hch@lst.de> Tested-by: NToshi Kani <toshi.kani@hp.com> Signed-off-by: NDan Williams <dan.j.williams@intel.com>
-
- 01 5月, 2015 1 次提交
-
-
由 Peter Jones 提交于
Add sysfs files for the EFI System Resource Table (ESRT) under /sys/firmware/efi/esrt and for each EFI System Resource Entry under entries/ as a subdir. The EFI System Resource Table (ESRT) provides a read-only catalog of system components for which the system accepts firmware upgrades via UEFI's "Capsule Update" feature. This module allows userland utilities to evaluate what firmware updates can be applied to this system, and potentially arrange for those updates to occur. The ESRT is described as part of the UEFI specification, in version 2.5 which should be available from http://uefi.org/specifications in early 2015. If you're a member of the UEFI Forum, information about its addition to the standard is available as UEFI Mantis 1090. For some hardware platforms, additional restrictions may be found at http://msdn.microsoft.com/en-us/library/windows/hardware/jj128256.aspx , and additional documentation may be found at http://download.microsoft.com/download/5/F/5/5F5D16CD-2530-4289-8019-94C6A20BED3C/windows-uefi-firmware-update-platform.docx . Signed-off-by: NPeter Jones <pjones@redhat.com> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
- 01 4月, 2015 3 次提交
-
-
由 Ingo Molnar 提交于
Currently x86-64 efi_call_phys_prolog() saves into a global variable (save_pgd), and efi_call_phys_epilog() restores the kernel pagetables from that global variable. Change this to a cleaner save/restore pattern where the saving function returns the saved object and the restore function restores that. Apply the same concept to the 32-bit code as well. Plus this approach, as an added bonus, allows us to express the !efi_enabled(EFI_OLD_MEMMAP) situation in a clean fashion as well, via a 'NULL' return value. Cc: Tapasweni Pathak <tapaswenipathak@gmail.com> Signed-off-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
由 Ingo Molnar 提交于
Tapasweni Pathak reported that we do a kmalloc() in efi_call_phys_prolog() on x86-64 while having interrupts disabled, which is a big no-no, as kmalloc() can sleep. Solve this by removing the irq disabling from the prolog/epilog calls around EFI calls: it's unnecessary, as in this stage we are single threaded in the boot thread, and we don't ever execute this from interrupt contexts. Reported-by: NTapasweni Pathak <tapaswenipathak@gmail.com> Signed-off-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
由 Borislav Petkov 提交于
... and hide the memory regions dump behind it. Make it default-off. Signed-off-by: NBorislav Petkov <bp@suse.de> Link: http://lkml.kernel.org/r/20141209095843.GA3990@pd.tnicAcked-by: NLaszlo Ersek <lersek@redhat.com> Acked-by: NDave Young <dyoung@redhat.com> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
- 04 10月, 2014 9 次提交
-
-
由 Mathias Krause 提交于
The 32 bit and 64 bit implementations differ in their __init annotations for some functions referenced from the common EFI code. Namely, the 32 bit variant is missing some of the __init annotations the 64 bit variant has. To solve the colliding annotations, mark the corresponding functions in efi_32.c as initialization code, too -- as it is such. Actually, quite a few more functions are only used during initialization and therefore can be marked __init. They are therefore annotated, too. Also add the __init annotation to the prototypes in the efi.h header so users of those functions will see it's meant as initialization code only. This patch also fixes the "prelog" typo. ("prologue" / "epilogue" might be more appropriate but this is C code after all, not an opera! :D) Signed-off-by: NMathias Krause <minipli@googlemail.com> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
由 Mathias Krause 提交于
Commit 3f4a7836 ("x86/efi: Rip out phys_efi_get_time()") left set_virtual_address_map as the only runtime service needed with a phys mapping but missed to update the preceding comment. Fix that. Signed-off-by: NMathias Krause <minipli@googlemail.com> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
由 Mathias Krause 提交于
This variable was accidentally exported, even though it's only used in this compilation unit and only during initialization. Remove the bogus export, make the variable static instead and mark it as __initdata. Fixes: 200001eb ("x86 boot: only pick up additional EFI memmap...") Cc: Paul Jackson <pj@sgi.com> Signed-off-by: NMathias Krause <minipli@googlemail.com> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
由 Laszlo Ersek 提交于
An example log excerpt demonstrating the change: Before the patch: > efi: mem00: type=7, attr=0xf, range=[0x0000000000000000-0x000000000009f000) (0MB) > efi: mem01: type=2, attr=0xf, range=[0x000000000009f000-0x00000000000a0000) (0MB) > efi: mem02: type=7, attr=0xf, range=[0x0000000000100000-0x0000000000400000) (3MB) > efi: mem03: type=2, attr=0xf, range=[0x0000000000400000-0x0000000000800000) (4MB) > efi: mem04: type=10, attr=0xf, range=[0x0000000000800000-0x0000000000808000) (0MB) > efi: mem05: type=7, attr=0xf, range=[0x0000000000808000-0x0000000000810000) (0MB) > efi: mem06: type=10, attr=0xf, range=[0x0000000000810000-0x0000000000900000) (0MB) > efi: mem07: type=4, attr=0xf, range=[0x0000000000900000-0x0000000001100000) (8MB) > efi: mem08: type=7, attr=0xf, range=[0x0000000001100000-0x0000000001400000) (3MB) > efi: mem09: type=2, attr=0xf, range=[0x0000000001400000-0x0000000002613000) (18MB) > efi: mem10: type=7, attr=0xf, range=[0x0000000002613000-0x0000000004000000) (25MB) > efi: mem11: type=4, attr=0xf, range=[0x0000000004000000-0x0000000004020000) (0MB) > efi: mem12: type=7, attr=0xf, range=[0x0000000004020000-0x00000000068ea000) (40MB) > efi: mem13: type=2, attr=0xf, range=[0x00000000068ea000-0x00000000068f0000) (0MB) > efi: mem14: type=3, attr=0xf, range=[0x00000000068f0000-0x0000000006c7b000) (3MB) > efi: mem15: type=6, attr=0x800000000000000f, range=[0x0000000006c7b000-0x0000000006c7d000) (0MB) > efi: mem16: type=5, attr=0x800000000000000f, range=[0x0000000006c7d000-0x0000000006c85000) (0MB) > efi: mem17: type=6, attr=0x800000000000000f, range=[0x0000000006c85000-0x0000000006c87000) (0MB) > efi: mem18: type=3, attr=0xf, range=[0x0000000006c87000-0x0000000006ca3000) (0MB) > efi: mem19: type=6, attr=0x800000000000000f, range=[0x0000000006ca3000-0x0000000006ca6000) (0MB) > efi: mem20: type=10, attr=0xf, range=[0x0000000006ca6000-0x0000000006cc6000) (0MB) > efi: mem21: type=6, attr=0x800000000000000f, range=[0x0000000006cc6000-0x0000000006d95000) (0MB) > efi: mem22: type=5, attr=0x800000000000000f, range=[0x0000000006d95000-0x0000000006e22000) (0MB) > efi: mem23: type=7, attr=0xf, range=[0x0000000006e22000-0x0000000007165000) (3MB) > efi: mem24: type=4, attr=0xf, range=[0x0000000007165000-0x0000000007d22000) (11MB) > efi: mem25: type=7, attr=0xf, range=[0x0000000007d22000-0x0000000007d25000) (0MB) > efi: mem26: type=3, attr=0xf, range=[0x0000000007d25000-0x0000000007ea2000) (1MB) > efi: mem27: type=5, attr=0x800000000000000f, range=[0x0000000007ea2000-0x0000000007ed2000) (0MB) > efi: mem28: type=6, attr=0x800000000000000f, range=[0x0000000007ed2000-0x0000000007ef6000) (0MB) > efi: mem29: type=7, attr=0xf, range=[0x0000000007ef6000-0x0000000007f00000) (0MB) > efi: mem30: type=9, attr=0xf, range=[0x0000000007f00000-0x0000000007f02000) (0MB) > efi: mem31: type=10, attr=0xf, range=[0x0000000007f02000-0x0000000007f06000) (0MB) > efi: mem32: type=4, attr=0xf, range=[0x0000000007f06000-0x0000000007fd0000) (0MB) > efi: mem33: type=6, attr=0x800000000000000f, range=[0x0000000007fd0000-0x0000000007ff0000) (0MB) > efi: mem34: type=7, attr=0xf, range=[0x0000000007ff0000-0x0000000008000000) (0MB) After the patch: > efi: mem00: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x0000000000000000-0x000000000009f000) (0MB) > efi: mem01: [Loader Data | | | | | |WB|WT|WC|UC] range=[0x000000000009f000-0x00000000000a0000) (0MB) > efi: mem02: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x0000000000100000-0x0000000000400000) (3MB) > efi: mem03: [Loader Data | | | | | |WB|WT|WC|UC] range=[0x0000000000400000-0x0000000000800000) (4MB) > efi: mem04: [ACPI Memory NVS | | | | | |WB|WT|WC|UC] range=[0x0000000000800000-0x0000000000808000) (0MB) > efi: mem05: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x0000000000808000-0x0000000000810000) (0MB) > efi: mem06: [ACPI Memory NVS | | | | | |WB|WT|WC|UC] range=[0x0000000000810000-0x0000000000900000) (0MB) > efi: mem07: [Boot Data | | | | | |WB|WT|WC|UC] range=[0x0000000000900000-0x0000000001100000) (8MB) > efi: mem08: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x0000000001100000-0x0000000001400000) (3MB) > efi: mem09: [Loader Data | | | | | |WB|WT|WC|UC] range=[0x0000000001400000-0x0000000002613000) (18MB) > efi: mem10: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x0000000002613000-0x0000000004000000) (25MB) > efi: mem11: [Boot Data | | | | | |WB|WT|WC|UC] range=[0x0000000004000000-0x0000000004020000) (0MB) > efi: mem12: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x0000000004020000-0x00000000068ea000) (40MB) > efi: mem13: [Loader Data | | | | | |WB|WT|WC|UC] range=[0x00000000068ea000-0x00000000068f0000) (0MB) > efi: mem14: [Boot Code | | | | | |WB|WT|WC|UC] range=[0x00000000068f0000-0x0000000006c7b000) (3MB) > efi: mem15: [Runtime Data |RUN| | | | |WB|WT|WC|UC] range=[0x0000000006c7b000-0x0000000006c7d000) (0MB) > efi: mem16: [Runtime Code |RUN| | | | |WB|WT|WC|UC] range=[0x0000000006c7d000-0x0000000006c85000) (0MB) > efi: mem17: [Runtime Data |RUN| | | | |WB|WT|WC|UC] range=[0x0000000006c85000-0x0000000006c87000) (0MB) > efi: mem18: [Boot Code | | | | | |WB|WT|WC|UC] range=[0x0000000006c87000-0x0000000006ca3000) (0MB) > efi: mem19: [Runtime Data |RUN| | | | |WB|WT|WC|UC] range=[0x0000000006ca3000-0x0000000006ca6000) (0MB) > efi: mem20: [ACPI Memory NVS | | | | | |WB|WT|WC|UC] range=[0x0000000006ca6000-0x0000000006cc6000) (0MB) > efi: mem21: [Runtime Data |RUN| | | | |WB|WT|WC|UC] range=[0x0000000006cc6000-0x0000000006d95000) (0MB) > efi: mem22: [Runtime Code |RUN| | | | |WB|WT|WC|UC] range=[0x0000000006d95000-0x0000000006e22000) (0MB) > efi: mem23: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x0000000006e22000-0x0000000007165000) (3MB) > efi: mem24: [Boot Data | | | | | |WB|WT|WC|UC] range=[0x0000000007165000-0x0000000007d22000) (11MB) > efi: mem25: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x0000000007d22000-0x0000000007d25000) (0MB) > efi: mem26: [Boot Code | | | | | |WB|WT|WC|UC] range=[0x0000000007d25000-0x0000000007ea2000) (1MB) > efi: mem27: [Runtime Code |RUN| | | | |WB|WT|WC|UC] range=[0x0000000007ea2000-0x0000000007ed2000) (0MB) > efi: mem28: [Runtime Data |RUN| | | | |WB|WT|WC|UC] range=[0x0000000007ed2000-0x0000000007ef6000) (0MB) > efi: mem29: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x0000000007ef6000-0x0000000007f00000) (0MB) > efi: mem30: [ACPI Reclaim Memory| | | | | |WB|WT|WC|UC] range=[0x0000000007f00000-0x0000000007f02000) (0MB) > efi: mem31: [ACPI Memory NVS | | | | | |WB|WT|WC|UC] range=[0x0000000007f02000-0x0000000007f06000) (0MB) > efi: mem32: [Boot Data | | | | | |WB|WT|WC|UC] range=[0x0000000007f06000-0x0000000007fd0000) (0MB) > efi: mem33: [Runtime Data |RUN| | | | |WB|WT|WC|UC] range=[0x0000000007fd0000-0x0000000007ff0000) (0MB) > efi: mem34: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x0000000007ff0000-0x0000000008000000) (0MB) Both the type enum and the attribute bitmap are decoded, with the additional benefit that the memory ranges line up as well. Signed-off-by: NLaszlo Ersek <lersek@redhat.com> Acked-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
由 Dave Young 提交于
If enter virtual mode failed due to some reason other than the efi call the EFI_RUNTIME_SERVICES bit in efi.flags should be cleared thus users of efi runtime services can check the bit and handle the case instead of assume efi runtime is ok. Per Matt, if efi call SetVirtualAddressMap fails we will be not sure it's safe to make any assumptions about the state of the system. So kernel panics instead of clears EFI_RUNTIME_SERVICES bit. Signed-off-by: NDave Young <dyoung@redhat.com> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
由 Dave Young 提交于
noefi kernel param means actually disabling efi runtime, Per suggestion from Leif Lindholm efi=noruntime should be better. But since noefi is already used in X86 thus just adding another param efi=noruntime for same purpose. Signed-off-by: NDave Young <dyoung@redhat.com> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
由 Dave Young 提交于
There should be a generic function to parse params like a=b,c Adding parse_option_str in lib/cmdline.c which will return true if there's specified option set in the params. Also updated efi=old_map parsing code to use the new function Signed-off-by: NDave Young <dyoung@redhat.com> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
由 Dave Young 提交于
noefi param can be used for arches other than X86 later, thus move it out of x86 platform code. Signed-off-by: NDave Young <dyoung@redhat.com> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
由 Matt Fleming 提交于
We need a way to customize the behaviour of the EFI boot stub, in particular, we need a way to disable the "chunking" workaround, used when reading files from the EFI System Partition. One of my machines doesn't cope well when reading files in 1MB chunks to a buffer above the 4GB mark - it appears that the "chunking" bug workaround triggers another firmware bug. This was only discovered with commit 4bf7111f ("x86/efi: Support initrd loaded above 4G"), and that commit is perfectly valid. The symptom I observed was a corrupt initrd rather than any kind of crash. efi= is now used to specify EFI parameters in two very different execution environments, the EFI boot stub and during kernel boot. There is also a slight performance optimization by enabling efi=nochunk, but that's offset by the fact that you're more likely to run into firmware issues, at least on x86. This is the rationale behind leaving the workaround enabled by default. Also provide some documentation for EFI_READ_CHUNK_SIZE and why we're using the current value of 1MB. Tested-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Cc: Roy Franz <roy.franz@linaro.org> Cc: Maarten Lankhorst <m.b.lankhorst@gmail.com> Cc: Leif Lindholm <leif.lindholm@linaro.org> Cc: Borislav Petkov <bp@suse.de> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
- 19 7月, 2014 6 次提交
-
-
由 Daniel Kiper 提交于
efi_set_rtc_mmss() is never used to set RTC due to bugs found on many EFI platforms. It is set directly by mach_set_rtc_mmss(). Hence, remove unused efi_set_rtc_mmss() function. Signed-off-by: NDaniel Kiper <daniel.kiper@oracle.com> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
由 Daniel Kiper 提交于
Remove redundant set_bit(EFI_MEMMAP, &efi.flags) call. It is executed earlier in efi_memmap_init(). Signed-off-by: NDaniel Kiper <daniel.kiper@oracle.com> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
由 Daniel Kiper 提交于
Remove redundant set_bit(EFI_SYSTEM_TABLES, &efi.flags) call. It is executed earlier in efi_systab_init(). Signed-off-by: NDaniel Kiper <daniel.kiper@oracle.com> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
由 Daniel Kiper 提交于
Introduce EFI_PARAVIRT flag. If it is set then kernel runs on EFI platform but it has not direct control on EFI stuff like EFI runtime, tables, structures, etc. If not this means that Linux Kernel has direct access to EFI infrastructure and everything runs as usual. This functionality is used in Xen dom0 because hypervisor has full control on EFI stuff and all calls from dom0 to EFI must be requested via special hypercall which in turn executes relevant EFI code in behalf of dom0. Signed-off-by: NDaniel Kiper <daniel.kiper@oracle.com> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
由 Daniel Kiper 提交于
Do not access EFI memory map if it is not available. At least Xen dom0 EFI implementation does not have an access to it. Signed-off-by: NDaniel Kiper <daniel.kiper@oracle.com> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
由 Daniel Kiper 提交于
Use early_mem*() instead of early_io*() because all mapped EFI regions are memory (usually RAM but they could also be ROM, EPROM, EEPROM, flash, etc.) not I/O regions. Additionally, I/O family calls do not work correctly under Xen in our case. early_ioremap() skips the PFN to MFN conversion when building the PTE. Using it for memory will attempt to map the wrong machine frame. However, all artificial EFI structures created under Xen live in dom0 memory and should be mapped/unmapped using early_mem*() family calls which map domain memory. Signed-off-by: NDaniel Kiper <daniel.kiper@oracle.com> Cc: Leif Lindholm <leif.lindholm@linaro.org> Cc: Mark Salter <msalter@redhat.com> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
- 08 7月, 2014 1 次提交
-
-
由 Ard Biesheuvel 提交于
In order for other archs (such as arm64) to be able to reuse the virtual mode function call wrappers, move them to drivers/firmware/efi/runtime-wrappers.c. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
- 19 6月, 2014 1 次提交
-
-
由 Saurabh Tangri 提交于
Currently, it's difficult to find all the workarounds that are applied when running on EFI, because they're littered throughout various code paths. This change moves all of them into a separate file with the hope that it will be come the single location for all our well documented quirks. Signed-off-by: NSaurabh Tangri <saurabh.tangri@intel.com> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
- 02 6月, 2014 1 次提交
-
-
由 Dave Young 提交于
For ioremapped efi memory aka old_map the virt addresses are not persistant across kexec reboot. kexec-tools will read the runtime maps from sysfs then pass them to 2nd kernel and assuming kexec efi boot is ok. This will cause kexec boot failure. To address this issue do not export runtime maps in case efi old_map so userspace can use no efi boot instead. Signed-off-by: NDave Young <dyoung@redhat.com> Acked-by: NBorislav Petkov <bp@suse.de> Acked-by: NVivek Goyal <vgoyal@redhat.com> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
- 17 4月, 2014 2 次提交
-
-
由 Ricardo Neri 提交于
For i386, all the EFI system runtime services functions return efi_status_t except efi_reset_system_system. Therefore, not all functions can be covered by the same macro in case the macro needs to do more than calling the function (i.e., return a value). The purpose of the __efi_call_virt macro is to be used when no return value is expected. For x86_64, this macro would not be needed as all the runtime services return u64. However, the same code is used for both x86_64 and i386. Thus, the macro __efi_call_virt is also defined to not break compilation. Signed-off-by: NRicardo Neri <ricardo.neri-calderon@linux.intel.com> Cc: Borislav Petkov <bp@suse.de> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
由 Matt Fleming 提交于
We really only need one phys and one virt function call, and then only one assembly function to make firmware calls. Since we are not using the C type system anyway, we're not really losing much by deleting the macros apart from no longer having a check that we are passing the correct number of parameters. The lack of duplicated code seems like a worthwhile trade-off. Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com> Cc: Borislav Petkov <bp@suse.de> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
- 18 3月, 2014 1 次提交
-
-
由 Matt Fleming 提交于
Dan reported that phys_efi_get_time() is doing kmalloc(..., GFP_KERNEL) under a spinlock which is very clearly a bug. Since phys_efi_get_time() has no users let's just delete it instead of trying to fix it. Note that since there are no users of phys_efi_get_time(), it is not possible to actually trigger a GFP_KERNEL alloc under the spinlock. Reported-by: NDan Carpenter <dan.carpenter@oracle.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Nathan Zimmer <nzimmer@sgi.com> Cc: Matthew Garrett <mjg59@srcf.ucam.org> Cc: Jan Beulich <JBeulich@suse.com> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
- 05 3月, 2014 11 次提交
-
-
由 Borislav Petkov 提交于
Alex reported hitting the following BUG after the EFI 1:1 virtual mapping work was merged, kernel BUG at arch/x86/mm/init_64.c:351! invalid opcode: 0000 [#1] SMP Call Trace: [<ffffffff818aa71d>] init_extra_mapping_uc+0x13/0x15 [<ffffffff818a5e20>] uv_system_init+0x22b/0x124b [<ffffffff8108b886>] ? clockevents_register_device+0x138/0x13d [<ffffffff81028dbb>] ? setup_APIC_timer+0xc5/0xc7 [<ffffffff8108b620>] ? clockevent_delta2ns+0xb/0xd [<ffffffff818a3a92>] ? setup_boot_APIC_clock+0x4a8/0x4b7 [<ffffffff8153d955>] ? printk+0x72/0x74 [<ffffffff818a1757>] native_smp_prepare_cpus+0x389/0x3d6 [<ffffffff818957bc>] kernel_init_freeable+0xb7/0x1fb [<ffffffff81535530>] ? rest_init+0x74/0x74 [<ffffffff81535539>] kernel_init+0x9/0xff [<ffffffff81541dfc>] ret_from_fork+0x7c/0xb0 [<ffffffff81535530>] ? rest_init+0x74/0x74 Getting this thing to work with the new mapping scheme would need more work, so automatically switch to the old memmap layout for SGI UV. Acked-by: NRuss Anderson <rja@sgi.com> Cc: Alex Thorlton <athorlton@sgi.com Signed-off-by: NBorislav Petkov <bp@suse.de> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
由 Matt Fleming 提交于
Add the Kconfig option and bump the kernel header version so that boot loaders can check whether the handover code is available if they want. The xloadflags field in the bzImage header is also updated to reflect that the kernel supports both entry points by setting both of XLF_EFI_HANDOVER_32 and XLF_EFI_HANDOVER_64 when CONFIG_EFI_MIXED=y. XLF_CAN_BE_LOADED_ABOVE_4G is disabled so that the kernel text is guaranteed to be addressable with 32-bits. Note that no boot loaders should be using the bits set in xloadflags to decide which entry point to jump to. The entire scheme is based on the concept that 32-bit bootloaders always jump to ->handover_offset and 64-bit loaders always jump to ->handover_offset + 512. We set both bits merely to inform the boot loader that it's safe to use the native handover offset even if the machine type in the PE/COFF header claims otherwise. Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
由 Matt Fleming 提交于
Setup the runtime services based on whether we're booting in EFI native mode or not. For non-native mode we need to thunk from 64-bit into 32-bit mode before invoking the EFI runtime services. Using the runtime services after SetVirtualAddressMap() is slightly more complicated because we need to ensure that all the addresses we pass to the firmware are below the 4GB boundary so that they can be addressed with 32-bit pointers, see efi_setup_page_tables(). Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
由 Matt Fleming 提交于
Both efi_free_boot_services() and efi_enter_virtual_mode() are invoked from init/main.c, but only if the EFI runtime services are available. This is not the case for non-native boots, e.g. where a 64-bit kernel is booted with 32-bit EFI firmware. Delete the dead code. Acked-by: NBorislav Petkov <bp@suse.de> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
由 Borislav Petkov 提交于
... into a kexec flavor for better code readability and simplicity. The original one was getting ugly with ifdeffery. Signed-off-by: NBorislav Petkov <bp@suse.de> Tested-by: NToshi Kani <toshi.kani@hp.com> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
由 Borislav Petkov 提交于
Currently, running SetVirtualAddressMap() and passing the physical address of the virtual map array was working only by a lucky coincidence because the memory was present in the EFI page table too. Until Toshi went and booted this on a big HP box - the krealloc() manner of resizing the memmap we're doing did allocate from such physical addresses which were not mapped anymore and boom: http://lkml.kernel.org/r/1386806463.1791.295.camel@misato.fc.hp.com One way to take care of that issue is to reimplement the krealloc thing but with pages. We start with contiguous pages of order 1, i.e. 2 pages, and when we deplete that memory (shouldn't happen all that often but you know firmware) we realloc the next power-of-two pages. Having the pages, it is much more handy and easy to map them into the EFI page table with the already existing mapping code which we're using for building the virtual mappings. Thanks to Toshi Kani and Matt for the great debugging help. Reported-by: NToshi Kani <toshi.kani@hp.com> Signed-off-by: NBorislav Petkov <bp@suse.de> Tested-by: NToshi Kani <toshi.kani@hp.com> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
由 Borislav Petkov 提交于
This is very useful for debugging issues with the recently added pagetable switching code for EFI virtual mode. Signed-off-by: NBorislav Petkov <bp@suse.de> Tested-by: NToshi Kani <toshi.kani@hp.com> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
由 Joe Perches 提交于
Coalesce formats and remove spaces before tabs. Move __initdata after the variable declaration. Signed-off-by: NJoe Perches <joe@perches.com> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
由 Madper Xie 提交于
For now we only ensure about 5kb free space for avoiding our board refusing boot. But the comment lies that we retain 50% space. Signed-off-by: NMadper Xie <cxie@redhat.com> Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
由 Matt Fleming 提交于
It makes more sense to set the feature flag in the success path of the detection function than it does to rely on the caller doing it. Apart from it being more logical to group the code and data together, it sets a much better example for new EFI architectures. Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-
由 Matt Fleming 提交于
As we grow support for more EFI architectures they're going to want the ability to query which EFI features are available on the running system. Instead of storing this information in an architecture-specific place, stick it in the global 'struct efi', which is already the central location for EFI state. While we're at it, let's change the return value of efi_enabled() to be bool and replace all references to 'facility' with 'feature', which is the usual word used to describe the attributes of the running system. Signed-off-by: NMatt Fleming <matt.fleming@intel.com>
-