- 25 6月, 2015 40 次提交
-
-
由 Leon Romanovsky 提交于
kenter/kleave/kdebug are wrapper macros to print functions flow and debug information. This set was written before pr_devel() was introduced, so it was controlled by "#if 0" construction. It is questionable if anyone is using them [1] now. This patch removes these macros, converts numerous printk(KERN_WARNING, ...) to use general pr_warn(...) and removes debug print line from validate_mmap_request() function. Signed-off-by: NLeon Romanovsky <leon@leon.nu> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Aneesh Kumar K.V 提交于
We have confusing functions to clear pmd, pmd_clear_* and pmd_clear. Add _huge_ to pmdp_clear functions so that we are clear that they operate on hugepage pte. We don't bother about other functions like pmdp_set_wrprotect, pmdp_clear_flush_young, because they operate on PTE bits and hence indicate they are operating on hugepage ptes Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Aneesh Kumar K.V 提交于
Also move the pmd_trans_huge check to generic code. Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Aneesh Kumar K.V 提交于
Architectures like ppc64 [1] need to do special things while clearing pmd before a collapse. For them this operation is largely different from a normal hugepage pte clear. Hence add a separate function to clear pmd before collapse. After this patch pmdp_* functions operate only on hugepage pte, and not on regular pmd_t values pointing to page table. [1] ppc64 needs to invalidate all the normal page pte mappings we already have inserted in the hardware hash page table. But before doing that we need to make sure there are no parallel hash page table insert going on. So we need to do a kick_all_cpus_sync() before flushing the older hash table entries. By moving this to a separate function we capture these details and mention how it is different from a hugepage pte clear. This patch is a cleanup and only does code movement for clarity. There should not be any change in functionality. Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Xie XiuQi 提交于
RAS user space tools like rasdaemon which base on trace event, could receive mce error event, but no memory recovery result event. So, I want to add this event to make this scenario complete. This patch add a event at ras group for memory-failure. The output like below: # tracer: nop # # entries-in-buffer/entries-written: 2/2 #P:24 # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # ||| / delay # TASK-PID CPU# |||| TIMESTAMP FUNCTION # | | | |||| | | mce-inject-13150 [001] .... 277.019359: memory_failure_event: pfn 0x19869: recovery action for free buddy page: Delayed [xiexiuqi@huawei.com: fix build error] Signed-off-by: NXie XiuQi <xiexiuqi@huawei.com> Reviewed-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: NSteven Rostedt <rostedt@goodmis.org> Cc: Tony Luck <tony.luck@intel.com> Cc: Chen Gong <gong.chen@linux.intel.com> Cc: Jim Davis <jim.epost@gmail.com> Signed-off-by: NXie XiuQi <xiexiuqi@huawei.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Xie XiuQi 提交于
Change type of action_result's param 3 to enum for type consistency, and rename mf_outcome to mf_result for clearly. Signed-off-by: NXie XiuQi <xiexiuqi@huawei.com> Acked-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Chen Gong <gong.chen@linux.intel.com> Cc: Jim Davis <jim.epost@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Tony Luck <tony.luck@intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Xie XiuQi 提交于
Export 'outcome' and 'action_page_type' to mm.h, so we could use this emnus outside. This patch is preparation for adding trace events for memory-failure recovery action. Signed-off-by: NXie XiuQi <xiexiuqi@huawei.com> Acked-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Chen Gong <gong.chen@linux.intel.com> Cc: Jim Davis <jim.epost@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Tony Luck <tony.luck@intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
Historically memcg overhead was high even if memcg was unused. This has improved a lot but it still showed up in a profile summary as being a problem. /usr/src/linux-4.0-vanilla/mm/memcontrol.c 6.6441 395842 mem_cgroup_try_charge 2.950% 175781 __mem_cgroup_count_vm_event 1.431% 85239 mem_cgroup_page_lruvec 0.456% 27156 mem_cgroup_commit_charge 0.392% 23342 uncharge_list 0.323% 19256 mem_cgroup_update_lru_size 0.278% 16538 memcg_check_events 0.216% 12858 mem_cgroup_charge_statistics.isra.22 0.188% 11172 try_charge 0.150% 8928 commit_charge 0.141% 8388 get_mem_cgroup_from_mm 0.121% 7184 That is showing that 6.64% of system CPU cycles were in memcontrol.c and dominated by mem_cgroup_try_charge. The annotation shows that the bulk of the cost was checking PageSwapCache which is expected to be cache hot but is very expensive. The problem appears to be that __SetPageUptodate is called just before the check which is a write barrier. It is required to make sure struct page and page data is written before the PTE is updated and the data visible to userspace. memcg charging does not require or need the barrier but gets unfairly hit with the cost so this patch attempts the charging before the barrier. Aside from the accidental cost to memcg there is the added benefit that the barrier is avoided if the page cannot be charged. When applied the relevant profile summary is as follows. /usr/src/linux-4.0-chargefirst-v2r1/mm/memcontrol.c 3.7907 223277 __mem_cgroup_count_vm_event 1.143% 67312 mem_cgroup_page_lruvec 0.465% 27403 mem_cgroup_commit_charge 0.381% 22452 uncharge_list 0.332% 19543 mem_cgroup_update_lru_size 0.284% 16704 get_mem_cgroup_from_mm 0.271% 15952 mem_cgroup_try_charge 0.237% 13982 memcg_check_events 0.222% 13058 mem_cgroup_charge_statistics.isra.22 0.185% 10920 commit_charge 0.140% 8235 try_charge 0.131% 7716 That brings the overhead down to 3.79% and leaves the memcg fault accounting to the root cgroup but it's an improvement. The difference in headline performance of the page fault microbench is marginal as memcg is such a small component of it. pft faults 4.0.0 4.0.0 vanilla chargefirst Hmean faults/cpu-1 1443258.1051 ( 0.00%) 1509075.7561 ( 4.56%) Hmean faults/cpu-3 1340385.9270 ( 0.00%) 1339160.7113 ( -0.09%) Hmean faults/cpu-5 875599.0222 ( 0.00%) 874174.1255 ( -0.16%) Hmean faults/cpu-7 601146.6726 ( 0.00%) 601370.9977 ( 0.04%) Hmean faults/cpu-8 510728.2754 ( 0.00%) 510598.8214 ( -0.03%) Hmean faults/sec-1 1432084.7845 ( 0.00%) 1497935.5274 ( 4.60%) Hmean faults/sec-3 3943818.1437 ( 0.00%) 3941920.1520 ( -0.05%) Hmean faults/sec-5 3877573.5867 ( 0.00%) 3869385.7553 ( -0.21%) Hmean faults/sec-7 3991832.0418 ( 0.00%) 3992181.4189 ( 0.01%) Hmean faults/sec-8 3987189.8167 ( 0.00%) 3986452.2204 ( -0.02%) It's only visible at single threaded. The overhead is there for higher threads but other factors dominate. Signed-off-by: NMel Gorman <mgorman@suse.de> Acked-by: NMichal Hocko <mhocko@suse.cz> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
hugetlb pages uses add_to_page_cache to track shared mappings. This is OK from the data structure point of view but it is less so from the NR_FILE_PAGES accounting: - huge pages are accounted as 4k which is clearly wrong - this counter is used as the amount of the reclaimable page cache which is incorrect as well because hugetlb pages are special and not reclaimable - the counter is then exported to userspace via /proc/meminfo (in Cached:), /proc/vmstat and /proc/zoneinfo as nr_file_pages which is confusing at least: Cached: 8883504 kB HugePages_Free: 8348 ... Cached: 8916048 kB HugePages_Free: 156 ... thats 8192 huge pages allocated which is ~16G accounted as 32M There are usually not that many huge pages in the system for this to make any visible difference e.g. by fooling __vm_enough_memory or zone_pagecache_reclaimable. Fix this by special casing huge pages in both __delete_from_page_cache and __add_to_page_cache_locked. replace_page_cache_page is currently only used by fuse and that shouldn't touch hugetlb pages AFAICS but it is more robust to check for special casing there as well. Hugetlb pages shouldn't get to any other paths where we do accounting: - migration - we have a special handling via hugetlbfs_migrate_page - shmem - doesn't handle hugetlb pages directly even for SHM_HUGETLB resp. MAP_HUGETLB - swapcache - hugetlb is not swapable This has a user visible effect but I believe it is reasonable because the previously exported number is simply bogus. An alternative would be to account hugetlb pages with their real size and treat them similar to shmem. But this has some drawbacks. First we would have to special case in kernel users of NR_FILE_PAGES and considering how hugetlb is special we would have to do it everywhere. We do not want Cached exported by /proc/meminfo to include it because the value would be even more misleading. __vm_enough_memory and zone_pagecache_reclaimable would have to do the same thing because those pages are simply not reclaimable. The correction is even not trivial because we would have to consider all active hugetlb page sizes properly. Users of the counter outside of the kernel would have to do the same. So the question is why to account something that needs to be basically excluded for each reasonable usage. This doesn't make much sense to me. It seems that this has been broken since hugetlb was introduced but I haven't checked the whole history. [akpm@linux-foundation.org: tweak comments] Signed-off-by: NMichal Hocko <mhocko@suse.cz> Acked-by: NMel Gorman <mgorman@suse.de> Tested-by: NMike Kravetz <mike.kravetz@oracle.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Reviewed-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
The should_alloc_retry() function was meant to encapsulate retry conditions of the allocator slowpath, but there are still checks remaining in the main function, and much of how the retrying is performed also depends on the OOM killer progress. The physical separation of those conditions make the code hard to follow. Inline the should_alloc_retry() checks. Notes: - The __GFP_NOFAIL check is already done in __alloc_pages_may_oom(), replace it with looping on OOM killer progress - The pm_suspended_storage() check is meant to skip the OOM killer when reclaim has no IO available, move to __alloc_pages_may_oom() - The order <= PAGE_ALLOC_COSTLY order is re-united with its original counterpart of checking whether reclaim actually made any progress Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
The zonelist locking and the oom_sem are two overlapping locks that are used to serialize global OOM killing against different things. The historical zonelist locking serializes OOM kills from allocations with overlapping zonelists against each other to prevent killing more tasks than necessary in the same memory domain. Only when neither tasklists nor zonelists from two concurrent OOM kills overlap (tasks in separate memcgs bound to separate nodes) are OOM kills allowed to execute in parallel. The younger oom_sem is a read-write lock to serialize OOM killing against the PM code trying to disable the OOM killer altogether. However, the OOM killer is a fairly cold error path, there is really no reason to optimize for highly performant and concurrent OOM kills. And the oom_sem is just flat-out redundant. Replace both locking schemes with a single global mutex serializing OOM kills regardless of context. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@suse.cz> Acked-by: NDavid Rientjes <rientjes@google.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
Disabling the OOM killer needs to exclude allocators from entering, not existing victims from exiting. Right now the only waiter is suspend code, which achieves quiescence by disabling the OOM killer. But later on we want to add waits that hold the lock instead to stop new victims from showing up. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@suse.cz> Acked-by: NDavid Rientjes <rientjes@google.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
It turns out that the mechanism to wait for exiting OOM victims is less generic than it looks: it won't issue wakeups unless the OOM killer is disabled. The reason this check was added was the thought that, since only the OOM disabling code would wait on this queue, wakeup operations could be saved when that specific consumer is known to be absent. However, this is quite the handgrenade. Later attempts to reuse the waitqueue for other purposes will lead to completely unexpected bugs and the failure mode will appear seemingly illogical. Generally, providers shouldn't make unnecessary assumptions about consumers. This could have been replaced with waitqueue_active(), but it only saves a few instructions in one of the coldest paths in the kernel. Simply remove it. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@suse.cz> Acked-by: NDavid Rientjes <rientjes@google.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
exit_oom_victim() already knows that TIF_MEMDIE is set, and nobody else can clear it concurrently. Use clear_thread_flag() directly. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NDavid Rientjes <rientjes@google.com> Acked-by: NMichal Hocko <mhocko@suse.cz> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
Rename unmark_oom_victim() to exit_oom_victim(). Marking and unmarking are related in functionality, but the interface is not symmetrical at all: one is an internal OOM killer function used during the killing, the other is for an OOM victim to signal its own death on exit later on. This has locking implications, see follow-up changes. While at it, rename mark_tsk_oom_victim() to mark_oom_victim(), which is easier on the eye. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NDavid Rientjes <rientjes@google.com> Acked-by: NMichal Hocko <mhocko@suse.cz> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
Setting oom_killer_disabled to false is atomic, there is no need for further synchronization with ongoing allocations trying to OOM-kill. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@suse.cz> Acked-by: NDavid Rientjes <rientjes@google.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Gu Zheng 提交于
Init the zone's size when calculating node totalpages to avoid duplicated operations in free_area_init_core(). Signed-off-by: NGu Zheng <guz.fnst@cn.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Naoya Horiguchi 提交于
Currently the initial value of order in dissolve_free_huge_page is 64 or 32, which leads to the following warning in static checker: mm/hugetlb.c:1203 dissolve_free_huge_pages() warn: potential right shift more than type allows '9,18,64' This is a potential risk of infinite loop, because 1 << order (== 0) is used in for-loop like this: for (pfn =3D start_pfn; pfn < end_pfn; pfn +=3D 1 << order) ... So this patch fixes it by using global minimum_order calculated at boot time. text data bss dec hex filename 28313 469 84236 113018 1b97a mm/hugetlb.o 28256 473 84236 112965 1b945 mm/hugetlb.o (patched) Fixes: c8721bbb ("mm: memory-hotplug: enable memory hotplug to handle hugepage") Reported-by: NDan Carpenter <dan.carpenter@oracle.com> Signed-off-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vladimir Davydov 提交于
As noted by Paul the compiler is free to store a temporary result in a variable on stack, heap or global unless it is explicitly marked as volatile, see: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4455.html#sample-optimizations This can result in a race between do_wp_page() and shrink_active_list() as follows. In do_wp_page() we can call page_move_anon_rmap(), which sets page->mapping as follows: anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; page->mapping = (struct address_space *) anon_vma; The page in question may be on an LRU list, because nowhere in do_wp_page() we remove it from the list, neither do we take any LRU related locks. Although the page is locked, shrink_active_list() can still call page_referenced() on it concurrently, because the latter does not require an anonymous page to be locked: CPU0 CPU1 ---- ---- do_wp_page shrink_active_list lock_page page_referenced PageAnon->yes, so skip trylock_page page_move_anon_rmap page->mapping = anon_vma rmap_walk PageAnon->no rmap_walk_file BUG page->mapping += PAGE_MAPPING_ANON This patch fixes this race by explicitly forbidding the compiler to split page->mapping store in page_move_anon_rmap() with the aid of WRITE_ONCE. [akpm@linux-foundation.org: tweak comment, per Minchan] Signed-off-by: NVladimir Davydov <vdavydov@parallels.com> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: NRik van Riel <riel@redhat.com> Cc: Hugh Dickins <hughd@google.com> Acked-by: NMinchan Kim <minchan@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Naoya Horiguchi 提交于
memory_failure() is supposed not to handle thp itself, but to split it. But if something were wrong and page_action() were called on thp, me_huge_page() (action routine for hugepages) should be better to take no action, rather than to take wrong action prepared for hugetlb (which triggers BUG_ON().) This change is for potential problems, but makes sense to me because thp is an actively developing feature and this code path can be open in the future. Signed-off-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Tony Luck <tony.luck@intel.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Naoya Horiguchi 提交于
Stress testing showed that soft offline events for a process iterating "mmap-pagefault-munmap" loop can trigger VM_BUG_ON(PAGE_FLAGS_CHECK_AT_PREP) in __free_one_page(): Soft offlining page 0x70fe1 at 0x70100008d000 Soft offlining page 0x705fb at 0x70300008d000 page:ffffea0001c3f840 count:0 mapcount:0 mapping: (null) index:0x2 flags: 0x1fffff80800000(hwpoison) page dumped because: VM_BUG_ON_PAGE(page->flags & ((1 << 25) - 1)) ------------[ cut here ]------------ kernel BUG at /src/linux-dev/mm/page_alloc.c:585! invalid opcode: 0000 [#1] SMP DEBUG_PAGEALLOC Modules linked in: cfg80211 rfkill crc32c_intel microcode ppdev parport_pc pcspkr serio_raw virtio_balloon parport i2c_piix4 virtio_blk virtio_net ata_generic pata_acpi floppy CPU: 3 PID: 1779 Comm: test_base_madv_ Not tainted 4.0.0-v4.0-150511-1451-00009-g82360a3730e6 #139 RIP: free_pcppages_bulk+0x52a/0x6f0 Call Trace: drain_pages_zone+0x3d/0x50 drain_local_pages+0x1d/0x30 on_each_cpu_mask+0x46/0x80 drain_all_pages+0x14b/0x1e0 soft_offline_page+0x432/0x6e0 SyS_madvise+0x73c/0x780 system_call_fastpath+0x12/0x17 Code: ff 89 45 b4 48 8b 45 c0 48 83 b8 a8 00 00 00 00 0f 85 e3 fb ff ff 0f 1f 00 0f 0b 48 8b 7d 90 48 c7 c6 e8 95 a6 81 e8 e6 32 02 00 <0f> 0b 8b 45 cc 49 89 47 30 41 8b 47 18 83 f8 ff 0f 85 10 ff ff RIP [<ffffffff811a806a>] free_pcppages_bulk+0x52a/0x6f0 RSP <ffff88007a117d28> ---[ end trace 53926436e76d1f35 ]--- When soft offline successfully migrates page, the source page is supposed to be freed. But there is a race condition where a source page looks isolated (i.e. the refcount is 0 and the PageHWPoison is set) but somewhat linked to pcplist. Then another soft offline event calls drain_all_pages() and tries to free such hwpoisoned page, which is forbidden. This odd page state seems to happen due to the race between put_page() in putback_lru_page() and __pagevec_lru_add_fn(). But I don't want to play with tweaking drain code as done in commit 9ab3b598 "mm: hwpoison: drop lru_add_drain_all() in __soft_offline_page()", or to change page freeing code for this soft offline's purpose. Instead, let's think about the difference between hard offline and soft offline. There is an interesting difference in how to isolate the in-use page between these, that is, hard offline marks PageHWPoison of the target page at first, and doesn't free it by keeping its refcount 1. OTOH, soft offline tries to free the target page then marks PageHWPoison. This difference might be the source of complexity and result in bugs like the above. So making soft offline isolate with keeping refcount can be a solution for this problem. We can pass to page migration code the "reason" which shows the caller, so let's use this more to avoid calling putback_lru_page() when called from soft offline, which effectively does the isolation for soft offline. With this change, target pages of soft offline never be reused without changing migratetype, so this patch also removes the related code. Signed-off-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Tony Luck <tony.luck@intel.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Naoya Horiguchi 提交于
memory_failure() can run in 2 different mode (specified by MF_COUNT_INCREASED) in page refcount perspective. When MF_COUNT_INCREASED is set, memory_failure() assumes that the caller takes a refcount of the target page. And if cleared, memory_failure() takes it in it's own. In current code, however, refcounting is done differently in each caller. For example, madvise_hwpoison() uses get_user_pages_fast() and hwpoison_inject() uses get_page_unless_zero(). So this inconsistent refcounting causes refcount failure especially for thp tail pages. Typical user visible effects are like memory leak or VM_BUG_ON_PAGE(!page_count(page)) in isolate_lru_page(). To fix this refcounting issue, this patch introduces get_hwpoison_page() to handle thp tail pages in the same manner for each caller of hwpoison code. memory_failure() might fail to split thp and in such case it returns without completing page isolation. This is not good because PageHWPoison on the thp is still set and there's no easy way to unpoison such thps. So this patch try to roll back any action to the thp in "non anonymous thp" case and "thp split failed" case, expecting an MCE(SRAR) generated by later access afterward will properly free such thps. [akpm@linux-foundation.org: fix CONFIG_HWPOISON_INJECT=m] Signed-off-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Tony Luck <tony.luck@intel.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Naoya Horiguchi 提交于
memory_failure() doesn't handle thp itself at this time and need to split it before doing isolation. Currently thp is split in the middle of hwpoison_user_mappings(), but there're corner cases where memory_failure() wrongly tries to handle thp without splitting. 1) "non anonymous" thp, which is not a normal operating mode of thp, but a memory error could hit a thp before anon_vma is initialized. In such case, split_huge_page() fails and me_huge_page() (intended for hugetlb) is called for thp, which triggers BUG_ON in page_hstate(). 2) !PageLRU case, where hwpoison_user_mappings() returns with SWAP_SUCCESS and the result is the same as case 1. memory_failure() can't avoid splitting, so let's split it more earlier, which also reduces code which are prepared for both of normal page and thp. Signed-off-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Tony Luck <tony.luck@intel.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Zhihui Zhang 提交于
The name SWAP implies that we are dealing with anonymous pages only. In fact, the original patch that introduced the min_unmapped_ratio logic was to fix an issue related to file pages. Rename it to RECLAIM_UNMAP to match what does. Historically, commit a6dc60f8 ("vmscan: rename sc.may_swap to may_unmap") renamed .may_swap to .may_unmap, leaving RECLAIM_SWAP behind. commit 2e2e4259 ("vmscan,memcg: reintroduce sc->may_swap") reintroduced .may_swap for memory controller. Signed-off-by: NZhihui Zhang <zzhsuny@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Rik van Riel <riel@redhat.com> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Nishanth Aravamudan 提交于
Based upon 675becce ("mm: vmscan: do not throttle based on pfmemalloc reserves if node has no ZONE_NORMAL") from Mel. We have a system with the following topology: # numactl -H available: 3 nodes (0,2-3) node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 node 0 size: 28273 MB node 0 free: 27323 MB node 2 cpus: node 2 size: 16384 MB node 2 free: 0 MB node 3 cpus: 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 node 3 size: 30533 MB node 3 free: 13273 MB node distances: node 0 2 3 0: 10 20 20 2: 20 10 20 3: 20 20 10 Node 2 has no free memory, because: # cat /sys/devices/system/node/node2/hugepages/hugepages-16777216kB/nr_hugepages 1 This leads to the following zoneinfo: Node 2, zone DMA pages free 0 min 1840 low 2300 high 2760 scanned 0 spanned 262144 present 262144 managed 262144 ... all_unreclaimable: 1 If one then attempts to allocate some normal 16M hugepages via echo 37 > /proc/sys/vm/nr_hugepages The echo never returns and kswapd2 consumes CPU cycles. This is because throttle_direct_reclaim ends up calling wait_event(pfmemalloc_wait, pfmemalloc_watermark_ok...). pfmemalloc_watermark_ok() in turn checks all zones on the node if there are any reserves, and if so, then indicates the watermarks are ok, by seeing if there are sufficient free pages. 675becce added a condition already for memoryless nodes. In this case, though, the node has memory, it is just all consumed (and not reclaimable). Effectively, though, the result is the same on this call to pfmemalloc_watermark_ok() and thus seems like a reasonable additional condition. With this change, the afore-mentioned 16M hugepage allocation attempt succeeds and correctly round-robins between Nodes 1 and 3. Signed-off-by: NNishanth Aravamudan <nacc@linux.vnet.ibm.com> Reviewed-by: NMichal Hocko <mhocko@suse.cz> Acked-by: NVlastimil Babka <vbabka@suse.cz> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Anton Blanchard <anton@samba.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: Dan Streetman <ddstreet@ieee.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Anisse Astier 提交于
It's been five years now that KM_* kmap flags have been removed and that we can call clear_highpage from any context. So we remove prep_zero_pages accordingly. Signed-off-by: NAnisse Astier <anisse@astier.eu> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Kirill A. Shutemov 提交于
Reintroduce 8d63d99a ("mm: avoid tail page refcounting on non-THP compound pages") after removing bogus VM_BUG_ON_PAGE() in put_unrefcounted_compound_page(). THP uses tail page refcounting to be able to split huge pages at any time. Tail page refcounting is not needed for other users of compound pages and it's harmful because of overhead. We try to exclude non-THP pages from tail page refcounting using __compound_tail_refcounted() check. It excludes most common non-THP compound pages: SL*B and hugetlb, but it doesn't catch rest of __GFP_COMP users -- drivers. And it's not only about overhead. Drivers might want to use compound pages to get refcounting semantics suitable for mapping high-order pages to userspace. But tail page refcounting breaks it. Tail page refcounting uses ->_mapcount in tail pages to store GUP pins on them. It means GUP pins would affect page_mapcount() for tail pages. It's not a problem for THP, because it never maps tail pages. But unlike THP, drivers map parts of compound pages with PTEs and it makes page_mapcount() be called for tail pages. In particular, GUP pins would shift PSS up and affect /proc/kpagecount for such pages. But, I'm not aware about anything which can lead to crash or other serious misbehaviour. Since currently all THP pages are anonymous and all drivers pages are not, we can fix the __compound_tail_refcounted() check by requiring PageAnon() to enable tail page refcounting. Signed-off-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: NHugh Dickins <hughd@google.com> Reviewed-by: NAndrea Arcangeli <aarcange@redhat.com> Reported-by: NBorislav Petkov <bp@alien8.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Kirill A. Shutemov 提交于
My commit 8d63d99a ("mm: avoid tail page refcounting on non-THP compound pages") which was merged during 4.1 merge window caused regression: page:ffffea0010a15040 count:0 mapcount:1 mapping: (null) index:0x0 flags: 0x8000000000008014(referenced|dirty|tail) page dumped because: VM_BUG_ON_PAGE(page_mapcount(page) != 0) ------------[ cut here ]------------ kernel BUG at mm/swap.c:134! The problem can be reproduced by playing *two* audio files at the same time and then stopping one of players. I used two mplayers to trigger this. The VM_BUG_ON_PAGE() which triggers the bug is bogus: Sound subsystem uses compound pages for its buffers, but unlike most __GFP_COMP sound maps compound pages to userspace with PTEs. In our case with two players map the buffer twice and therefore elevates page_mapcount() on tail pages by two. When one of players exits it unmaps the VMA and drops page_mapcount() to one and try to release reference on the page with put_page(). My commit changes which path it takes under put_compound_page(). It hits put_unrefcounted_compound_page() where VM_BUG_ON_PAGE() is. It sees page_mapcount() == 1. The function wrongly assumes that subpages of compound page cannot be be mapped by itself with PTEs.. The solution is simply drop the VM_BUG_ON_PAGE(). Note: there's no need to move the check under put_page_testzero(). Allocator will check the mapcount by itself before putting on free list. Signed-off-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Reported-by: NAndrea Arcangeli <aarcange@redhat.com> Reviewed-by: NAndrea Arcangeli <aarcange@redhat.com> Reported-by: NBorislav Petkov <bp@alien8.de> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Rasmus Villemoes 提交于
For !CONFIG_NUMA, hashdist will always be 0, since it's setter is otherwise compiled out. So we can save 4 bytes of data and some .text (although mostly in __init functions) by only defining it for CONFIG_NUMA. Signed-off-by: NRasmus Villemoes <linux@rasmusvillemoes.dk> Acked-by: NDavid Rientjes <rientjes@google.com> Reviewed-by: NMichal Hocko <mhocko@suse.cz> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Zhang Zhen 提交于
Currently we have many duplicates in definitions of hugetlb_prefault_arch_hook. In all architectures this function is empty. Signed-off-by: NZhang Zhen <zhenzhang.zhang@huawei.com> Acked-by: NDavid Rientjes <rientjes@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Laurent Dufour 提交于
Some processes (CRIU) are moving the vDSO area using the mremap system call. As a consequence the kernel reference to the vDSO base address is no more valid and the signal return frame built once the vDSO has been moved is not pointing to the new sigreturn address. This patch handles vDSO remapping and unmapping. Signed-off-by: NLaurent Dufour <ldufour@linux.vnet.ibm.com> Reviewed-by: NIngo Molnar <mingo@kernel.org> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Pavel Emelyanov <xemul@parallels.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Laurent Dufour 提交于
Some architectures would like to be triggered when a memory area is moved through the mremap system call. This patch introduces a new arch_remap() mm hook which is placed in the path of mremap, and is called before the old area is unmapped (and the arch_unmap() hook is called). Signed-off-by: NLaurent Dufour <ldufour@linux.vnet.ibm.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Pavel Emelyanov <xemul@parallels.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Ingo Molnar <mingo@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Laurent Dufour 提交于
CRIU is recreating the process memory layout by remapping the checkpointee memory area on top of the current process (criu). This includes remapping the vDSO to the place it has at checkpoint time. However some architectures like powerpc are keeping a reference to the vDSO base address to build the signal return stack frame by calling the vDSO sigreturn service. So once the vDSO has been moved, this reference is no more valid and the signal frame built later are not usable. This patch serie is introducing a new mm hook framework, and a new arch_remap hook which is called when mremap is done and the mm lock still hold. The next patch is adding the vDSO remap and unmap tracking to the powerpc architecture. This patch (of 3): This patch introduces a new set of header file to manage mm hooks: - per architecture empty header file (arch/x/include/asm/mm-arch-hooks.h) - a generic header (include/linux/mm-arch-hooks.h) The architecture which need to overwrite a hook as to redefine it in its header file, while architecture which doesn't need have nothing to do. The default hooks are defined in the generic header and are used in the case the architecture is not defining it. In a next step, mm hooks defined in include/asm-generic/mm_hooks.h should be moved here. Signed-off-by: NLaurent Dufour <ldufour@linux.vnet.ibm.com> Suggested-by: NAndrew Morton <akpm@linux-foundation.org> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Pavel Emelyanov <xemul@parallels.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Ingo Molnar <mingo@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Zhang Zhen 提交于
Currently we have many duplicates in definitions of huge_pmd_unshare. In all architectures this function just returns 0 when CONFIG_ARCH_WANT_HUGE_PMD_SHARE is N. This patch puts the default implementation in mm/hugetlb.c and lets these architectures use the common code. Signed-off-by: NZhang Zhen <zhenzhang.zhang@huawei.com> Cc: Russell King <linux@arm.linux.org.uk> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Tony Luck <tony.luck@intel.com> Cc: James Hogan <james.hogan@imgtec.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Chris Metcalf <cmetcalf@ezchip.com> Cc: David Rientjes <rientjes@google.com> Cc: James Yang <James.Yang@freescale.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Kirill A. Shutemov 提交于
On mlock(2) we trigger COW on private writable VMA to avoid faults in future. mm/gup.c: 840 long populate_vma_page_range(struct vm_area_struct *vma, 841 unsigned long start, unsigned long end, int *nonblocking) 842 { ... 855 * We want to touch writable mappings with a write fault in order 856 * to break COW, except for shared mappings because these don't COW 857 * and we would not want to dirty them for nothing. 858 */ 859 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 860 gup_flags |= FOLL_WRITE; But we miss this case when we make VM_LOCKED VMA writeable via mprotect(2). The test case: #define _GNU_SOURCE #include <fcntl.h> #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <sys/mman.h> #include <sys/resource.h> #include <sys/stat.h> #include <sys/time.h> #include <sys/types.h> #define PAGE_SIZE 4096 int main(int argc, char **argv) { struct rusage usage; long before; char *p; int fd; /* Create a file and populate first page of page cache */ fd = open("/tmp", O_TMPFILE | O_RDWR, S_IRUSR | S_IWUSR); write(fd, "1", 1); /* Create a *read-only* *private* mapping of the file */ p = mmap(NULL, PAGE_SIZE, PROT_READ, MAP_PRIVATE, fd, 0); /* * Since the mapping is read-only, mlock() will populate the mapping * with PTEs pointing to page cache without triggering COW. */ mlock(p, PAGE_SIZE); /* * Mapping became read-write, but it's still populated with PTEs * pointing to page cache. */ mprotect(p, PAGE_SIZE, PROT_READ | PROT_WRITE); getrusage(RUSAGE_SELF, &usage); before = usage.ru_minflt; /* Trigger COW: fault in mlock()ed VMA. */ *p = 1; getrusage(RUSAGE_SELF, &usage); printf("faults: %ld\n", usage.ru_minflt - before); return 0; } $ ./test faults: 1 Let's fix it by triggering populating of VMA in mprotect_fixup() on this condition. We don't care about population error as we don't in other similar cases i.e. mremap. [akpm@linux-foundation.org: tweak comment text] Signed-off-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Jiri Kosina 提交于
khugepaged_do_scan() checks in every iteration whether freezing(current) is true, and in such case breaks out of the loop, which causes try_to_freeze() to be called immediately afterwards in khugepaged_wait_work(). If nothing else, this causes unnecessary freezing(current) test, and also makes the way khugepaged enters freezer a bit less obvious than necessary. Let's just try to freeze directly, instead of splitting it into two (directly adjacent) phases. Signed-off-by: NJiri Kosina <jkosina@suse.cz> Cc: Mel Gorman <mgorman@suse.de> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andi Kleen 提交于
All the items mentioned here have been either addressed, or were not really needed. So just remove the comment. Signed-off-by: NAndi Kleen <ak@linux.intel.com> Acked-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andi Kleen 提交于
Here's another comment fix for hwpoison. It describes the "guiding principle" on when to add new memory error recovery code. Signed-off-by: NAndi Kleen <ak@linux.intel.com> Acked-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Rasmus Villemoes 提交于
The first is a keyboard-off-by-one, the other two the ordinary mathy kind. Signed-off-by: NRasmus Villemoes <linux@rasmusvillemoes.dk> Acked-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Daniel Sanders 提交于
This patch moves the initialization of the size_index table slightly earlier so that the first few kmem_cache_node's can be safely allocated when KMALLOC_MIN_SIZE is large. There are currently two ways to generate indices into kmalloc_caches (via kmalloc_index() and via the size_index table in slab_common.c) and on some arches (possibly only MIPS) they potentially disagree with each other until create_kmalloc_caches() has been called. It seems that the intention is that the size_index table is a fast equivalent to kmalloc_index() and that create_kmalloc_caches() patches the table to return the correct value for the cases where kmalloc_index()'s if-statements apply. The failing sequence was: * kmalloc_caches contains NULL elements * kmem_cache_init initialises the element that 'struct kmem_cache_node' will be allocated to. For 32-bit Mips, this is a 56-byte struct and kmalloc_index returns KMALLOC_SHIFT_LOW (7). * init_list is called which calls kmalloc_node to allocate a 'struct kmem_cache_node'. * kmalloc_slab selects the kmem_caches element using size_index[size_index_elem(size)]. For MIPS, size is 56, and the expression returns 6. * This element of kmalloc_caches is NULL and allocation fails. * If it had not already failed, it would have called create_kmalloc_caches() at this point which would have changed size_index[size_index_elem(size)] to 7. I don't believe the bug to be LLVM specific but GCC doesn't normally encounter the problem. I haven't been able to identify exactly what GCC is doing better (probably inlining) but it seems that GCC is managing to optimize to the point that it eliminates the problematic allocations. This theory is supported by the fact that GCC can be made to fail in the same way by changing inline, __inline, __inline__, and __always_inline in include/linux/compiler-gcc.h such that they don't actually inline things. Signed-off-by: NDaniel Sanders <daniel.sanders@imgtec.com> Acked-by: NPekka Enberg <penberg@kernel.org> Acked-by: NChristoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-