- 30 5月, 2014 23 次提交
-
-
由 Aneesh Kumar K.V 提交于
On recent IBM Power CPUs, while the hashed page table is looked up using the page size from the segmentation hardware (i.e. the SLB), it is possible to have the HPT entry indicate a larger page size. Thus for example it is possible to put a 16MB page in a 64kB segment, but since the hash lookup is done using a 64kB page size, it may be necessary to put multiple entries in the HPT for a single 16MB page. This capability is called mixed page-size segment (MPSS). With MPSS, there are two relevant page sizes: the base page size, which is the size used in searching the HPT, and the actual page size, which is the size indicated in the HPT entry. [ Note that the actual page size is always >= base page size ]. We use "ibm,segment-page-sizes" device tree node to advertise the MPSS support to PAPR guest. The penc encoding indicates whether we support a specific combination of base page size and actual page size in the same segment. We also use the penc value in the LP encoding of HPTE entry. This patch exposes MPSS support to KVM guest by advertising the feature via "ibm,segment-page-sizes". It also adds the necessary changes to decode the base page size and the actual page size correctly from the HPTE entry. Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Aneesh Kumar K.V 提交于
Today when KVM tries to reserve memory for the hash page table it allocates from the normal page allocator first. If that fails it falls back to CMA's reserved region. One of the side effects of this is that we could end up exhausting the page allocator and get linux into OOM conditions while we still have plenty of space available in CMA. This patch addresses this issue by first trying hash page table allocation from CMA's reserved region before falling back to the normal page allocator. So if we run out of memory, we really are out of memory. Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Alexander Graf 提交于
POWER8 introduces transactional memory which brings along a number of new registers and MSR bits. Implementing all of those is a pretty big headache, so for now let's at least emulate enough to make Linux's context switching code happy. Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Alexander Graf 提交于
POWER8 introduces a new facility called the "Event Based Branch" facility. It contains of a few registers that indicate where a guest should branch to when a defined event occurs and it's in PR mode. We don't want to really enable EBB as it will create a big mess with !PR guest mode while hardware is in PR and we don't really emulate the PMU anyway. So instead, let's just leave it at emulation of all its registers. Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Alexander Graf 提交于
POWER8 implements a new register called TAR. This register has to be enabled in FSCR and then from KVM's point of view is mere storage. This patch enables the guest to use TAR. Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Alexander Graf 提交于
POWER8 introduced a new interrupt type called "Facility unavailable interrupt" which contains its status message in a new register called FSCR. Handle these exits and try to emulate instructions for unhandled facilities. Follow-on patches enable KVM to expose specific facilities into the guest. Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Alexander Graf 提交于
In parallel to the Processor ID Register (PIR) threaded POWER8 also adds a Thread ID Register (TIR). Since PR KVM doesn't emulate more than one thread per core, we can just always expose 0 here. Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Alexander Graf 提交于
When we expose a POWER8 CPU into the guest, it will start accessing PMU SPRs that we don't emulate. Just ignore accesses to them. Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Alexander Graf 提交于
With the previous patches applied, we can now successfully use PR KVM on little endian hosts which means we can now allow users to select it. However, HV KVM still needs some work, so let's keep the kconfig conflict on that one. Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Alexander Graf 提交于
When the host CPU we're running on doesn't support dcbz32 itself, but the guest wants to have dcbz only clear 32 bytes of data, we loop through every executable mapped page to search for dcbz instructions and patch them with a special privileged instruction that we emulate as dcbz32. The only guests that want to see dcbz act as 32byte are book3s_32 guests, so we don't have to worry about little endian instruction ordering. So let's just always search for big endian dcbz instructions, also when we're on a little endian host. Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Alexander Graf 提交于
The shared (magic) page is a data structure that contains often used supervisor privileged SPRs accessible via memory to the user to reduce the number of exits we have to take to read/write them. When we actually share this structure with the guest we have to maintain it in guest endianness, because some of the patch tricks only work with native endian load/store operations. Since we only share the structure with either host or guest in little endian on book3s_64 pr mode, we don't have to worry about booke or book3s hv. For booke, the shared struct stays big endian. For book3s_64 hv we maintain the struct in host native endian, since it never gets shared with the guest. For book3s_64 pr we introduce a variable that tells us which endianness the shared struct is in and route every access to it through helper inline functions that evaluate this variable. Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Alexander Graf 提交于
We expose a blob of hypercall instructions to user space that it gives to the guest via device tree again. That blob should contain a stream of instructions necessary to do a hypercall in big endian, as it just gets passed into the guest and old guests use them straight away. Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Alexander Graf 提交于
When the guest does an RTAS hypercall it keeps all RTAS variables inside a big endian data structure. To make sure we don't have to bother about endianness inside the actual RTAS handlers, let's just convert the whole structure to host endian before we call our RTAS handlers and back to big endian when we return to the guest. Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Alexander Graf 提交于
The HTAB on PPC is always in big endian. When we access it via hypercalls on behalf of the guest and we're running on a little endian host, we need to make sure we swap the bits accordingly. Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Alexander Graf 提交于
The default MSR when user space does not define anything should be identical on little and big endian hosts, so remove MSR_LE from it. Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Alexander Graf 提交于
The "shadow SLB" in the PACA is shared with the hypervisor, so it has to be big endian. We access the shadow SLB during world switch, so let's make sure we access it in big endian even when we're on a little endian host. Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Alexander Graf 提交于
The HTAB is always big endian. We access the guest's HTAB using copy_from/to_user, but don't yet take care of the fact that we might be running on an LE host. Wrap all accesses to the guest HTAB with big endian accessors. Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Alexander Graf 提交于
The HTAB is always big endian. We access the guest's HTAB using copy_from/to_user, but don't yet take care of the fact that we might be running on an LE host. Wrap all accesses to the guest HTAB with big endian accessors. Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Alexander Graf 提交于
Commit 9308ab8e made C/R HTAB updates go byte-wise into the target HTAB. However, it didn't update the guest's copy of the HTAB, but instead the host local copy of it. Write to the guest's HTAB instead. Signed-off-by: NAlexander Graf <agraf@suse.de> CC: Paul Mackerras <paulus@samba.org> Acked-by: NPaul Mackerras <paulus@samba.org>
-
由 Aneesh Kumar K.V 提交于
With debug option "sleep inside atomic section checking" enabled we get the below WARN_ON during a PR KVM boot. This is because upstream now have PREEMPT_COUNT enabled even if we have preempt disabled. Fix the warning by adding preempt_disable/enable around floating point and altivec enable. WARNING: at arch/powerpc/kernel/process.c:156 Modules linked in: kvm_pr kvm CPU: 1 PID: 3990 Comm: qemu-system-ppc Tainted: G W 3.15.0-rc1+ #4 task: c0000000eb85b3a0 ti: c0000000ec59c000 task.ti: c0000000ec59c000 NIP: c000000000015c84 LR: d000000003334644 CTR: c000000000015c00 REGS: c0000000ec59f140 TRAP: 0700 Tainted: G W (3.15.0-rc1+) MSR: 8000000000029032 <SF,EE,ME,IR,DR,RI> CR: 42000024 XER: 20000000 CFAR: c000000000015c24 SOFTE: 1 GPR00: d000000003334644 c0000000ec59f3c0 c000000000e2fa40 c0000000e2f80000 GPR04: 0000000000000800 0000000000002000 0000000000000001 8000000000000000 GPR08: 0000000000000001 0000000000000001 0000000000002000 c000000000015c00 GPR12: d00000000333da18 c00000000fb80900 0000000000000000 0000000000000000 GPR16: 0000000000000000 0000000000000000 0000000000000000 00003fffce4e0fa1 GPR20: 0000000000000010 0000000000000001 0000000000000002 00000000100b9a38 GPR24: 0000000000000002 0000000000000000 0000000000000000 0000000000000013 GPR28: 0000000000000000 c0000000eb85b3a0 0000000000002000 c0000000e2f80000 NIP [c000000000015c84] .enable_kernel_fp+0x84/0x90 LR [d000000003334644] .kvmppc_handle_ext+0x134/0x190 [kvm_pr] Call Trace: [c0000000ec59f3c0] [0000000000000010] 0x10 (unreliable) [c0000000ec59f430] [d000000003334644] .kvmppc_handle_ext+0x134/0x190 [kvm_pr] [c0000000ec59f4c0] [d00000000324b380] .kvmppc_set_msr+0x30/0x50 [kvm] [c0000000ec59f530] [d000000003337cac] .kvmppc_core_emulate_op_pr+0x16c/0x5e0 [kvm_pr] [c0000000ec59f5f0] [d00000000324a944] .kvmppc_emulate_instruction+0x284/0xa80 [kvm] [c0000000ec59f6c0] [d000000003336888] .kvmppc_handle_exit_pr+0x488/0xb70 [kvm_pr] [c0000000ec59f790] [d000000003338d34] kvm_start_lightweight+0xcc/0xdc [kvm_pr] [c0000000ec59f960] [d000000003336288] .kvmppc_vcpu_run_pr+0xc8/0x190 [kvm_pr] [c0000000ec59f9f0] [d00000000324c880] .kvmppc_vcpu_run+0x30/0x50 [kvm] [c0000000ec59fa60] [d000000003249e74] .kvm_arch_vcpu_ioctl_run+0x54/0x1b0 [kvm] [c0000000ec59faf0] [d000000003244948] .kvm_vcpu_ioctl+0x478/0x760 [kvm] [c0000000ec59fcb0] [c000000000224e34] .do_vfs_ioctl+0x4d4/0x790 [c0000000ec59fd90] [c000000000225148] .SyS_ioctl+0x58/0xb0 [c0000000ec59fe30] [c00000000000a1e4] syscall_exit+0x0/0x98 Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Aneesh Kumar K.V 提交于
This patch make sure we inherit the LE bit correctly in different case so that we can run Little Endian distro in PR mode Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Alexander Graf 提交于
The dcbtls instruction is able to lock data inside the L1 cache. We don't want to give the guest actual access to hardware cache locks, as that could influence other VMs on the same system. But we can tell the guest that its locking attempt failed. By implementing the instruction we at least don't give the guest a program exception which it definitely does not expect. Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Alexander Graf 提交于
The L1 instruction cache control register contains bits that indicate that we're still handling a request. Mask those out when we set the SPR so that a read doesn't assume we're still doing something. Signed-off-by: NAlexander Graf <agraf@suse.de>
-
- 29 3月, 2014 7 次提交
-
-
由 Paul Mackerras 提交于
Currently we save the host PMU configuration, counter values, etc., when entering a guest, and restore it on return from the guest. (We have to do this because the guest has control of the PMU while it is executing.) However, we missed saving/restoring the SIAR and SDAR registers, as well as the registers which are new on POWER8, namely SIER and MMCR2. This adds code to save the values of these registers when entering the guest and restore them on exit. This also works around the bug in POWER8 where setting PMAE with a counter already negative doesn't generate an interrupt. Signed-off-by: NPaul Mackerras <paulus@samba.org> Acked-by: NScott Wood <scottwood@freescale.com>
-
由 Paul Mackerras 提交于
Commit c7699822bc21 ("KVM: PPC: Book3S HV: Make physical thread 0 do the MMU switching") reordered the guest entry/exit code so that most of the guest register save/restore code happened in guest MMU context. A side effect of that is that the timebase still contains the guest timebase value at the point where we compute and use vcpu->arch.dec_expires, and therefore that is now a guest timebase value rather than a host timebase value. That in turn means that the timeouts computed in kvmppc_set_timer() are wrong if the timebase offset for the guest is non-zero. The consequence of that is things such as "sleep 1" in a guest after migration may sleep for much longer than they should. This fixes the problem by converting between guest and host timebase values as necessary, by adding or subtracting the timebase offset. This also fixes an incorrect comment. Signed-off-by: NPaul Mackerras <paulus@samba.org> Acked-by: NScott Wood <scottwood@freescale.com>
-
由 Paul Mackerras 提交于
With HV KVM, some high-frequency hypercalls such as H_ENTER are handled in real mode, and need to access the memslots array for the guest. Accessing the memslots array is safe, because we hold the SRCU read lock for the whole time that a guest vcpu is running. However, the checks that kvm_memslots() does when lockdep is enabled are potentially unsafe in real mode, when only the linear mapping is available. Furthermore, kvm_memslots() can be called from a secondary CPU thread, which is an offline CPU from the point of view of the host kernel, and is not running the task which holds the SRCU read lock. To avoid false positives in the checks in kvm_memslots(), and to avoid possible side effects from doing the checks in real mode, this replaces kvm_memslots() with kvm_memslots_raw() in all the places that execute in real mode. kvm_memslots_raw() is a new function that is like kvm_memslots() but uses rcu_dereference_raw_notrace() instead of kvm_dereference_check(). Signed-off-by: NPaul Mackerras <paulus@samba.org> Acked-by: NScott Wood <scottwood@freescale.com>
-
由 Paul Mackerras 提交于
If an attempt is made to load the kvm-hv module on a machine which doesn't have hypervisor mode available, return an ENODEV error, which is the conventional thing to return to indicate that this module is not applicable to the hardware of the current machine, rather than EIO, which causes a warning to be printed. Signed-off-by: NPaul Mackerras <paulus@samba.org> Acked-by: NScott Wood <scottwood@freescale.com>
-
由 Paul Mackerras 提交于
The in-kernel emulation of RTAS functions needs to read the argument buffer from guest memory in order to find out what function is being requested. The guest supplies the guest physical address of the buffer, and on a real system the code that reads that buffer would run in guest real mode. In guest real mode, the processor ignores the top 4 bits of the address specified in load and store instructions. In order to emulate that behaviour correctly, we need to mask off those bits before calling kvm_read_guest() or kvm_write_guest(). This adds that masking. Signed-off-by: NPaul Mackerras <paulus@samba.org> Acked-by: NScott Wood <scottwood@freescale.com>
-
由 Michael Neuling 提交于
This adds code to get/set_one_reg to read and write the new transactional memory (TM) state. Signed-off-by: NMichael Neuling <mikey@neuling.org> Signed-off-by: NPaul Mackerras <paulus@samba.org> Acked-by: NScott Wood <scottwood@freescale.com>
-
由 Michael Neuling 提交于
This adds saving of the transactional memory (TM) checkpointed state on guest entry and exit. We only do this if we see that the guest has an active transaction. It also adds emulation of the TM state changes when delivering IRQs into the guest. According to the architecture, if we are transactional when an IRQ occurs, the TM state is changed to suspended, otherwise it's left unchanged. Signed-off-by: NMichael Neuling <mikey@neuling.org> Signed-off-by: NPaul Mackerras <paulus@samba.org> Acked-by: NScott Wood <scottwood@freescale.com>
-
- 26 3月, 2014 3 次提交
-
-
由 Anton Blanchard 提交于
I noticed KVM is broken when KVM in-kernel XICS emulation (CONFIG_KVM_XICS) is disabled. The problem was introduced in 48eaef05 (KVM: PPC: Book3S HV: use xics_wake_cpu only when defined). It used CONFIG_KVM_XICS to wrap xics_wake_cpu, where CONFIG_PPC_ICP_NATIVE should have been used. Signed-off-by: NAnton Blanchard <anton@samba.org> Cc: stable@vger.kernel.org Signed-off-by: NPaul Mackerras <paulus@samba.org> Acked-by: NScott Wood <scottwood@freescale.com>
-
由 Laurent Dufour 提交于
This introduces the H_GET_TCE hypervisor call, which is basically the reverse of H_PUT_TCE, as defined in the Power Architecture Platform Requirements (PAPR). The hcall H_GET_TCE is required by the kdump kernel, which uses it to retrieve TCEs set up by the previous (panicked) kernel. Signed-off-by: NLaurent Dufour <ldufour@linux.vnet.ibm.com> Signed-off-by: NAlexander Graf <agraf@suse.de> Signed-off-by: NPaul Mackerras <paulus@samba.org>
-
由 Greg Kurz 提交于
When the guest does an MMIO write which is handled successfully by an ioeventfd, ioeventfd_write() returns 0 (success) and kvmppc_handle_store() returns EMULATE_DONE. Then kvmppc_emulate_mmio() converts EMULATE_DONE to RESUME_GUEST_NV and this causes an exit from the loop in kvmppc_vcpu_run_hv(), causing an exit back to userspace with a bogus exit reason code, typically causing userspace (e.g. qemu) to crash with a message about an unknown exit code. This adds handling of RESUME_GUEST_NV in kvmppc_vcpu_run_hv() in order to fix that. For generality, we define a helper to check for either of the return-to-guest codes we use, RESUME_GUEST and RESUME_GUEST_NV, to make it easy to check for either and provide one place to update if any other return-to-guest code gets defined in future. Since it only affects Book3S HV for now, the helper is added to the kvm_book3s.h header file. We use the helper in two places in kvmppc_run_core() as well for future-proofing, though we don't see RESUME_GUEST_NV in either place at present. [paulus@samba.org - combined 4 patches into one, rewrote description] Suggested-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: NGreg Kurz <gkurz@linux.vnet.ibm.com> Signed-off-by: NPaul Mackerras <paulus@samba.org>
-
- 20 3月, 2014 2 次提交
-
-
由 Scott Wood 提交于
While bolted handlers (including e6500) do not need to deal with a TLB miss recursively causing another TLB miss, nested TLB misses can still happen with crit/mc/debug exceptions -- so we still need to honor SPRG_TLB_EXFRAME. We don't need to spend time modifying it in the TLB miss fastpath, though -- the special level exception will handle that. Signed-off-by: NScott Wood <scottwood@freescale.com> Cc: Mihai Caraman <mihai.caraman@freescale.com> Cc: kvm-ppc@vger.kernel.org
-
由 Scott Wood 提交于
Previously SPRG3 was marked for use by both VDSO and critical interrupts (though critical interrupts were not fully implemented). In commit 8b64a9df ("powerpc/booke64: Use SPRG0/3 scratch for bolted TLB miss & crit int"), Mihai Caraman made an attempt to resolve this conflict by restoring the VDSO value early in the critical interrupt, but this has some issues: - It's incompatible with EXCEPTION_COMMON which restores r13 from the by-then-overwritten scratch (this cost me some debugging time). - It forces critical exceptions to be a special case handled differently from even machine check and debug level exceptions. - It didn't occur to me that it was possible to make this work at all (by doing a final "ld r13, PACA_EXCRIT+EX_R13(r13)") until after I made (most of) this patch. :-) It might be worth investigating using a load rather than SPRG on return from all exceptions (except TLB misses where the scratch never leaves the SPRG) -- it could save a few cycles. Until then, let's stick with SPRG for all exceptions. Since we cannot use SPRG4-7 for scratch without corrupting the state of a KVM guest, move VDSO to SPRG7 on book3e. Since neither SPRG4-7 nor critical interrupts exist on book3s, SPRG3 is still used for VDSO there. Signed-off-by: NScott Wood <scottwood@freescale.com> Cc: Mihai Caraman <mihai.caraman@freescale.com> Cc: Anton Blanchard <anton@samba.org> Cc: Paul Mackerras <paulus@samba.org> Cc: kvm-ppc@vger.kernel.org
-
- 13 3月, 2014 2 次提交
-
-
由 Paul Mackerras 提交于
Commit 595e4f7e ("KVM: PPC: Book3S HV: Use load/store_fp_state functions in HV guest entry/exit") changed the register usage in kvmppc_save_fp() and kvmppc_load_fp() but omitted changing the instructions that load and save VRSAVE. The result is that the VRSAVE value was loaded from a constant address, and saved to a location past the end of the vcpu struct, causing host kernel memory corruption and various kinds of host kernel crashes. This fixes the problem by using register r31, which contains the vcpu pointer, instead of r3 and r4. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Paul Mackerras 提交于
Commit 7b490411 ("KVM: PPC: Book3S HV: Add new state for transactional memory") incorrectly added some duplicate code to the guest exit path because I didn't manage to clean up after a rebase correctly. This removes the extraneous material. The presence of this extraneous code causes host crashes whenever a guest is run. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 27 1月, 2014 3 次提交
-
-
由 Paul Mackerras 提交于
When the PR host is running on a POWER8 machine in POWER8 mode, it will use doorbell interrupts for IPIs. If one of them arrives while we are in the guest, we pop out of the guest with trap number 0xA00, which isn't handled by kvmppc_handle_exit_pr, leading to the following BUG_ON: [ 331.436215] exit_nr=0xa00 | pc=0x1d2c | msr=0x800000000000d032 [ 331.437522] ------------[ cut here ]------------ [ 331.438296] kernel BUG at arch/powerpc/kvm/book3s_pr.c:982! [ 331.439063] Oops: Exception in kernel mode, sig: 5 [#2] [ 331.439819] SMP NR_CPUS=1024 NUMA pSeries [ 331.440552] Modules linked in: tun nf_conntrack_netbios_ns nf_conntrack_broadcast ipt_MASQUERADE ip6t_REJECT xt_conntrack ebtable_nat ebtable_broute bridge stp llc ebtable_filter ebtables ip6table_nat nf_conntrack_ipv6 nf_defrag_ipv6 nf_nat_ipv6 ip6table_mangle ip6table_security ip6table_raw ip6table_filter ip6_tables iptable_nat nf_conntrack_ipv4 nf_defrag_ipv4 nf_nat_ipv4 nf_nat nf_conntrack iptable_mangle iptable_security iptable_raw virtio_net kvm binfmt_misc ibmvscsi scsi_transport_srp scsi_tgt virtio_blk [ 331.447614] CPU: 11 PID: 1296 Comm: qemu-system-ppc Tainted: G D 3.11.7-200.2.fc19.ppc64p7 #1 [ 331.448920] task: c0000003bdc8c000 ti: c0000003bd32c000 task.ti: c0000003bd32c000 [ 331.450088] NIP: d0000000025d6b9c LR: d0000000025d6b98 CTR: c0000000004cfdd0 [ 331.451042] REGS: c0000003bd32f420 TRAP: 0700 Tainted: G D (3.11.7-200.2.fc19.ppc64p7) [ 331.452331] MSR: 800000000282b032 <SF,VEC,VSX,EE,FP,ME,IR,DR,RI> CR: 28004824 XER: 20000000 [ 331.454616] SOFTE: 1 [ 331.455106] CFAR: c000000000848bb8 [ 331.455726] GPR00: d0000000025d6b98 c0000003bd32f6a0 d0000000026017b8 0000000000000032 GPR04: c0000000018627f8 c000000001873208 320d0a3030303030 3030303030643033 GPR08: c000000000c490a8 0000000000000000 0000000000000000 0000000000000002 GPR12: 0000000028004822 c00000000fdc6300 0000000000000000 00000100076ec310 GPR16: 000000002ae343b8 00003ffffd397398 0000000000000000 0000000000000000 GPR20: 00000100076f16f4 00000100076ebe60 0000000000000008 ffffffffffffffff GPR24: 0000000000000000 0000008001041e60 0000000000000000 0000008001040ce8 GPR28: c0000003a2d80000 0000000000000a00 0000000000000001 c0000003a2681810 [ 331.466504] NIP [d0000000025d6b9c] .kvmppc_handle_exit_pr+0x75c/0xa80 [kvm] [ 331.466999] LR [d0000000025d6b98] .kvmppc_handle_exit_pr+0x758/0xa80 [kvm] [ 331.467517] Call Trace: [ 331.467909] [c0000003bd32f6a0] [d0000000025d6b98] .kvmppc_handle_exit_pr+0x758/0xa80 [kvm] (unreliable) [ 331.468553] [c0000003bd32f750] [d0000000025d98f0] kvm_start_lightweight+0xb4/0xc4 [kvm] [ 331.469189] [c0000003bd32f920] [d0000000025d7648] .kvmppc_vcpu_run_pr+0xd8/0x270 [kvm] [ 331.469838] [c0000003bd32f9c0] [d0000000025cf748] .kvmppc_vcpu_run+0xc8/0xf0 [kvm] [ 331.470790] [c0000003bd32fa50] [d0000000025cc19c] .kvm_arch_vcpu_ioctl_run+0x5c/0x1b0 [kvm] [ 331.471401] [c0000003bd32fae0] [d0000000025c4888] .kvm_vcpu_ioctl+0x478/0x730 [kvm] [ 331.472026] [c0000003bd32fc90] [c00000000026192c] .do_vfs_ioctl+0x4dc/0x7a0 [ 331.472561] [c0000003bd32fd80] [c000000000261cc4] .SyS_ioctl+0xd4/0xf0 [ 331.473095] [c0000003bd32fe30] [c000000000009ed8] syscall_exit+0x0/0x98 [ 331.473633] Instruction dump: [ 331.473766] 4bfff9b4 2b9d0800 419efc18 60000000 60420000 3d220000 e8bf11a0 e8df12a8 [ 331.474733] 7fa4eb78 e8698660 48015165 e8410028 <0fe00000> 813f00e4 3ba00000 39290001 [ 331.475386] ---[ end trace 49fc47d994c1f8f2 ]--- [ 331.479817] This fixes the problem by making kvmppc_handle_exit_pr() recognize the interrupt. We also need to jump to the doorbell interrupt handler in book3s_segment.S to handle the interrupt on the way out of the guest. Having done that, there's nothing further to be done in kvmppc_handle_exit_pr(). Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Michael Neuling 提交于
Add new state for transactional memory (TM) to kvm_vcpu_arch. Also add asm-offset bits that are going to be required. This also moves the existing TFHAR, TFIAR and TEXASR SPRs into a CONFIG_PPC_TRANSACTIONAL_MEM section. This requires some code changes to ensure we still compile with CONFIG_PPC_TRANSACTIONAL_MEM=N. Much of the added the added #ifdefs are removed in a later patch when the bulk of the TM code is added. Signed-off-by: NMichael Neuling <mikey@neuling.org> Signed-off-by: NPaul Mackerras <paulus@samba.org> [agraf: fix merge conflict] Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Anton Blanchard 提交于
We create a guest MSR from scratch when delivering exceptions in a few places. Instead of extracting LPCR[ILE] and inserting it into MSR_LE each time, we simply create a new variable intr_msr which contains the entire MSR to use. For a little-endian guest, userspace needs to set the ILE (interrupt little-endian) bit in the LPCR for each vcpu (or at least one vcpu in each virtual core). [paulus@samba.org - removed H_SET_MODE implementation from original version of the patch, and made kvmppc_set_lpcr update vcpu->arch.intr_msr.] Signed-off-by: NAnton Blanchard <anton@samba.org> Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-