- 17 12月, 2012 14 次提交
-
-
由 Miao Xie 提交于
This patch restructure btrfs_run_defrag_inodes() and make the code of the auto defragment more readable. Signed-off-by: NMiao Xie <miaox@cn.fujitsu.com> Signed-off-by: NChris Mason <chris.mason@fusionio.com>
-
由 Miao Xie 提交于
We forget to get the defrag lock when we re-add the defragable inode, Fix it. Signed-off-by: NMiao Xie <miaox@cn.fujitsu.com> Signed-off-by: NChris Mason <chris.mason@fusionio.com>
-
由 Miao Xie 提交于
The auto defrag allocation is in the fast path of the IO, so use slabs to improve the speed of the allocation. And besides that, it can do check for leaked objects when the module is removed. Signed-off-by: NMiao Xie <miaox@cn.fujitsu.com> Signed-off-by: NChris Mason <chris.mason@fusionio.com>
-
由 Miao Xie 提交于
We need get write access for qgroup operations, or we will modify the R/O fs. Signed-off-by: NMiao Xie <miaox@cn.fujitsu.com> Signed-off-by: NChris Mason <chris.mason@fusionio.com>
-
由 Miao Xie 提交于
We need get write access for scrub, or we will modify the R/O fs. Signed-off-by: NMiao Xie <miaox@cn.fujitsu.com> Signed-off-by: NChris Mason <chris.mason@fusionio.com>
-
由 Miao Xie 提交于
Steps to reproduce: # mkfs.btrfs -d single -m single <disk0> <disk1> # mount -o ro <disk0> <mnt0> # mount -o ro <disk0> <mnt1> # mount -o remount,rw <mnt0> # umount <mnt0> # btrfs device delete <disk1> <mnt1> We can remove a device from a R/O filesystem. The reason is that we just check the R/O flag of the super block object. It is not enough, because the kernel may set the R/O flag only for the mount point. We need invoke mnt_want_write_file() to do a full check. Signed-off-by: NMiao Xie <miaox@cn.fujitsu.com> Signed-off-by: NChris Mason <chris.mason@fusionio.com>
-
由 Miao Xie 提交于
Steps to reproduce: # mkfs.btrfs <partition> # mount -o ro <partition> <mnt0> # mount -o ro <partition> <mnt1> # mount -o remount,rw <mnt0> # umount <mnt0> # btrfs fi resize 10g <mnt1> We re-sized a R/O filesystem. The reason is that we just check the R/O flag of the super block object. It is not enough, because the kernel may set the R/O flag only for the mount point. We need invoke mnt_want_write_file() to do a full check. Signed-off-by: NMiao Xie <miaox@cn.fujitsu.com> Signed-off-by: NChris Mason <chris.mason@fusionio.com>
-
由 Miao Xie 提交于
When wen want to set the default subvolume, we must get write access, or we will change the R/O file system. Signed-off-by: NMiao Xie <miaox@cn.fujitsu.com> Signed-off-by: NChris Mason <chris.mason@fusionio.com>
-
由 Miao Xie 提交于
If the id of the existed transaction is more than the one we specified, it means the specified transaction was commited, so we should return 0, not EINVAL. Signed-off-by: NMiao Xie <miaox@cn.fujitsu.com> Signed-off-by: NChris Mason <chris.mason@fusionio.com>
-
由 Miao Xie 提交于
If there is no running transaction in the fs, we needn't start a new one when we want to start sync. Signed-off-by: NMiao Xie <miaox@cn.fujitsu.com> Signed-off-by: NChris Mason <chris.mason@fusionio.com>
-
由 Miao Xie 提交于
Since we have gotten the root in the caller, just pass it into btrfs_ioctl_{start, wait}_sync() directly. Signed-off-by: NMiao Xie <miaox@cn.fujitsu.com> Signed-off-by: NChris Mason <chris.mason@fusionio.com>
-
由 Liu Bo 提交于
If we found an invalid xattr dir item, we'd better try the next one instead. Signed-off-by: NLiu Bo <bo.li.liu@oracle.com> Signed-off-by: NChris Mason <chris.mason@fusionio.com>
-
由 Wang Sheng-Hui 提交于
io_ctl_map_page is called by many functions in free-space-cache. In most scenarios, the ->cur is not null, e.g. io_ctl_add_entry. I think we'd better remove the warn_on here. Signed-off-by: NWang Sheng-Hui <shhuiw@gmail.com> Signed-off-by: NChris Mason <chris.mason@fusionio.com>
-
由 Stefan Behrens 提交于
This is the commit that allows to start the device replace procedure. An ioctl() interface is added that supports starting and canceling the device replace procedure, and to retrieve the status and progress. Signed-off-by: NStefan Behrens <sbehrens@giantdisaster.de> Signed-off-by: NChris Mason <chris.mason@fusionio.com>
-
- 13 12月, 2012 26 次提交
-
-
由 Stefan Behrens 提交于
Make the target disk of a running device replace operation available for reading. This is only used as a last ressort for the defect repair procedure. And it is dependent on the location of the data block to read, because during an ongoing device replace operation, the target drive is only partially filled with the filesystem data. Signed-off-by: NStefan Behrens <sbehrens@giantdisaster.de> Signed-off-by: NChris Mason <chris.mason@fusionio.com>
-
由 Stefan Behrens 提交于
This change of the define is effective in all modes, it is required and used only in the case when a device replace procedure is running. The reason is that during an active device replace procedure, the target device of the copy operation is a mirror for the filesystem data as well that can be used to read data in order to repair read errors on other disks. Signed-off-by: NStefan Behrens <sbehrens@giantdisaster.de> Signed-off-by: NChris Mason <chris.mason@fusionio.com>
-
由 Stefan Behrens 提交于
It is desirable to be able to configure the device replace procedure to avoid reading the source drive (the one to be copied) whenever possible. This is useful when the number of read errors on this disk is high, because it would delay the copy procedure alot. Therefore there is an option to avoid reading from the source disk unless the repair procedure really needs to access it. The regular read req asks for mapping the block with mirror_num == 0, in this case the source disk is avoided whenever possible. The repair code selects the mirror_num explicitly (mirror_num != 0), this case is not changed by this commit. Signed-off-by: NStefan Behrens <sbehrens@giantdisaster.de> Signed-off-by: NChris Mason <chris.mason@fusionio.com>
-
由 Stefan Behrens 提交于
During a running dev replace operation, all write requests to the live filesystem are duplicated to also write to the target drive. Therefore btrfs_map_block() is changed to duplicate stripes that are written to the source disk of a device replace procedure to be written to the target disk as well. Signed-off-by: NStefan Behrens <sbehrens@giantdisaster.de> Signed-off-by: NChris Mason <chris.mason@fusionio.com>
-
由 Stefan Behrens 提交于
Before this commit, btrfs_map_block() was called with REQ_WRITE in order to retrieve the list of mirrors for a disk block. This needs to be changed for the device replace procedure since it makes a difference whether you are asking for read mirrors or for locations to write to. GET_READ_MIRRORS is introduced as a new interface to call btrfs_map_block(). In the current commit, the functionality is not yet changed, only the interface for GET_READ_MIRRORS is introduced and all the places that should use this new interface are adapted. The reason that REQ_WRITE cannot be abused anymore to retrieve a list of read mirrors is that during a running dev replace operation all write requests to the live filesystem are duplicated to also write to the target drive. Keep in mind that the target disk is only partially a valid copy of the source disk while the operation is ongoing. All writes go to the target disk, but not all reads would return valid data on the target disk. Therefore it is not possible anymore to abuse a REQ_WRITE interface to find valid mirrors for a REQ_READ. Signed-off-by: NStefan Behrens <sbehrens@giantdisaster.de> Signed-off-by: NChris Mason <chris.mason@fusionio.com>
-
由 Stefan Behrens 提交于
This commit contains all the essential changes to the core code of Btrfs for support of the device replace procedure. Signed-off-by: NStefan Behrens <sbehrens@giantdisaster.de> Signed-off-by: NChris Mason <chris.mason@fusionio.com>
-
由 Stefan Behrens 提交于
This adds a new file to the sources together with the header file and the changes to ioctl.h and ctree.h that are required by the new C source file. Additionally, 4 new functions are added to volume.c that deal with device creation and destruction. Signed-off-by: NStefan Behrens <sbehrens@giantdisaster.de> Signed-off-by: NChris Mason <chris.mason@fusionio.com>
-
由 Stefan Behrens 提交于
The device replace procedure makes use of the scrub code. The scrub code is the most efficient code to read the allocated data of a disk, i.e. it reads sequentially in order to avoid disk head movements, it skips unallocated blocks, it uses read ahead mechanisms, and it contains all the code to detect and repair defects. This commit adds code to scrub to allow the scrub code to copy read data to another disk. One goal is to be able to perform as fast as possible. Therefore the write requests are collected until huge bios are built, and the write process is decoupled from the read process with some kind of flow control, of course, in order to limit the allocated memory. The best performance on spinning disks could by reached when the head movements are avoided as much as possible. Therefore a single worker is used to interface the read process with the write process. The regular scrub operation works as fast as before, it is not negatively influenced and actually it is more or less unchanged. Signed-off-by: NStefan Behrens <sbehrens@giantdisaster.de> Signed-off-by: NChris Mason <chris.mason@fusionio.com>
-
由 Stefan Behrens 提交于
With the addition of the device replace procedure, it is possible for btrfs_map_bio(READ) to report an error. This happens when the specific mirror is requested which is located on the target disk, and the copy operation has not yet copied this block. Hence the block cannot be read and this error state is indicated by returning EIO. Some background information follows now. A new mirror is added while the device replace procedure is running. btrfs_get_num_copies() returns one more, and btrfs_map_bio(GET_READ_MIRROR) adds one more mirror if a disk location is involved that was already handled by the device replace copy operation. The assigned mirror num is the highest mirror number, e.g. the value 3 in case of RAID1. If btrfs_map_bio() is invoked with mirror_num == 0 (i.e., select any mirror), the copy on the target drive is never selected because that disk shall be able to perform the write requests as quickly as possible. The parallel execution of read requests would only slow down the disk copy procedure. Second case is that btrfs_map_bio() is called with mirror_num > 0. This is done from the repair code only. In this case, the highest mirror num is assigned to the target disk, since it is used last. And when this mirror is not available because the copy procedure has not yet handled this area, an error is returned. Everywhere in the code the handling of such errors is added now. Signed-off-by: NStefan Behrens <sbehrens@giantdisaster.de> Signed-off-by: NChris Mason <chris.mason@fusionio.com>
-
由 Stefan Behrens 提交于
This patch adds some code to disallow operations on the device that is used as the target for the device replace operation. Signed-off-by: NStefan Behrens <sbehrens@giantdisaster.de> Signed-off-by: NChris Mason <chris.mason@fusionio.com>
-
由 Stefan Behrens 提交于
Btrfs admin operations that are manually started from user mode and that cannot be executed at the same time return -EINPROGRESS. A common way to enter and leave this locked section is introduced since it used to be specific to the balance operation. Signed-off-by: NStefan Behrens <sbehrens@giantdisaster.de> Signed-off-by: NChris Mason <chris.mason@fusionio.com>
-
由 Stefan Behrens 提交于
Signed-off-by: NStefan Behrens <sbehrens@giantdisaster.de> Signed-off-by: NChris Mason <chris.mason@fusionio.com>
-
由 Stefan Behrens 提交于
Signed-off-by: NStefan Behrens <sbehrens@giantdisaster.de> Signed-off-by: NChris Mason <chris.mason@fusionio.com>
-
由 Stefan Behrens 提交于
Remove the attempt to cancel a running scrub or device replace operation in btrfs_handle_error() because it adds the risk of a deadlock. The only penalty of not canceling the operation is that some I/O remains active until the procedure completes. This is basically the same thing that happens to other tasks that are running in user mode context, they are not affected or stopped in btrfs_handle_error(), these tasks just need to handle write errors correctly. Signed-off-by: NStefan Behrens <sbehrens@giantdisaster.de> Signed-off-by: NChris Mason <chris.mason@fusionio.com>
-
由 Stefan Behrens 提交于
A small number of functions that are used in a device replace procedure when the operation is resumed at mount time are unable to pass the same root pointer that would be used in the regular (ioctl) context. And since the root pointer is not required, only the fs_info is, the root pointer argument is replaced with the fs_info pointer argument. Signed-off-by: NStefan Behrens <sbehrens@giantdisaster.de> Signed-off-by: NChris Mason <chris.mason@fusionio.com>
-
由 Stefan Behrens 提交于
This new function is used by the device replace procedure in a later patch. Signed-off-by: NStefan Behrens <sbehrens@giantdisaster.de> Signed-off-by: NChris Mason <chris.mason@fusionio.com>
-
由 Stefan Behrens 提交于
This is required for the device replace procedure in a later step. Two calling functions also had to be changed to have the fs_info pointer: repair_io_failure() and scrub_setup_recheck_block(). Signed-off-by: NStefan Behrens <sbehrens@giantdisaster.de> Signed-off-by: NChris Mason <chris.mason@fusionio.com>
-
由 Stefan Behrens 提交于
This is required for the device replace procedure in a later step. Signed-off-by: NStefan Behrens <sbehrens@giantdisaster.de> Signed-off-by: NChris Mason <chris.mason@fusionio.com>
-
由 Stefan Behrens 提交于
The new function btrfs_find_device_missing_or_by_path() will be used for the device replace procedure. This function itself calls the second new function btrfs_find_device_by_path(). Unfortunately, it is not possible to currently make the rest of the code use these functions as well, since all functions that look similar at first view are all a little bit different in what they are doing. But in the future, new code could benefit from these two new functions, and currently, device replace uses them. Signed-off-by: NStefan Behrens <sbehrens@giantdisaster.de> Signed-off-by: NChris Mason <chris.mason@fusionio.com>
-
由 Stefan Behrens 提交于
Some code to open block devices, to read the superblock and to handle errors was repeated multiple times in 3 places, and the following patch makes use of it as well. This code is now moved into a subfunction. Signed-off-by: NStefan Behrens <sbehrens@giantdisaster.de> Signed-off-by: NChris Mason <chris.mason@fusionio.com>
-
由 Stefan Behrens 提交于
Just move some code into functions to make everything more readable. Signed-off-by: NStefan Behrens <sbehrens@giantdisaster.de> Signed-off-by: NChris Mason <chris.mason@fusionio.com>
-
由 Stefan Behrens 提交于
In the scrub repair code, the code is changed to handle memory allocation errors a little bit smarter. The change is to handle it just like a read error. This simplifies the code and removes a couple of lines of code, since the code to handle read errors is there anyway. Signed-off-by: NStefan Behrens <sbehrens@giantdisaster.de> Signed-off-by: NChris Mason <chris.mason@fusionio.com>
-
由 Stefan Behrens 提交于
In case that disk blocks need to be repaired (rewritten), the current code at first (for simplicity reasons) reads all alternate mirrors in the first step, afterwards selects the best one in a second step. This is now changed to read one alternate mirror after the other and to leave the loop early when a perfect mirror is found. Signed-off-by: NStefan Behrens <sbehrens@giantdisaster.de> Signed-off-by: NChris Mason <chris.mason@fusionio.com>
-
由 Stefan Behrens 提交于
With the modified design (in order to support the devive replace procedure) it is necessary to alloc the page array dynamically. The reason is that pages are reused. At first a page is used for the bio to read the data from the filesystem, then the same page is reused for the bio that writes the data to the target disk. Since the read process and the write process are completely decoupled, this requires a new concept of refcounts and get/put functions for pages, and it requires to use newly created pages for each read bio which are freed after the write operation is finished. Signed-off-by: NStefan Behrens <sbehrens@giantdisaster.de> Signed-off-by: NChris Mason <chris.mason@fusionio.com>
-
由 Stefan Behrens 提交于
The block device is removed from the scrub context state structure. The scrub code as it is used for the device replace procedure reads the source data from whereever it is optimal. The source device might even be gone (disconnected, for instance due to a hardware failure). Or the drive can be so faulty so that the device replace procedure tries to avoid access to the faulty source drive as much as possible, and only if all other mirrors are damaged, as a last resort, the source disk is accessed. The modified scrub code operates as if it would handle the source drive and thereby generates an exact copy of the source disk on the target disk, even if the source disk is not present at all. Therefore the block device pointer to the source disk is removed in the scrub context struct and moved into the lower level scope of scrub_bio, fixup and page structures where the block device context is known. Signed-off-by: NStefan Behrens <sbehrens@giantdisaster.de> Signed-off-by: NChris Mason <chris.mason@fusionio.com>
-
由 Stefan Behrens 提交于
The device replace procedure makes use of the scrub code. The scrub code is the most efficient code to read the allocated data of a disk, i.e. it reads sequentially in order to avoid disk head movements, it skips unallocated blocks, it uses read ahead mechanisms, and it contains all the code to detect and repair defects. This commit is a first preparation step to adapt the scrub code to be shareable for the device replace procedure. The block device will be removed from the scrub context state structure in a later step. It used to be the source block device. The scrub code as it is used for the device replace procedure reads the source data from whereever it is optimal. The source device might even be gone (disconnected, for instance due to a hardware failure). Or the drive can be so faulty so that the device replace procedure tries to avoid access to the faulty source drive as much as possible, and only if all other mirrors are damaged, as a last resort, the source disk is accessed. The modified scrub code operates as if it would handle the source drive and thereby generates an exact copy of the source disk on the target disk, even if the source disk is not present at all. Therefore the block device pointer to the source disk is removed in a later patch, and therefore the context structure is renamed (this is the goal of the current patch) to reflect that no source block device scope is there anymore. Summary: This first preparation step consists of a textual substitution of the term "dev" to the term "ctx" whereever the scrub context is used. Signed-off-by: NStefan Behrens <sbehrens@giantdisaster.de> Signed-off-by: NChris Mason <chris.mason@fusionio.com>
-