1. 25 5月, 2018 1 次提交
  2. 24 5月, 2018 2 次提交
    • W
      KVM: x86: Update cpuid properly when CR4.OSXAVE or CR4.PKE is changed · c4d21882
      Wei Huang 提交于
      The CPUID bits of OSXSAVE (function=0x1) and OSPKE (func=0x7, leaf=0x0)
      allows user apps to detect if OS has set CR4.OSXSAVE or CR4.PKE. KVM is
      supposed to update these CPUID bits when CR4 is updated. Current KVM
      code doesn't handle some special cases when updates come from emulator.
      Here is one example:
      
        Step 1: guest boots
        Step 2: guest OS enables XSAVE ==> CR4.OSXSAVE=1 and CPUID.OSXSAVE=1
        Step 3: guest hot reboot ==> QEMU reset CR4 to 0, but CPUID.OSXAVE==1
        Step 4: guest os checks CPUID.OSXAVE, detects 1, then executes xgetbv
      
      Step 4 above will cause an #UD and guest crash because guest OS hasn't
      turned on OSXAVE yet. This patch solves the problem by comparing the the
      old_cr4 with cr4. If the related bits have been changed,
      kvm_update_cpuid() needs to be called.
      Signed-off-by: NWei Huang <wei@redhat.com>
      Reviewed-by: NBandan Das <bsd@redhat.com>
      Cc: stable@vger.kernel.org
      Signed-off-by: NRadim Krčmář <rkrcmar@redhat.com>
      c4d21882
    • D
      x86/kvm: fix LAPIC timer drift when guest uses periodic mode · d8f2f498
      David Vrabel 提交于
      Since 4.10, commit 8003c9ae (KVM: LAPIC: add APIC Timer
      periodic/oneshot mode VMX preemption timer support), guests using
      periodic LAPIC timers (such as FreeBSD 8.4) would see their timers
      drift significantly over time.
      
      Differences in the underlying clocks and numerical errors means the
      periods of the two timers (hv and sw) are not the same. This
      difference will accumulate with every expiry resulting in a large
      error between the hv and sw timer.
      
      This means the sw timer may be running slow when compared to the hv
      timer. When the timer is switched from hv to sw, the now active sw
      timer will expire late. The guest VCPU is reentered and it switches to
      using the hv timer. This timer catches up, injecting multiple IRQs
      into the guest (of which the guest only sees one as it does not get to
      run until the hv timer has caught up) and thus the guest's timer rate
      is low (and becomes increasing slower over time as the sw timer lags
      further and further behind).
      
      I believe a similar problem would occur if the hv timer is the slower
      one, but I have not observed this.
      
      Fix this by synchronizing the deadlines for both timers to the same
      time source on every tick. This prevents the errors from accumulating.
      
      Fixes: 8003c9ae
      Cc: Wanpeng Li <wanpeng.li@hotmail.com>
      Signed-off-by: NDavid Vrabel <david.vrabel@nutanix.com>
      Cc: stable@vger.kernel.org
      Reviewed-by: NPaolo Bonzini <pbonzini@redhat.com>
      Reviewed-by: NWanpeng Li <wanpengli@tencent.com>
      Signed-off-by: NRadim Krčmář <rkrcmar@redhat.com>
      d8f2f498
  3. 18 5月, 2018 1 次提交
    • M
      kvm: rename KVM_HINTS_DEDICATED to KVM_HINTS_REALTIME · 633711e8
      Michael S. Tsirkin 提交于
      KVM_HINTS_DEDICATED seems to be somewhat confusing:
      
      Guest doesn't really care whether it's the only task running on a host
      CPU as long as it's not preempted.
      
      And there are more reasons for Guest to be preempted than host CPU
      sharing, for example, with memory overcommit it can get preempted on a
      memory access, post copy migration can cause preemption, etc.
      
      Let's call it KVM_HINTS_REALTIME which seems to better
      match what guests expect.
      
      Also, the flag most be set on all vCPUs - current guests assume this.
      Note so in the documentation.
      Signed-off-by: NMichael S. Tsirkin <mst@redhat.com>
      Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
      633711e8
  4. 17 5月, 2018 6 次提交
    • D
      KVM: s390: vsie: fix < 8k check for the itdba · f4a551b7
      David Hildenbrand 提交于
      By missing an "L", we might detect some addresses to be <8k,
      although they are not.
      
      e.g. for itdba = 100001fff
      !(gpa & ~0x1fffU) -> 1
      !(gpa & ~0x1fffUL) -> 0
      
      So we would report a SIE validity intercept although everything is fine.
      
      Fixes: 166ecb3d ("KVM: s390: vsie: support transactional execution")
      Reported-by: NDan Carpenter <dan.carpenter@oracle.com>
      Reviewed-by: NChristian Borntraeger <borntraeger@de.ibm.com>
      Reviewed-by: NJanosch Frank <frankja@linux.ibm.com>
      Reviewed-by: NCornelia Huck <cohuck@redhat.com>
      Signed-off-by: NDavid Hildenbrand <david@redhat.com>
      Signed-off-by: NJanosch Frank <frankja@linux.ibm.com>
      Cc: stable@vger.kernel.org # v4.8+
      Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
      f4a551b7
    • P
      KVM: PPC: Book 3S HV: Do ptesync in radix guest exit path · df158189
      Paul Mackerras 提交于
      A radix guest can execute tlbie instructions to invalidate TLB entries.
      After a tlbie or a group of tlbies, it must then do the architected
      sequence eieio; tlbsync; ptesync to ensure that the TLB invalidation
      has been processed by all CPUs in the system before it can rely on
      no CPU using any translation that it just invalidated.
      
      In fact it is the ptesync which does the actual synchronization in
      this sequence, and hardware has a requirement that the ptesync must
      be executed on the same CPU thread as the tlbies which it is expected
      to order.  Thus, if a vCPU gets moved from one physical CPU to
      another after it has done some tlbies but before it can get to do the
      ptesync, the ptesync will not have the desired effect when it is
      executed on the second physical CPU.
      
      To fix this, we do a ptesync in the exit path for radix guests.  If
      there are any pending tlbies, this will wait for them to complete.
      If there aren't, then ptesync will just do the same as sync.
      Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
      df158189
    • B
      KVM: PPC: Book3S HV: XIVE: Resend re-routed interrupts on CPU priority change · 9dc81d6b
      Benjamin Herrenschmidt 提交于
      When a vcpu priority (CPPR) is set to a lower value (masking more
      interrupts), we stop processing interrupts already in the queue
      for the priorities that have now been masked.
      
      If those interrupts were previously re-routed to a different
      CPU, they might still be stuck until the older one that has
      them in its queue processes them. In the case of guest CPU
      unplug, that can be never.
      
      To address that without creating additional overhead for
      the normal interrupt processing path, this changes H_CPPR
      handling so that when such a priority change occurs, we
      scan the interrupt queue for that vCPU, and for any
      interrupt in there that has been re-routed, we replace it
      with a dummy and force a re-trigger.
      Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
      Tested-by: NAlexey Kardashevskiy <aik@ozlabs.ru>
      Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
      9dc81d6b
    • N
      KVM: PPC: Book3S HV: Make radix clear pte when unmapping · 7e3d9a1d
      Nicholas Piggin 提交于
      The current partition table unmap code clears the _PAGE_PRESENT bit
      out of the pte, which leaves pud_huge/pmd_huge true and does not
      clear pud_present/pmd_present.  This can confuse subsequent page
      faults and possibly lead to the guest looping doing continual
      hypervisor page faults.
      Signed-off-by: NNicholas Piggin <npiggin@gmail.com>
      Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
      7e3d9a1d
    • N
      KVM: PPC: Book3S HV: Make radix use correct tlbie sequence in kvmppc_radix_tlbie_page · e2560b10
      Nicholas Piggin 提交于
      The standard eieio ; tlbsync ; ptesync must follow tlbie to ensure it
      is ordered with respect to subsequent operations.
      Signed-off-by: NNicholas Piggin <npiggin@gmail.com>
      Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
      e2560b10
    • P
      KVM: PPC: Book3S HV: Snapshot timebase offset on guest entry · 57b8daa7
      Paul Mackerras 提交于
      Currently, the HV KVM guest entry/exit code adds the timebase offset
      from the vcore struct to the timebase on guest entry, and subtracts
      it on guest exit.  Which is fine, except that it is possible for
      userspace to change the offset using the SET_ONE_REG interface while
      the vcore is running, as there is only one timebase offset per vcore
      but potentially multiple VCPUs in the vcore.  If that were to happen,
      KVM would subtract a different offset on guest exit from that which
      it had added on guest entry, leading to the timebase being out of sync
      between cores in the host, which then leads to bad things happening
      such as hangs and spurious watchdog timeouts.
      
      To fix this, we add a new field 'tb_offset_applied' to the vcore struct
      which stores the offset that is currently applied to the timebase.
      This value is set from the vcore tb_offset field on guest entry, and
      is what is subtracted from the timebase on guest exit.  Since it is
      zero when the timebase offset is not applied, we can simplify the
      logic in kvmhv_start_timing and kvmhv_accumulate_time.
      
      In addition, we had secondary threads reading the timebase while
      running concurrently with code on the primary thread which would
      eventually add or subtract the timebase offset from the timebase.
      This occurred while saving or restoring the DEC register value on
      the secondary threads.  Although no specific incorrect behaviour has
      been observed, this is a race which should be fixed.  To fix it, we
      move the DEC saving code to just before we call kvmhv_commence_exit,
      and the DEC restoring code to after the point where we have waited
      for the primary thread to switch the MMU context and add the timebase
      offset.  That way we are sure that the timebase contains the guest
      timebase value in both cases.
      Signed-off-by: NPaul Mackerras <paulus@ozlabs.org>
      57b8daa7
  5. 15 5月, 2018 2 次提交
  6. 11 5月, 2018 4 次提交
  7. 06 5月, 2018 1 次提交
    • A
      KVM: x86: remove APIC Timer periodic/oneshot spikes · ecf08dad
      Anthoine Bourgeois 提交于
      Since the commit "8003c9ae: add APIC Timer periodic/oneshot mode VMX
      preemption timer support", a Windows 10 guest has some erratic timer
      spikes.
      
      Here the results on a 150000 times 1ms timer without any load:
      	  Before 8003c9ae | After 8003c9ae
      Max           1834us          |  86000us
      Mean          1100us          |   1021us
      Deviation       59us          |    149us
      Here the results on a 150000 times 1ms timer with a cpu-z stress test:
      	  Before 8003c9ae | After 8003c9ae
      Max          32000us          | 140000us
      Mean          1006us          |   1997us
      Deviation      140us          |  11095us
      
      The root cause of the problem is starting hrtimer with an expiry time
      already in the past can take more than 20 milliseconds to trigger the
      timer function.  It can be solved by forward such past timers
      immediately, rather than submitting them to hrtimer_start().
      In case the timer is periodic, update the target expiration and call
      hrtimer_start with it.
      
      v2: Check if the tsc deadline is already expired. Thank you Mika.
      v3: Execute the past timers immediately rather than submitting them to
      hrtimer_start().
      v4: Rearm the periodic timer with advance_periodic_target_expiration() a
      simpler version of set_target_expiration(). Thank you Paolo.
      
      Cc: Mika Penttilä <mika.penttila@nextfour.com>
      Cc: Wanpeng Li <kernellwp@gmail.com>
      Cc: Paolo Bonzini <pbonzini@redhat.com>
      Cc: stable@vger.kernel.org
      Signed-off-by: NAnthoine Bourgeois <anthoine.bourgeois@blade-group.com>
      8003c9ae ("KVM: LAPIC: add APIC Timer periodic/oneshot mode VMX preemption timer support")
      Signed-off-by: NRadim Krčmář <rkrcmar@redhat.com>
      ecf08dad
  8. 04 5月, 2018 2 次提交
    • J
      arm64: vgic-v2: Fix proxying of cpuif access · b220244d
      James Morse 提交于
      Proxying the cpuif accesses at EL2 makes use of vcpu_data_guest_to_host
      and co, which check the endianness, which call into vcpu_read_sys_reg...
      which isn't mapped at EL2 (it was inlined before, and got moved OoL
      with the VHE optimizations).
      
      The result is of course a nice panic. Let's add some specialized
      cruft to keep the broken platforms that require this hack alive.
      
      But, this code used vcpu_data_guest_to_host(), which expected us to
      write the value to host memory, instead we have trapped the guest's
      read or write to an mmio-device, and are about to replay it using the
      host's readl()/writel() which also perform swabbing based on the host
      endianness. This goes wrong when both host and guest are big-endian,
      as readl()/writel() will undo the guest's swabbing, causing the
      big-endian value to be written to device-memory.
      
      What needs doing?
      A big-endian guest will have pre-swabbed data before storing, undo this.
      If its necessary for the host, writel() will re-swab it.
      
      For a read a big-endian guest expects to swab the data after the load.
      The hosts's readl() will correct for host endianness, giving us the
      device-memory's value in the register. For a big-endian guest, swab it
      as if we'd only done the load.
      
      For a little-endian guest, nothing needs doing as readl()/writel() leave
      the correct device-memory value in registers.
      
      Tested on Juno with that rarest of things: a big-endian 64K host.
      Based on a patch from Marc Zyngier.
      Reported-by: NSuzuki K Poulose <suzuki.poulose@arm.com>
      Fixes: bf8feb39 ("arm64: KVM: vgic-v2: Add GICV access from HYP")
      Signed-off-by: NJames Morse <james.morse@arm.com>
      Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
      b220244d
    • J
      KVM: arm64: Fix order of vcpu_write_sys_reg() arguments · 1975fa56
      James Morse 提交于
      A typo in kvm_vcpu_set_be()'s call:
      | vcpu_write_sys_reg(vcpu, SCTLR_EL1, sctlr)
      causes us to use the 32bit register value as an index into the sys_reg[]
      array, and sail off the end of the linear map when we try to bring up
      big-endian secondaries.
      
      | Unable to handle kernel paging request at virtual address ffff80098b982c00
      | Mem abort info:
      |  ESR = 0x96000045
      |  Exception class = DABT (current EL), IL = 32 bits
      |   SET = 0, FnV = 0
      |   EA = 0, S1PTW = 0
      | Data abort info:
      |   ISV = 0, ISS = 0x00000045
      |   CM = 0, WnR = 1
      | swapper pgtable: 4k pages, 48-bit VAs, pgdp = 000000002ea0571a
      | [ffff80098b982c00] pgd=00000009ffff8803, pud=0000000000000000
      | Internal error: Oops: 96000045 [#1] PREEMPT SMP
      | Modules linked in:
      | CPU: 2 PID: 1561 Comm: kvm-vcpu-0 Not tainted 4.17.0-rc3-00001-ga912e2261ca6-dirty #1323
      | Hardware name: ARM Juno development board (r1) (DT)
      | pstate: 60000005 (nZCv daif -PAN -UAO)
      | pc : vcpu_write_sys_reg+0x50/0x134
      | lr : vcpu_write_sys_reg+0x50/0x134
      
      | Process kvm-vcpu-0 (pid: 1561, stack limit = 0x000000006df4728b)
      | Call trace:
      |  vcpu_write_sys_reg+0x50/0x134
      |  kvm_psci_vcpu_on+0x14c/0x150
      |  kvm_psci_0_2_call+0x244/0x2a4
      |  kvm_hvc_call_handler+0x1cc/0x258
      |  handle_hvc+0x20/0x3c
      |  handle_exit+0x130/0x1ec
      |  kvm_arch_vcpu_ioctl_run+0x340/0x614
      |  kvm_vcpu_ioctl+0x4d0/0x840
      |  do_vfs_ioctl+0xc8/0x8d0
      |  ksys_ioctl+0x78/0xa8
      |  sys_ioctl+0xc/0x18
      |  el0_svc_naked+0x30/0x34
      | Code: 73620291 604d00b0 00201891 1ab10194 (957a33f8)
      |---[ end trace 4b4a4f9628596602 ]---
      
      Fix the order of the arguments.
      
      Fixes: 8d404c4c ("KVM: arm64: Rewrite system register accessors to read/write functions")
      CC: Christoffer Dall <cdall@cs.columbia.edu>
      Signed-off-by: NJames Morse <james.morse@arm.com>
      Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
      1975fa56
  9. 03 5月, 2018 4 次提交
    • H
      parisc: Fix section mismatches · 8d73b180
      Helge Deller 提交于
      Fix three section mismatches:
      1) Section mismatch in reference from the function ioread8() to the
         function .init.text:pcibios_init_bridge()
      2) Section mismatch in reference from the function free_initmem() to the
         function .init.text:map_pages()
      3) Section mismatch in reference from the function ccio_ioc_init() to
         the function .init.text:count_parisc_driver()
      Signed-off-by: NHelge Deller <deller@gmx.de>
      8d73b180
    • H
      parisc: drivers.c: Fix section mismatches · b819439f
      Helge Deller 提交于
      Fix two section mismatches in drivers.c:
      1) Section mismatch in reference from the function alloc_tree_node() to
         the function .init.text:create_tree_node().
      2) Section mismatch in reference from the function walk_native_bus() to
         the function .init.text:alloc_pa_dev().
      Signed-off-by: NHelge Deller <deller@gmx.de>
      b819439f
    • D
      bpf, x64: fix memleak when not converging on calls · 39f56ca9
      Daniel Borkmann 提交于
      The JIT logic in jit_subprogs() is as follows: for all subprogs we
      allocate a bpf_prog_alloc(), populate it (prog->is_func = 1 here),
      and pass it to bpf_int_jit_compile(). If a failure occurred during
      JIT and prog->jited is not set, then we bail out from attempting to
      JIT the whole program, and punt to the interpreter instead. In case
      JITing went successful, we fixup BPF call offsets and do another
      pass to bpf_int_jit_compile() (extra_pass is true at that point) to
      complete JITing calls. Given that requires to pass JIT context around
      addrs and jit_data from x86 JIT are freed in the extra_pass in
      bpf_int_jit_compile() when calls are involved (if not, they can
      be freed immediately). However, if in the original pass, the JIT
      image didn't converge then we leak addrs and jit_data since image
      itself is NULL, the prog->is_func is set and extra_pass is false
      in that case, meaning both will become unreachable and are never
      cleaned up, therefore we need to free as well on !image. Only x64
      JIT is affected.
      
      Fixes: 1c2a088a ("bpf: x64: add JIT support for multi-function programs")
      Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
      Acked-by: NAlexei Starovoitov <ast@kernel.org>
      Acked-by: NDavid S. Miller <davem@davemloft.net>
      Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
      39f56ca9
    • D
      bpf, x64: fix memleak when not converging after image · 3aab8884
      Daniel Borkmann 提交于
      While reviewing x64 JIT code, I noticed that we leak the prior allocated
      JIT image in the case where proglen != oldproglen during the JIT passes.
      Prior to the commit e0ee9c12 ("x86: bpf_jit: fix two bugs in eBPF JIT
      compiler") we would just break out of the loop, and using the image as the
      JITed prog since it could only shrink in size anyway. After e0ee9c12,
      we would bail out to out_addrs label where we free addrs and jit_data but
      not the image coming from bpf_jit_binary_alloc().
      
      Fixes: e0ee9c12 ("x86: bpf_jit: fix two bugs in eBPF JIT compiler")
      Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
      Acked-by: NAlexei Starovoitov <ast@kernel.org>
      Acked-by: NDavid S. Miller <davem@davemloft.net>
      Signed-off-by: NAlexei Starovoitov <ast@kernel.org>
      3aab8884
  10. 02 5月, 2018 5 次提交
  11. 01 5月, 2018 2 次提交
  12. 28 4月, 2018 1 次提交
  13. 27 4月, 2018 8 次提交
    • J
      kvm: apic: Flush TLB after APIC mode/address change if VPIDs are in use · a468f2db
      Junaid Shahid 提交于
      Currently, KVM flushes the TLB after a change to the APIC access page
      address or the APIC mode when EPT mode is enabled. However, even in
      shadow paging mode, a TLB flush is needed if VPIDs are being used, as
      specified in the Intel SDM Section 29.4.5.
      
      So replace vmx_flush_tlb_ept_only() with vmx_flush_tlb(), which will
      flush if either EPT or VPIDs are in use.
      Signed-off-by: NJunaid Shahid <junaids@google.com>
      Reviewed-by: NJim Mattson <jmattson@google.com>
      Signed-off-by: NRadim Krčmář <rkrcmar@redhat.com>
      a468f2db
    • A
      x86/entry/64/compat: Preserve r8-r11 in int $0x80 · 8bb2610b
      Andy Lutomirski 提交于
      32-bit user code that uses int $80 doesn't care about r8-r11.  There is,
      however, some 64-bit user code that intentionally uses int $0x80 to invoke
      32-bit system calls.  From what I've seen, basically all such code assumes
      that r8-r15 are all preserved, but the kernel clobbers r8-r11.  Since I
      doubt that there's any code that depends on int $0x80 zeroing r8-r11,
      change the kernel to preserve them.
      
      I suspect that very little user code is broken by the old clobber, since
      r8-r11 are only rarely allocated by gcc, and they're clobbered by function
      calls, so they only way we'd see a problem is if the same function that
      invokes int $0x80 also spills something important to one of these
      registers.
      
      The current behavior seems to date back to the historical commit
      "[PATCH] x86-64 merge for 2.6.4".  Before that, all regs were
      preserved.  I can't find any explanation of why this change was made.
      
      Update the test_syscall_vdso_32 testcase as well to verify the new
      behavior, and it strengthens the test to make sure that the kernel doesn't
      accidentally permute r8..r15.
      Suggested-by: NDenys Vlasenko <dvlasenk@redhat.com>
      Signed-off-by: NAndy Lutomirski <luto@kernel.org>
      Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
      Cc: Borislav Petkov <bp@alien8.de>
      Cc: Dominik Brodowski <linux@dominikbrodowski.net>
      Link: https://lkml.kernel.org/r/d4c4d9985fbe64f8c9e19291886453914b48caee.1523975710.git.luto@kernel.org
      8bb2610b
    • A
      x86/ipc: Fix x32 version of shmid64_ds and msqid64_ds · 1a512c08
      Arnd Bergmann 提交于
      A bugfix broke the x32 shmid64_ds and msqid64_ds data structure layout
      (as seen from user space)  a few years ago: Originally, __BITS_PER_LONG
      was defined as 64 on x32, so we did not have padding after the 64-bit
      __kernel_time_t fields, After __BITS_PER_LONG got changed to 32,
      applications would observe extra padding.
      
      In other parts of the uapi headers we seem to have a mix of those
      expecting either 32 or 64 on x32 applications, so we can't easily revert
      the path that broke these two structures.
      
      Instead, this patch decouples x32 from the other architectures and moves
      it back into arch specific headers, partially reverting the even older
      commit 73a2d096 ("x86: remove all now-duplicate header files").
      
      It's not clear whether this ever made any difference, since at least
      glibc carries its own (correct) copy of both of these header files,
      so possibly no application has ever observed the definitions here.
      
      Based on a suggestion from H.J. Lu, I tried out the tool from
      https://github.com/hjl-tools/linux-header to find other such
      bugs, which pointed out the same bug in statfs(), which also has
      a separate (correct) copy in glibc.
      
      Fixes: f4b4aae1 ("x86/headers/uapi: Fix __BITS_PER_LONG value for x32 builds")
      Signed-off-by: NArnd Bergmann <arnd@arndb.de>
      Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
      Cc: "H . J . Lu" <hjl.tools@gmail.com>
      Cc: Jeffrey Walton <noloader@gmail.com>
      Cc: stable@vger.kernel.org
      Cc: "H. Peter Anvin" <hpa@zytor.com>
      Link: https://lkml.kernel.org/r/20180424212013.3967461-1-arnd@arndb.de
      1a512c08
    • P
      x86/setup: Do not reserve a crash kernel region if booted on Xen PV · 3db3eb28
      Petr Tesarik 提交于
      Xen PV domains cannot shut down and start a crash kernel. Instead,
      the crashing kernel makes a SCHEDOP_shutdown hypercall with the
      reason code SHUTDOWN_crash, cf. xen_crash_shutdown() machine op in
      arch/x86/xen/enlighten_pv.c.
      
      A crash kernel reservation is merely a waste of RAM in this case. It
      may also confuse users of kexec_load(2) and/or kexec_file_load(2).
      When flags include KEXEC_ON_CRASH or KEXEC_FILE_ON_CRASH,
      respectively, these syscalls return success, which is technically
      correct, but the crash kexec image will never be actually used.
      Signed-off-by: NPetr Tesarik <ptesarik@suse.com>
      Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
      Reviewed-by: NJuergen Gross <jgross@suse.com>
      Cc: Tom Lendacky <thomas.lendacky@amd.com>
      Cc: Dou Liyang <douly.fnst@cn.fujitsu.com>
      Cc: Mikulas Patocka <mpatocka@redhat.com>
      Cc: Andy Lutomirski <luto@kernel.org>
      Cc: "H. Peter Anvin" <hpa@zytor.com>
      Cc: xen-devel@lists.xenproject.org
      Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
      Cc: Borislav Petkov <bp@suse.de>
      Cc: Jean Delvare <jdelvare@suse.de>
      Link: https://lkml.kernel.org/r/20180425120835.23cef60c@ezekiel.suse.cz
      3db3eb28
    • M
      arm64: avoid instrumenting atomic_ll_sc.o · 3789c122
      Mark Rutland 提交于
      Our out-of-line atomics are built with a special calling convention,
      preventing pointless stack spilling, and allowing us to patch call sites
      with ARMv8.1 atomic instructions.
      
      Instrumentation inserted by the compiler may result in calls to
      functions not following this special calling convention, resulting in
      registers being unexpectedly clobbered, and various problems resulting
      from this.
      
      For example, if a kernel is built with KCOV and ARM64_LSE_ATOMICS, the
      compiler inserts calls to __sanitizer_cov_trace_pc in the prologues of
      the atomic functions. This has been observed to result in spurious
      cmpxchg failures, leading to a hang early on in the boot process.
      
      This patch avoids such issues by preventing instrumentation of our
      out-of-line atomics.
      Signed-off-by: NMark Rutland <mark.rutland@arm.com>
      Cc: Catalin Marinas <catalin.marinas@arm.com>
      Cc: Will Deacon <will.deacon@arm.com>
      Signed-off-by: NWill Deacon <will.deacon@arm.com>
      3789c122
    • L
      powerpc/kvm/booke: Fix altivec related build break · b2d7ecbe
      Laurentiu Tudor 提交于
      Add missing "altivec unavailable" interrupt injection helper
      thus fixing the linker error below:
      
        arch/powerpc/kvm/emulate_loadstore.o: In function `kvmppc_check_altivec_disabled':
        arch/powerpc/kvm/emulate_loadstore.c: undefined reference to `.kvmppc_core_queue_vec_unavail'
      
      Fixes: 09f98496 ("KVM: PPC: Book3S: Add MMIO emulation for VMX instructions")
      Signed-off-by: NLaurentiu Tudor <laurentiu.tudor@nxp.com>
      Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
      b2d7ecbe
    • N
      powerpc: Fix deadlock with multiple calls to smp_send_stop · 6029755e
      Nicholas Piggin 提交于
      smp_send_stop can lock up the IPI path for any subsequent calls,
      because the receiving CPUs spin in their handler function. This
      started becoming a problem with the addition of an smp_send_stop
      call in the reboot path, because panics can reboot after doing
      their own smp_send_stop.
      
      The NMI IPI variant was fixed with ac61c115 ("powerpc: Fix
      smp_send_stop NMI IPI handling"), which leaves the smp_call_function
      variant.
      
      This is fixed by having smp_send_stop only ever do the
      smp_call_function once. This is a bit less robust than the NMI IPI
      fix, because any other call to smp_call_function after smp_send_stop
      could deadlock, but that has always been the case, and it was not
      been a problem before.
      
      Fixes: f2748bdf ("powerpc/powernv: Always stop secondaries before reboot/shutdown")
      Reported-by: NAbdul Haleem <abdhalee@linux.vnet.ibm.com>
      Signed-off-by: NNicholas Piggin <npiggin@gmail.com>
      Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
      6029755e
    • J
      x86/cpu/intel: Add missing TLB cpuid values · b837913f
      jacek.tomaka@poczta.fm 提交于
      Make kernel print the correct number of TLB entries on Intel Xeon Phi 7210
      (and others)
      
      Before:
      [ 0.320005] Last level dTLB entries: 4KB 0, 2MB 0, 4MB 0, 1GB 0
      After:
      [ 0.320005] Last level dTLB entries: 4KB 256, 2MB 128, 4MB 128, 1GB 16
      
      The entries do exist in the official Intel SMD but the type column there is
      incorrect (states "Cache" where it should read "TLB"), but the entries for
      the values 0x6B, 0x6C and 0x6D are correctly described as 'Data TLB'.
      Signed-off-by: NJacek Tomaka <jacek.tomaka@poczta.fm>
      Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
      Link: https://lkml.kernel.org/r/20180423161425.24366-1-jacekt@dugeo.com
      b837913f
  14. 26 4月, 2018 1 次提交