- 01 5月, 2019 1 次提交
-
-
由 Andreas Gruenbacher 提交于
The VFS-internal __generic_write_end helper always returns the value of its @copied argument. This can be confusing, and it isn't very useful anyway, so turn __generic_write_end into a function returning void instead. Signed-off-by: NAndreas Gruenbacher <agruenba@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 28 2月, 2019 1 次提交
-
-
由 David Howells 提交于
Because the new API passes in key,value parameters, match_token() cannot be used with it. Instead, provide three new helpers to aid with parsing: (1) fs_parse(). This takes a parameter and a simple static description of all the parameters and maps the key name to an ID. It returns 1 on a match, 0 on no match if unknowns should be ignored and some other negative error code on a parse error. The parameter description includes a list of key names to IDs, desired parameter types and a list of enumeration name -> ID mappings. [!] Note that for the moment I've required that the key->ID mapping array is expected to be sorted and unterminated. The size of the array is noted in the fsconfig_parser struct. This allows me to use bsearch(), but I'm not sure any performance gain is worth the hassle of requiring people to keep the array sorted. The parameter type array is sized according to the number of parameter IDs and is indexed directly. The optional enum mapping array is an unterminated, unsorted list and the size goes into the fsconfig_parser struct. The function can do some additional things: (a) If it's not ambiguous and no value is given, the prefix "no" on a key name is permitted to indicate that the parameter should be considered negatory. (b) If the desired type is a single simple integer, it will perform an appropriate conversion and store the result in a union in the parse result. (c) If the desired type is an enumeration, {key ID, name} will be looked up in the enumeration list and the matching value will be stored in the parse result union. (d) Optionally generate an error if the key is unrecognised. This is called something like: enum rdt_param { Opt_cdp, Opt_cdpl2, Opt_mba_mpbs, nr__rdt_params }; const struct fs_parameter_spec rdt_param_specs[nr__rdt_params] = { [Opt_cdp] = { fs_param_is_bool }, [Opt_cdpl2] = { fs_param_is_bool }, [Opt_mba_mpbs] = { fs_param_is_bool }, }; const const char *const rdt_param_keys[nr__rdt_params] = { [Opt_cdp] = "cdp", [Opt_cdpl2] = "cdpl2", [Opt_mba_mpbs] = "mba_mbps", }; const struct fs_parameter_description rdt_parser = { .name = "rdt", .nr_params = nr__rdt_params, .keys = rdt_param_keys, .specs = rdt_param_specs, .no_source = true, }; int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct fs_parse_result parse; struct rdt_fs_context *ctx = rdt_fc2context(fc); int ret; ret = fs_parse(fc, &rdt_parser, param, &parse); if (ret < 0) return ret; switch (parse.key) { case Opt_cdp: ctx->enable_cdpl3 = true; return 0; case Opt_cdpl2: ctx->enable_cdpl2 = true; return 0; case Opt_mba_mpbs: ctx->enable_mba_mbps = true; return 0; } return -EINVAL; } (2) fs_lookup_param(). This takes a { dirfd, path, LOOKUP_EMPTY? } or string value and performs an appropriate path lookup to convert it into a path object, which it will then return. If the desired type was a blockdev, the type of the looked up inode will be checked to make sure it is one. This can be used like: enum foo_param { Opt_source, nr__foo_params }; const struct fs_parameter_spec foo_param_specs[nr__foo_params] = { [Opt_source] = { fs_param_is_blockdev }, }; const char *char foo_param_keys[nr__foo_params] = { [Opt_source] = "source", }; const struct constant_table foo_param_alt_keys[] = { { "device", Opt_source }, }; const struct fs_parameter_description foo_parser = { .name = "foo", .nr_params = nr__foo_params, .nr_alt_keys = ARRAY_SIZE(foo_param_alt_keys), .keys = foo_param_keys, .alt_keys = foo_param_alt_keys, .specs = foo_param_specs, }; int foo_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct fs_parse_result parse; struct foo_fs_context *ctx = foo_fc2context(fc); int ret; ret = fs_parse(fc, &foo_parser, param, &parse); if (ret < 0) return ret; switch (parse.key) { case Opt_source: return fs_lookup_param(fc, &foo_parser, param, &parse, &ctx->source); default: return -EINVAL; } } (3) lookup_constant(). This takes a table of named constants and looks up the given name within it. The table is expected to be sorted such that bsearch() be used upon it. Possibly I should require the table be terminated and just use a for-loop to scan it instead of using bsearch() to reduce hassle. Tables look something like: static const struct constant_table bool_names[] = { { "0", false }, { "1", true }, { "false", false }, { "no", false }, { "true", true }, { "yes", true }, }; and a lookup is done with something like: b = lookup_constant(bool_names, param->string, -1); Additionally, optional validation routines for the parameter description are provided that can be enabled at compile time. A later patch will invoke these when a filesystem is registered. Signed-off-by: NDavid Howells <dhowells@redhat.com> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 31 1月, 2019 4 次提交
-
-
由 Al Viro 提交于
Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 David Howells 提交于
Replace do_remount_sb() with a function, reconfigure_super(), that's fs_context aware. The fs_context is expected to be parameterised already and have ->root pointing to the superblock to be reconfigured. A legacy wrapper is provided that is intended to be called from the fs_context ops when those appear, but for now is called directly from reconfigure_super(). This wrapper invokes the ->remount_fs() superblock op for the moment. It is intended that the remount_fs() op will be phased out. The fs_context->purpose is set to FS_CONTEXT_FOR_RECONFIGURE to indicate that the context is being used for reconfiguration. do_umount_root() is provided to consolidate remount-to-R/O for umount and emergency remount by creating a context and invoking reconfiguration. do_remount(), do_umount() and do_emergency_remount_callback() are switched to use the new process. [AV -- fold UMOUNT and EMERGENCY_REMOUNT in; fixes the umount / bug, gets rid of pointless complexity] [AV -- set ->net_ns in all cases; nfs remount will need that] [AV -- shift security_sb_remount() call into reconfigure_super(); the callers that didn't do security_sb_remount() have NULL fc->security anyway, so it's a no-op for them] Signed-off-by: NDavid Howells <dhowells@redhat.com> Co-developed-by: NAl Viro <viro@zeniv.linux.org.uk> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Al Viro 提交于
Right now vfs_get_tree() calls security_sb_kern_mount() (i.e. mount MAC) unless it gets MS_KERNMOUNT or MS_SUBMOUNT in flags. Doing it that way is both clumsy and imprecise. Consider the callers' tree of vfs_get_tree(): vfs_get_tree() <- do_new_mount() <- vfs_kern_mount() <- simple_pin_fs() <- vfs_submount() <- kern_mount_data() <- init_mount_tree() <- btrfs_mount() <- vfs_get_tree() <- nfs_do_root_mount() <- nfs4_try_mount() <- nfs_fs_mount() <- vfs_get_tree() <- nfs4_referral_mount() do_new_mount() always does need MAC (we are guaranteed that neither MS_KERNMOUNT nor MS_SUBMOUNT will be passed there). simple_pin_fs(), vfs_submount() and kern_mount_data() pass explicit flags inhibiting that check. So does nfs4_referral_mount() (the flags there are ulimately coming from vfs_submount()). init_mount_tree() is called too early for anything LSM-related; it doesn't matter whether we attempt those checks, they'll do nothing. Finally, in case of btrfs_mount() and nfs_fs_mount(), doing MAC is pointless - either the caller will do it, or the flags are such that we wouldn't have done it either. In other words, the one and only case when we want that check done is when we are called from do_new_mount(), and there we want it unconditionally. So let's simply move it there. The superblock is still locked, so nobody is going to get access to it (via ustat(2), etc.) until we get a chance to apply the checks - we are free to move them to any point up to where we drop ->s_umount (in do_new_mount_fc()). Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 David Howells 提交于
Introduce a filesystem context concept to be used during superblock creation for mount and superblock reconfiguration for remount. This is allocated at the beginning of the mount procedure and into it is placed: (1) Filesystem type. (2) Namespaces. (3) Source/Device names (there may be multiple). (4) Superblock flags (SB_*). (5) Security details. (6) Filesystem-specific data, as set by the mount options. Accessor functions are then provided to set up a context, parameterise it from monolithic mount data (the data page passed to mount(2)) and tear it down again. A legacy wrapper is provided that implements what will be the basic operations, wrapping access to filesystems that aren't yet aware of the fs_context. Finally, vfs_kern_mount() is changed to make use of the fs_context and mount_fs() is replaced by vfs_get_tree(), called from vfs_kern_mount(). [AV -- add missing kstrdup()] [AV -- put_cred() can be unconditional - fc->cred can't be NULL] [AV -- take legacy_validate() contents into legacy_parse_monolithic()] [AV -- merge KERNEL_MOUNT and USER_MOUNT] [AV -- don't unlock superblock on success return from vfs_get_tree()] [AV -- kill 'reference' argument of init_fs_context()] Signed-off-by: NDavid Howells <dhowells@redhat.com> Co-developed-by: NAl Viro <viro@zeniv.linux.org.uk> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 18 7月, 2018 4 次提交
-
-
由 Miklos Szeredi 提交于
This reverts commit 598e3c8f. Overlayfs no longer relies on the vfs correct atime handling. Signed-off-by: NMiklos Szeredi <mszeredi@redhat.com>
-
由 Miklos Szeredi 提交于
This reverts commit 7c6893e3. Overlayfs no longer relies on the vfs for checking writability of files. Signed-off-by: NMiklos Szeredi <mszeredi@redhat.com>
-
由 Miklos Szeredi 提交于
This is needed by the stacked ioctl implementation in overlayfs. Signed-off-by: NMiklos Szeredi <mszeredi@redhat.com>
-
由 Miklos Szeredi 提交于
Stacking file operations in overlay will store an extra open file for each overlay file opened. The overhead is just that of "struct file" which is about 256bytes, because overlay already pins an extra dentry and inode when the file is open, which add up to a much larger overhead. For fear of breaking working setups, don't start accounting the extra file. Signed-off-by: NMiklos Szeredi <mszeredi@redhat.com>
-
- 12 7月, 2018 4 次提交
-
-
由 Al Viro 提交于
These checks are better off in do_dentry_open(); the reason we couldn't put them there used to be that callers couldn't tell what kind of cleanup would do_dentry_open() failure call for. Now that we have FMODE_OPENED, cleanup is the same in all cases - it's simply fput(). So let's fold that into do_dentry_open(), as Christoph's patch tried to. Acked-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Al Viro 提交于
always equal to ->f_cred Acked-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Al Viro 提交于
... and have it set the f_flags-derived part of ->f_mode. Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
由 Al Viro 提交于
... and rename get_empty_filp() to alloc_empty_file(). dentry_open() gets creds as argument, but the only thing that sees those is security_file_open() - file->f_cred still ends up with current_cred(). For almost all callers it's the same thing, but there are several broken cases. Acked-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 11 7月, 2018 1 次提交
-
-
由 Al Viro 提交于
Failure of ->open() should *not* be followed by fput(). Fixed by using filp_clone_open(), which gets the cleanups right. Cc: stable@vger.kernel.org Acked-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 20 6月, 2018 1 次提交
-
-
由 Christoph Hellwig 提交于
Bits of the buffer.c based write_end implementations that don't know about buffer_heads and can be reused by other implementations. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NAndreas Gruenbacher <agruenba@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 04 6月, 2018 1 次提交
-
-
由 Al Viro 提交于
This reverts commit cab64df1. Having vfs_open() in some cases drop the reference to struct file combined with error = vfs_open(path, f, cred); if (error) { put_filp(f); return ERR_PTR(error); } return f; is flat-out wrong. It used to be error = vfs_open(path, f, cred); if (!error) { /* from now on we need fput() to dispose of f */ error = open_check_o_direct(f); if (error) { fput(f); f = ERR_PTR(error); } } else { put_filp(f); f = ERR_PTR(error); } and sure, having that open_check_o_direct() boilerplate gotten rid of is nice, but not that way... Worse, another call chain (via finish_open()) is FUBAR now wrt FILE_OPENED handling - in that case we get error returned, with file already hit by fput() *AND* FILE_OPENED not set. Guess what happens in path_openat(), when it hits if (!(opened & FILE_OPENED)) { BUG_ON(!error); put_filp(file); } The root cause of all that crap is that the callers of do_dentry_open() have no way to tell which way did it fail; while that could be fixed up (by passing something like int *opened to do_dentry_open() and have it marked if we'd called ->open()), it's probably much too late in the cycle to do so right now. Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 03 4月, 2018 9 次提交
-
-
由 Dominik Brodowski 提交于
Using the ksys_ftruncate() wrapper allows us to get rid of in-kernel calls to the sys_ftruncate() syscall. The ksys_ prefix denotes that this function is meant as a drop-in replacement for the syscall. In particular, it uses the same calling convention as sys_ftruncate(). This patch is part of a series which removes in-kernel calls to syscalls. On this basis, the syscall entry path can be streamlined. For details, see http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: NDominik Brodowski <linux@dominikbrodowski.net>
-
由 Dominik Brodowski 提交于
Using the fs-interal do_fchownat() wrapper allows us to get rid of fs-internal calls to the sys_fchownat() syscall. Introducing the ksys_fchown() helper and the ksys_{,}chown() wrappers allows us to avoid the in-kernel calls to the sys_{,l,f}chown() syscalls. The ksys_ prefix denotes that these functions are meant as a drop-in replacement for the syscalls. In particular, they use the same calling convention as sys_{,l,f}chown(). This patch is part of a series which removes in-kernel calls to syscalls. On this basis, the syscall entry path can be streamlined. For details, see http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: NDominik Brodowski <linux@dominikbrodowski.net>
-
由 Dominik Brodowski 提交于
Using the fs-internal do_faccessat() helper allows us to get rid of fs-internal calls to the sys_faccessat() syscall. Introducing the ksys_access() wrapper allows us to avoid the in-kernel calls to the sys_access() syscall. The ksys_ prefix denotes that this function is meant as a drop-in replacement for the syscall. In particular, it uses the same calling convention as sys_access(). This patch is part of a series which removes in-kernel calls to syscalls. On this basis, the syscall entry path can be streamlined. For details, see http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: NDominik Brodowski <linux@dominikbrodowski.net>
-
由 Dominik Brodowski 提交于
fs: add ksys_fchmod() and do_fchmodat() helpers and ksys_chmod() wrapper; remove in-kernel calls to syscall Using the fs-internal do_fchmodat() helper allows us to get rid of fs-internal calls to the sys_fchmodat() syscall. Introducing the ksys_fchmod() helper and the ksys_chmod() wrapper allows us to avoid the in-kernel calls to the sys_fchmod() and sys_chmod() syscalls. The ksys_ prefix denotes that these functions are meant as a drop-in replacement for the syscalls. In particular, they use the same calling convention as sys_fchmod() and sys_chmod(). This patch is part of a series which removes in-kernel calls to syscalls. On this basis, the syscall entry path can be streamlined. For details, see http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: NDominik Brodowski <linux@dominikbrodowski.net>
-
由 Dominik Brodowski 提交于
Using the fs-internal do_linkat() helper allows us to get rid of fs-internal calls to the sys_linkat() syscall. Introducing the ksys_link() wrapper allows us to avoid the in-kernel calls to sys_link() syscall. The ksys_ prefix denotes that this function is meant as a drop-in replacement for the syscall. In particular, it uses the same calling convention as sys_link(). In the near future, the only fs-external user of ksys_link() should be converted to use vfs_link() instead. This patch is part of a series which removes in-kernel calls to syscalls. On this basis, the syscall entry path can be streamlined. For details, see http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: NDominik Brodowski <linux@dominikbrodowski.net>
-
由 Dominik Brodowski 提交于
Using the fs-internal do_mknodat() helper allows us to get rid of fs-internal calls to the sys_mknodat() syscall. Introducing the ksys_mknod() wrapper allows us to avoid the in-kernel calls to sys_mknod() syscall. The ksys_ prefix denotes that this function is meant as a drop-in replacement for the syscall. In particular, it uses the same calling convention as sys_mknod(). This patch is part of a series which removes in-kernel calls to syscalls. On this basis, the syscall entry path can be streamlined. For details, see http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: NDominik Brodowski <linux@dominikbrodowski.net>
-
由 Dominik Brodowski 提交于
Using the fs-internal do_symlinkat() helper allows us to get rid of fs-internal calls to the sys_symlinkat() syscall. Introducing the ksys_symlink() wrapper allows us to avoid the in-kernel calls to the sys_symlink() syscall. The ksys_ prefix denotes that this function is meant as a drop-in replacement for the syscall. In particular, it uses the same calling convention as sys_symlink(). This patch is part of a series which removes in-kernel calls to syscalls. On this basis, the syscall entry path can be streamlined. For details, see http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: NDominik Brodowski <linux@dominikbrodowski.net>
-
由 Dominik Brodowski 提交于
Using the fs-internal do_mkdirat() helper allows us to get rid of fs-internal calls to the sys_mkdirat() syscall. Introducing the ksys_mkdir() wrapper allows us to avoid the in-kernel calls to the sys_mkdir() syscall. The ksys_ prefix denotes that this function is meant as a drop-in replacement for the syscall. In particular, it uses the same calling convention as sys_mkdir(). This patch is part of a series which removes in-kernel calls to syscalls. On this basis, the syscall entry path can be streamlined. For details, see http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: NDominik Brodowski <linux@dominikbrodowski.net>
-
由 Dominik Brodowski 提交于
Using this wrapper allows us to avoid the in-kernel calls to the sys_rmdir() syscall. The ksys_ prefix denotes that this function is meant as a drop-in replacement for the syscall. In particular, it uses the same calling convention as sys_rmdir(). This patch is part of a series which removes in-kernel calls to syscalls. On this basis, the syscall entry path can be streamlined. For details, see http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: NDominik Brodowski <linux@dominikbrodowski.net>
-
- 28 3月, 2018 1 次提交
-
-
由 Christoph Hellwig 提交于
do_dentry_open is where we do the actual open of the file, so this is where we should do our O_DIRECT sanity check to cover all potential callers. Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 10 11月, 2017 1 次提交
-
-
由 Christoph Hellwig 提交于
And make it take a struct filename instead of a user pointer. Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 05 9月, 2017 1 次提交
-
-
由 Miklos Szeredi 提交于
Problem with ioctl() is that it's a file operation, yet often used as an inode operation (i.e. modify the inode despite the file being opened for read-only). mnt_want_write_file() is used by filesystems in such cases to get write access on an arbitrary open file. Since overlayfs lets filesystems do all file operations, including ioctl, this can lead to mnt_want_write_file() returning OK for a lower file and modification of that lower file. This patch prevents modification by checking if the file is from an overlayfs lower layer and returning EPERM in that case. Need to introduce a mnt_want_write_file_path() variant that still does the old thing for inode operations that can do the copy up + modification correctly in such cases (fchown, fsetxattr, fremovexattr). This does not address the correctness of such ioctls on overlayfs (the correct way would be to copy up and attempt to perform ioctl on upper file). In theory this could be a regression. We very much hope that nobody is relying on such a hack in any sane setup. While this patch meddles in VFS code, it has no effect on non-overlayfs filesystems. Reported-by: N"zhangyi (F)" <yi.zhang@huawei.com> Signed-off-by: NMiklos Szeredi <mszeredi@redhat.com>
-
- 02 9月, 2017 1 次提交
-
-
由 Darrick J. Wong 提交于
When we introduced the bmap redo log items, we set MS_ACTIVE on the mountpoint and XFS_IRECOVERY on the inode to prevent unlinked inodes from being truncated prematurely during log recovery. This also had the effect of putting linked inodes on the lru instead of evicting them. Unfortunately, we neglected to find all those unreferenced lru inodes and evict them after finishing log recovery, which means that we leak them if anything goes wrong in the rest of xfs_mountfs, because the lru is only cleaned out on unmount. Therefore, evict unreferenced inodes in the lru list immediately after clearing MS_ACTIVE. Fixes: 17c12bcd ("xfs: when replaying bmap operations, don't let unlinked inodes get reaped") Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Cc: viro@ZenIV.linux.org.uk Reviewed-by: NBrian Foster <bfoster@redhat.com>
-
- 30 4月, 2017 1 次提交
-
-
由 Al Viro 提交于
Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 18 4月, 2017 1 次提交
-
-
由 Al Viro 提交于
Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 31 1月, 2017 1 次提交
-
-
由 Christoph Hellwig 提交于
Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 06 12月, 2016 1 次提交
-
-
由 Al Viro 提交于
Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 30 11月, 2016 1 次提交
-
-
由 Christoph Hellwig 提交于
We want to use the per-sb completion workqueue from the new iomap direct I/O code. Signed-off-by: NChristoph Hellwig <hch@lst.de> Tested-by: NJens Axboe <axboe@fb.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 28 9月, 2016 1 次提交
-
-
由 Rasmus Villemoes 提交于
The actual definition in fs/nsfs.c is already const. Signed-off-by: NRasmus Villemoes <linux@rasmusvillemoes.dk> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 19 9月, 2016 1 次提交
-
-
由 Christoph Hellwig 提交于
This allows the DAX code to use it. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 16 9月, 2016 1 次提交
-
-
由 Miklos Szeredi 提交于
On overlayfs relatime_need_update() needs inode times to be correct on overlay inode. But i_mtime and i_ctime are updated by filesystem code on underlying inode only, so they will be out-of-date on the overlay inode. This patch copies the times from the underlying inode if needed. This can't be done if called from RCU lookup (link following) but link m/ctime are not updated by fs, so this is all right. This patch doesn't change functionality for anything but overlayfs. Signed-off-by: NMiklos Szeredi <mszeredi@redhat.com>
-
- 03 8月, 2016 1 次提交
-
-
由 Miklos Szeredi 提交于
Only used by the vfs. Signed-off-by: NMiklos Szeredi <mszeredi@redhat.com>
-
- 21 6月, 2016 1 次提交
-
-
由 Christoph Hellwig 提交于
Add infrastructure for multipage buffered writes. This is implemented using an main iterator that applies an actor function to a range that can be written. This infrastucture is used to implement a buffered write helper, one to zero file ranges and one to implement the ->page_mkwrite VM operations. All of them borrow a fair amount of code from fs/buffers. for now by using an internal version of __block_write_begin that gets passed an iomap and builds the corresponding buffer head. The file system is gets a set of paired ->iomap_begin and ->iomap_end calls which allow it to map/reserve a range and get a notification once the write code is finished with it. Based on earlier code from Dave Chinner. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NBob Peterson <rpeterso@redhat.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-