1. 04 10月, 2017 1 次提交
    • A
      mm, hugetlb, soft_offline: save compound page order before page migration · 19bfbe22
      Alexandru Moise 提交于
      This fixes a bug in madvise() where if you'd try to soft offline a
      hugepage via madvise(), while walking the address range you'd end up,
      using the wrong page offset due to attempting to get the compound order
      of a former but presently not compound page, due to dissolving the huge
      page (since commit c3114a84: "mm: hugetlb: soft-offline: dissolve
      source hugepage after successful migration").
      
      As a result I ended up with all my free pages except one being offlined.
      
      Link: http://lkml.kernel.org/r/20170912204306.GA12053@gmail.com
      Fixes: c3114a84 ("mm: hugetlb: soft-offline: dissolve source hugepage after successful migration")
      Signed-off-by: NAlexandru Moise <00moses.alexander00@gmail.com>
      Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
      Cc: Michal Hocko <mhocko@suse.com>
      Cc: Andrea Arcangeli <aarcange@redhat.com>
      Cc: Minchan Kim <minchan@kernel.org>
      Cc: Hillf Danton <hdanton@sina.com>
      Cc: Shaohua Li <shli@fb.com>
      Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
      Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
      Cc: Mel Gorman <mgorman@techsingularity.net>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
      Cc: <stable@vger.kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      19bfbe22
  2. 09 9月, 2017 1 次提交
    • J
      mm/device-public-memory: device memory cache coherent with CPU · df6ad698
      Jérôme Glisse 提交于
      Platform with advance system bus (like CAPI or CCIX) allow device memory
      to be accessible from CPU in a cache coherent fashion.  Add a new type of
      ZONE_DEVICE to represent such memory.  The use case are the same as for
      the un-addressable device memory but without all the corners cases.
      
      Link: http://lkml.kernel.org/r/20170817000548.32038-19-jglisse@redhat.comSigned-off-by: NJérôme Glisse <jglisse@redhat.com>
      Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
      Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: Dan Williams <dan.j.williams@intel.com>
      Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
      Cc: Balbir Singh <bsingharora@gmail.com>
      Cc: David Nellans <dnellans@nvidia.com>
      Cc: Evgeny Baskakov <ebaskakov@nvidia.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: John Hubbard <jhubbard@nvidia.com>
      Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
      Cc: Mark Hairgrove <mhairgrove@nvidia.com>
      Cc: Michal Hocko <mhocko@kernel.org>
      Cc: Sherry Cheung <SCheung@nvidia.com>
      Cc: Subhash Gutti <sgutti@nvidia.com>
      Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
      Cc: Bob Liu <liubo95@huawei.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      df6ad698
  3. 07 9月, 2017 1 次提交
    • R
      mm,fork: introduce MADV_WIPEONFORK · d2cd9ede
      Rik van Riel 提交于
      Introduce MADV_WIPEONFORK semantics, which result in a VMA being empty
      in the child process after fork.  This differs from MADV_DONTFORK in one
      important way.
      
      If a child process accesses memory that was MADV_WIPEONFORK, it will get
      zeroes.  The address ranges are still valid, they are just empty.
      
      If a child process accesses memory that was MADV_DONTFORK, it will get a
      segmentation fault, since those address ranges are no longer valid in
      the child after fork.
      
      Since MADV_DONTFORK also seems to be used to allow very large programs
      to fork in systems with strict memory overcommit restrictions, changing
      the semantics of MADV_DONTFORK might break existing programs.
      
      MADV_WIPEONFORK only works on private, anonymous VMAs.
      
      The use case is libraries that store or cache information, and want to
      know that they need to regenerate it in the child process after fork.
      
      Examples of this would be:
       - systemd/pulseaudio API checks (fail after fork) (replacing a getpid
         check, which is too slow without a PID cache)
       - PKCS#11 API reinitialization check (mandated by specification)
       - glibc's upcoming PRNG (reseed after fork)
       - OpenSSL PRNG (reseed after fork)
      
      The security benefits of a forking server having a re-inialized PRNG in
      every child process are pretty obvious.  However, due to libraries
      having all kinds of internal state, and programs getting compiled with
      many different versions of each library, it is unreasonable to expect
      calling programs to re-initialize everything manually after fork.
      
      A further complication is the proliferation of clone flags, programs
      bypassing glibc's functions to call clone directly, and programs calling
      unshare, causing the glibc pthread_atfork hook to not get called.
      
      It would be better to have the kernel take care of this automatically.
      
      The patch also adds MADV_KEEPONFORK, to undo the effects of a prior
      MADV_WIPEONFORK.
      
      This is similar to the OpenBSD minherit syscall with MAP_INHERIT_ZERO:
      
          https://man.openbsd.org/minherit.2
      
      [akpm@linux-foundation.org: numerically order arch/parisc/include/uapi/asm/mman.h #defines]
      Link: http://lkml.kernel.org/r/20170811212829.29186-3-riel@redhat.comSigned-off-by: NRik van Riel <riel@redhat.com>
      Reported-by: NFlorian Weimer <fweimer@redhat.com>
      Reported-by: NColm MacCártaigh <colm@allcosts.net>
      Reviewed-by: NMike Kravetz <mike.kravetz@oracle.com>
      Cc: "H. Peter Anvin" <hpa@zytor.com>
      Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
      Cc: Andy Lutomirski <luto@amacapital.net>
      Cc: Dave Hansen <dave.hansen@intel.com>
      Cc: Ingo Molnar <mingo@kernel.org>
      Cc: Helge Deller <deller@gmx.de>
      Cc: Kees Cook <keescook@chromium.org>
      Cc: Matthew Wilcox <willy@infradead.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Will Drewry <wad@chromium.org>
      Cc: <linux-api@vger.kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      d2cd9ede
  4. 01 9月, 2017 1 次提交
  5. 26 8月, 2017 1 次提交
    • E
      mm/madvise.c: fix freeing of locked page with MADV_FREE · 263630e8
      Eric Biggers 提交于
      If madvise(..., MADV_FREE) split a transparent hugepage, it called
      put_page() before unlock_page().
      
      This was wrong because put_page() can free the page, e.g. if a
      concurrent madvise(..., MADV_DONTNEED) has removed it from the memory
      mapping. put_page() then rightfully complained about freeing a locked
      page.
      
      Fix this by moving the unlock_page() before put_page().
      
      This bug was found by syzkaller, which encountered the following splat:
      
          BUG: Bad page state in process syzkaller412798  pfn:1bd800
          page:ffffea0006f60000 count:0 mapcount:0 mapping:          (null) index:0x20a00
          flags: 0x200000000040019(locked|uptodate|dirty|swapbacked)
          raw: 0200000000040019 0000000000000000 0000000000020a00 00000000ffffffff
          raw: ffffea0006f60020 ffffea0006f60020 0000000000000000 0000000000000000
          page dumped because: PAGE_FLAGS_CHECK_AT_FREE flag(s) set
          bad because of flags: 0x1(locked)
          Modules linked in:
          CPU: 1 PID: 3037 Comm: syzkaller412798 Not tainted 4.13.0-rc5+ #35
          Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
          Call Trace:
           __dump_stack lib/dump_stack.c:16 [inline]
           dump_stack+0x194/0x257 lib/dump_stack.c:52
           bad_page+0x230/0x2b0 mm/page_alloc.c:565
           free_pages_check_bad+0x1f0/0x2e0 mm/page_alloc.c:943
           free_pages_check mm/page_alloc.c:952 [inline]
           free_pages_prepare mm/page_alloc.c:1043 [inline]
           free_pcp_prepare mm/page_alloc.c:1068 [inline]
           free_hot_cold_page+0x8cf/0x12b0 mm/page_alloc.c:2584
           __put_single_page mm/swap.c:79 [inline]
           __put_page+0xfb/0x160 mm/swap.c:113
           put_page include/linux/mm.h:814 [inline]
           madvise_free_pte_range+0x137a/0x1ec0 mm/madvise.c:371
           walk_pmd_range mm/pagewalk.c:50 [inline]
           walk_pud_range mm/pagewalk.c:108 [inline]
           walk_p4d_range mm/pagewalk.c:134 [inline]
           walk_pgd_range mm/pagewalk.c:160 [inline]
           __walk_page_range+0xc3a/0x1450 mm/pagewalk.c:249
           walk_page_range+0x200/0x470 mm/pagewalk.c:326
           madvise_free_page_range.isra.9+0x17d/0x230 mm/madvise.c:444
           madvise_free_single_vma+0x353/0x580 mm/madvise.c:471
           madvise_dontneed_free mm/madvise.c:555 [inline]
           madvise_vma mm/madvise.c:664 [inline]
           SYSC_madvise mm/madvise.c:832 [inline]
           SyS_madvise+0x7d3/0x13c0 mm/madvise.c:760
           entry_SYSCALL_64_fastpath+0x1f/0xbe
      
      Here is a C reproducer:
      
          #define _GNU_SOURCE
          #include <pthread.h>
          #include <sys/mman.h>
          #include <unistd.h>
      
          #define MADV_FREE	8
          #define PAGE_SIZE	4096
      
          static void *mapping;
          static const size_t mapping_size = 0x1000000;
      
          static void *madvise_thrproc(void *arg)
          {
              madvise(mapping, mapping_size, (long)arg);
          }
      
          int main(void)
          {
              pthread_t t[2];
      
              for (;;) {
                  mapping = mmap(NULL, mapping_size, PROT_WRITE,
                                 MAP_POPULATE|MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
      
                  munmap(mapping + mapping_size / 2, PAGE_SIZE);
      
                  pthread_create(&t[0], 0, madvise_thrproc, (void*)MADV_DONTNEED);
                  pthread_create(&t[1], 0, madvise_thrproc, (void*)MADV_FREE);
                  pthread_join(t[0], NULL);
                  pthread_join(t[1], NULL);
                  munmap(mapping, mapping_size);
              }
          }
      
      Note: to see the splat, CONFIG_TRANSPARENT_HUGEPAGE=y and
      CONFIG_DEBUG_VM=y are needed.
      
      Google Bug Id: 64696096
      
      Link: http://lkml.kernel.org/r/20170823205235.132061-1-ebiggers3@gmail.com
      Fixes: 854e9ed0 ("mm: support madvise(MADV_FREE)")
      Signed-off-by: NEric Biggers <ebiggers@google.com>
      Acked-by: NDavid Rientjes <rientjes@google.com>
      Acked-by: NMinchan Kim <minchan@kernel.org>
      Acked-by: NMichal Hocko <mhocko@suse.com>
      Cc: Dmitry Vyukov <dvyukov@google.com>
      Cc: Hugh Dickins <hughd@google.com>
      Cc: Andrea Arcangeli <aarcange@redhat.com>
      Cc: <stable@vger.kernel.org>	[v4.5+]
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      263630e8
  6. 03 8月, 2017 1 次提交
    • M
      mm, mprotect: flush TLB if potentially racing with a parallel reclaim leaving stale TLB entries · 3ea27719
      Mel Gorman 提交于
      Nadav Amit identified a theoritical race between page reclaim and
      mprotect due to TLB flushes being batched outside of the PTL being held.
      
      He described the race as follows:
      
              CPU0                            CPU1
              ----                            ----
                                              user accesses memory using RW PTE
                                              [PTE now cached in TLB]
              try_to_unmap_one()
              ==> ptep_get_and_clear()
              ==> set_tlb_ubc_flush_pending()
                                              mprotect(addr, PROT_READ)
                                              ==> change_pte_range()
                                              ==> [ PTE non-present - no flush ]
      
                                              user writes using cached RW PTE
              ...
      
              try_to_unmap_flush()
      
      The same type of race exists for reads when protecting for PROT_NONE and
      also exists for operations that can leave an old TLB entry behind such
      as munmap, mremap and madvise.
      
      For some operations like mprotect, it's not necessarily a data integrity
      issue but it is a correctness issue as there is a window where an
      mprotect that limits access still allows access.  For munmap, it's
      potentially a data integrity issue although the race is massive as an
      munmap, mmap and return to userspace must all complete between the
      window when reclaim drops the PTL and flushes the TLB.  However, it's
      theoritically possible so handle this issue by flushing the mm if
      reclaim is potentially currently batching TLB flushes.
      
      Other instances where a flush is required for a present pte should be ok
      as either the page lock is held preventing parallel reclaim or a page
      reference count is elevated preventing a parallel free leading to
      corruption.  In the case of page_mkclean there isn't an obvious path
      that userspace could take advantage of without using the operations that
      are guarded by this patch.  Other users such as gup as a race with
      reclaim looks just at PTEs.  huge page variants should be ok as they
      don't race with reclaim.  mincore only looks at PTEs.  userfault also
      should be ok as if a parallel reclaim takes place, it will either fault
      the page back in or read some of the data before the flush occurs
      triggering a fault.
      
      Note that a variant of this patch was acked by Andy Lutomirski but this
      was for the x86 parts on top of his PCID work which didn't make the 4.13
      merge window as expected.  His ack is dropped from this version and
      there will be a follow-on patch on top of PCID that will include his
      ack.
      
      [akpm@linux-foundation.org: tweak comments]
      [akpm@linux-foundation.org: fix spello]
      Link: http://lkml.kernel.org/r/20170717155523.emckq2esjro6hf3z@suse.deReported-by: NNadav Amit <nadav.amit@gmail.com>
      Signed-off-by: NMel Gorman <mgorman@suse.de>
      Cc: Andy Lutomirski <luto@kernel.org>
      Cc: <stable@vger.kernel.org>	[v4.4+]
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      3ea27719
  7. 11 7月, 2017 2 次提交
    • M
      userfaultfd: non-cooperative: add madvise() event for MADV_FREE request · 230ca982
      Mike Rapoport 提交于
      MADV_FREE is identical to MADV_DONTNEED from the point of view of uffd
      monitor.  The monitor has to stop handling #PF events in the range being
      freed.  We are reusing userfaultfd_remove callback along with the logic
      required to re-get and re-validate the VMA which may change or disappear
      because userfaultfd_remove releases mmap_sem.
      
      Link: http://lkml.kernel.org/r/1497876311-18615-1-git-send-email-rppt@linux.vnet.ibm.comSigned-off-by: NMike Rapoport <rppt@linux.vnet.ibm.com>
      Cc: Andrea Arcangeli <aarcange@redhat.com>
      Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
      Cc: Pavel Emelyanov <xemul@virtuozzo.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      230ca982
    • S
      swap: add block io poll in swapin path · 23955622
      Shaohua Li 提交于
      For fast flash disk, async IO could introduce overhead because of
      context switch.  block-mq now supports IO poll, which improves
      performance and latency a lot.  swapin is a good place to use this
      technique, because the task is waiting for the swapin page to continue
      execution.
      
      In my virtual machine, directly read 4k data from a NVMe with iopoll is
      about 60% better than that without poll.  With iopoll support in swapin
      patch, my microbenchmark (a task does random memory write) is about
      10%~25% faster.  CPU utilization increases a lot though, 2x and even 3x
      CPU utilization.  This will depend on disk speed.
      
      While iopoll in swapin isn't intended for all usage cases, it's a win
      for latency sensistive workloads with high speed swap disk.  block layer
      has knob to control poll in runtime.  If poll isn't enabled in block
      layer, there should be no noticeable change in swapin.
      
      I got a chance to run the same test in a NVMe with DRAM as the media.
      In simple fio IO test, blkpoll boosts 50% performance in single thread
      test and ~20% in 8 threads test.  So this is the base line.  In above
      swap test, blkpoll boosts ~27% performance in single thread test.
      blkpoll uses 2x CPU time though.
      
      If we enable hybid polling, the performance gain has very slight drop
      but CPU time is only 50% worse than that without blkpoll.  Also we can
      adjust parameter of hybid poll, with it, the CPU time penality is
      reduced further.  In 8 threads test, blkpoll doesn't help though.  The
      performance is similar to that without blkpoll, but cpu utilization is
      similar too.  There is lock contention in swap path.  The cpu time
      spending on blkpoll isn't high.  So overall, blkpoll swapin isn't worse
      than that without it.
      
      The swapin readahead might read several pages in in the same time and
      form a big IO request.  Since the IO will take longer time, it doesn't
      make sense to do poll, so the patch only does iopoll for single page
      swapin.
      
      [akpm@linux-foundation.org: coding-style fixes]
      Link: http://lkml.kernel.org/r/070c3c3e40b711e7b1390002c991e86a-b5408f0@7511894063d3764ff01ea8111f5a004d7dd700ed078797c204a24e620ddb965cSigned-off-by: NShaohua Li <shli@fb.com>
      Cc: Tim Chen <tim.c.chen@intel.com>
      Cc: Huang Ying <ying.huang@intel.com>
      Cc: Jens Axboe <axboe@fb.com>
      Cc: Hugh Dickins <hughd@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      23955622
  8. 04 5月, 2017 5 次提交
  9. 10 3月, 2017 1 次提交
  10. 25 2月, 2017 4 次提交
  11. 23 2月, 2017 4 次提交
  12. 13 12月, 2016 1 次提交
  13. 24 5月, 2016 1 次提交
    • M
      mm: make mmap_sem for write waits killable for mm syscalls · dc0ef0df
      Michal Hocko 提交于
      This is a follow up work for oom_reaper [1].  As the async OOM killing
      depends on oom_sem for read we would really appreciate if a holder for
      write didn't stood in the way.  This patchset is changing many of
      down_write calls to be killable to help those cases when the writer is
      blocked and waiting for readers to release the lock and so help
      __oom_reap_task to process the oom victim.
      
      Most of the patches are really trivial because the lock is help from a
      shallow syscall paths where we can return EINTR trivially and allow the
      current task to die (note that EINTR will never get to the userspace as
      the task has fatal signal pending).  Others seem to be easy as well as
      the callers are already handling fatal errors and bail and return to
      userspace which should be sufficient to handle the failure gracefully.
      I am not familiar with all those code paths so a deeper review is really
      appreciated.
      
      As this work is touching more areas which are not directly connected I
      have tried to keep the CC list as small as possible and people who I
      believed would be familiar are CCed only to the specific patches (all
      should have received the cover though).
      
      This patchset is based on linux-next and it depends on
      down_write_killable for rw_semaphores which got merged into tip
      locking/rwsem branch and it is merged into this next tree.  I guess it
      would be easiest to route these patches via mmotm because of the
      dependency on the tip tree but if respective maintainers prefer other
      way I have no objections.
      
      I haven't covered all the mmap_write(mm->mmap_sem) instances here
      
        $ git grep "down_write(.*\<mmap_sem\>)" next/master | wc -l
        98
        $ git grep "down_write(.*\<mmap_sem\>)" | wc -l
        62
      
      I have tried to cover those which should be relatively easy to review in
      this series because this alone should be a nice improvement.  Other
      places can be changed on top.
      
      [0] http://lkml.kernel.org/r/1456752417-9626-1-git-send-email-mhocko@kernel.org
      [1] http://lkml.kernel.org/r/1452094975-551-1-git-send-email-mhocko@kernel.org
      [2] http://lkml.kernel.org/r/1456750705-7141-1-git-send-email-mhocko@kernel.org
      
      This patch (of 18):
      
      This is the first step in making mmap_sem write waiters killable.  It
      focuses on the trivial ones which are taking the lock early after
      entering the syscall and they are not changing state before.
      
      Therefore it is very easy to change them to use down_write_killable and
      immediately return with -EINTR.  This will allow the waiter to pass away
      without blocking the mmap_sem which might be required to make a forward
      progress.  E.g.  the oom reaper will need the lock for reading to
      dismantle the OOM victim address space.
      
      The only tricky function in this patch is vm_mmap_pgoff which has many
      call sites via vm_mmap.  To reduce the risk keep vm_mmap with the
      original non-killable semantic for now.
      
      vm_munmap callers do not bother checking the return value so open code
      it into the munmap syscall path for now for simplicity.
      Signed-off-by: NMichal Hocko <mhocko@suse.com>
      Acked-by: NVlastimil Babka <vbabka@suse.cz>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
      Cc: Konstantin Khlebnikov <koct9i@gmail.com>
      Cc: Hugh Dickins <hughd@google.com>
      Cc: Andrea Arcangeli <aarcange@redhat.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Dave Hansen <dave.hansen@linux.intel.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      dc0ef0df
  14. 05 4月, 2016 1 次提交
    • K
      mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros · 09cbfeaf
      Kirill A. Shutemov 提交于
      PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time
      ago with promise that one day it will be possible to implement page
      cache with bigger chunks than PAGE_SIZE.
      
      This promise never materialized.  And unlikely will.
      
      We have many places where PAGE_CACHE_SIZE assumed to be equal to
      PAGE_SIZE.  And it's constant source of confusion on whether
      PAGE_CACHE_* or PAGE_* constant should be used in a particular case,
      especially on the border between fs and mm.
      
      Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much
      breakage to be doable.
      
      Let's stop pretending that pages in page cache are special.  They are
      not.
      
      The changes are pretty straight-forward:
      
       - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
      
       - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
      
       - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN};
      
       - page_cache_get() -> get_page();
      
       - page_cache_release() -> put_page();
      
      This patch contains automated changes generated with coccinelle using
      script below.  For some reason, coccinelle doesn't patch header files.
      I've called spatch for them manually.
      
      The only adjustment after coccinelle is revert of changes to
      PAGE_CAHCE_ALIGN definition: we are going to drop it later.
      
      There are few places in the code where coccinelle didn't reach.  I'll
      fix them manually in a separate patch.  Comments and documentation also
      will be addressed with the separate patch.
      
      virtual patch
      
      @@
      expression E;
      @@
      - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT)
      + E
      
      @@
      expression E;
      @@
      - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT)
      + E
      
      @@
      @@
      - PAGE_CACHE_SHIFT
      + PAGE_SHIFT
      
      @@
      @@
      - PAGE_CACHE_SIZE
      + PAGE_SIZE
      
      @@
      @@
      - PAGE_CACHE_MASK
      + PAGE_MASK
      
      @@
      expression E;
      @@
      - PAGE_CACHE_ALIGN(E)
      + PAGE_ALIGN(E)
      
      @@
      expression E;
      @@
      - page_cache_get(E)
      + get_page(E)
      
      @@
      expression E;
      @@
      - page_cache_release(E)
      + put_page(E)
      Signed-off-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com>
      Acked-by: NMichal Hocko <mhocko@suse.com>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      09cbfeaf
  15. 16 3月, 2016 2 次提交
  16. 16 1月, 2016 4 次提交
    • M
      mm/huge_memory.c: don't split THP page when MADV_FREE syscall is called · b8d3c4c3
      Minchan Kim 提交于
      We don't need to split THP page when MADV_FREE syscall is called if
      [start, len] is aligned with THP size.  The split could be done when VM
      decide to free it in reclaim path if memory pressure is heavy.  With
      that, we could avoid unnecessary THP split.
      
      For the feature, this patch changes pte dirtness marking logic of THP.
      Now, it marks every ptes of pages dirty unconditionally in splitting,
      which makes MADV_FREE void.  So, instead, this patch propagates pmd
      dirtiness to all pages via PG_dirty and restores pte dirtiness from
      PG_dirty.  With this, if pmd is clean(ie, MADV_FREEed) when split
      happens(e,g, shrink_page_list), all of pages are clean too so we could
      discard them.
      Signed-off-by: NMinchan Kim <minchan@kernel.org>
      Cc: Kirill A. Shutemov <kirill@shutemov.name>
      Cc: Hugh Dickins <hughd@google.com>
      Cc: Andrea Arcangeli <aarcange@redhat.com>
      Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
      Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
      Cc: Shaohua Li <shli@kernel.org>
      Cc: <yalin.wang2010@gmail.com>
      Cc: Andy Lutomirski <luto@amacapital.net>
      Cc: Arnd Bergmann <arnd@arndb.de>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: Catalin Marinas <catalin.marinas@arm.com>
      Cc: Chen Gang <gang.chen.5i5j@gmail.com>
      Cc: Chris Zankel <chris@zankel.net>
      Cc: Daniel Micay <danielmicay@gmail.com>
      Cc: Darrick J. Wong <darrick.wong@oracle.com>
      Cc: David S. Miller <davem@davemloft.net>
      Cc: Helge Deller <deller@gmx.de>
      Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
      Cc: Jason Evans <je@fb.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
      Cc: Matt Turner <mattst88@gmail.com>
      Cc: Max Filippov <jcmvbkbc@gmail.com>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: Michael Kerrisk <mtk.manpages@gmail.com>
      Cc: Michal Hocko <mhocko@suse.com>
      Cc: Mika Penttil <mika.penttila@nextfour.com>
      Cc: Ralf Baechle <ralf@linux-mips.org>
      Cc: Richard Henderson <rth@twiddle.net>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Roland Dreier <roland@kernel.org>
      Cc: Russell King <rmk@arm.linux.org.uk>
      Cc: Shaohua Li <shli@kernel.org>
      Cc: Will Deacon <will.deacon@arm.com>
      Cc: Wu Fengguang <fengguang.wu@intel.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      b8d3c4c3
    • M
      mm: move lazily freed pages to inactive list · 10853a03
      Minchan Kim 提交于
      MADV_FREE is a hint that it's okay to discard pages if there is memory
      pressure and we use reclaimers(ie, kswapd and direct reclaim) to free
      them so there is no value keeping them in the active anonymous LRU so
      this patch moves them to inactive LRU list's head.
      
      This means that MADV_FREE-ed pages which were living on the inactive
      list are reclaimed first because they are more likely to be cold rather
      than recently active pages.
      
      An arguable issue for the approach would be whether we should put the
      page to the head or tail of the inactive list.  I chose head because the
      kernel cannot make sure it's really cold or warm for every MADV_FREE
      usecase but at least we know it's not *hot*, so landing of inactive head
      would be a comprimise for various usecases.
      
      This fixes suboptimal behavior of MADV_FREE when pages living on the
      active list will sit there for a long time even under memory pressure
      while the inactive list is reclaimed heavily.  This basically breaks the
      whole purpose of using MADV_FREE to help the system to free memory which
      is might not be used.
      Signed-off-by: NMinchan Kim <minchan@kernel.org>
      Acked-by: NHugh Dickins <hughd@google.com>
      Acked-by: NMichal Hocko <mhocko@suse.cz>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Shaohua Li <shli@kernel.org>
      Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
      Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
      Cc: <yalin.wang2010@gmail.com>
      Cc: Andrea Arcangeli <aarcange@redhat.com>
      Cc: Andy Lutomirski <luto@amacapital.net>
      Cc: Arnd Bergmann <arnd@arndb.de>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: Catalin Marinas <catalin.marinas@arm.com>
      Cc: Chen Gang <gang.chen.5i5j@gmail.com>
      Cc: Chris Zankel <chris@zankel.net>
      Cc: Daniel Micay <danielmicay@gmail.com>
      Cc: Darrick J. Wong <darrick.wong@oracle.com>
      Cc: David S. Miller <davem@davemloft.net>
      Cc: Helge Deller <deller@gmx.de>
      Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
      Cc: Jason Evans <je@fb.com>
      Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
      Cc: Kirill A. Shutemov <kirill@shutemov.name>
      Cc: Matt Turner <mattst88@gmail.com>
      Cc: Max Filippov <jcmvbkbc@gmail.com>
      Cc: Michael Kerrisk <mtk.manpages@gmail.com>
      Cc: Mika Penttil <mika.penttila@nextfour.com>
      Cc: Ralf Baechle <ralf@linux-mips.org>
      Cc: Richard Henderson <rth@twiddle.net>
      Cc: Roland Dreier <roland@kernel.org>
      Cc: Russell King <rmk@arm.linux.org.uk>
      Cc: Will Deacon <will.deacon@arm.com>
      Cc: Wu Fengguang <fengguang.wu@intel.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      10853a03
    • M
      mm/madvise.c: free swp_entry in madvise_free · 64b42bc1
      Minchan Kim 提交于
      When I test below piece of code with 12 processes(ie, 512M * 12 = 6G
      consume) on my (3G ram + 12 cpu + 8G swap, the madvise_free is
      siginficat slower (ie, 2x times) than madvise_dontneed.
      
           loop = 5;
           mmap(512M);
           while (loop--) {
                   memset(512M);
                   madvise(MADV_FREE or MADV_DONTNEED);
           }
      
      The reason is lots of swapin.
      
      1) dontneed: 1,612 swapin
      2) madvfree: 879,585 swapin
      
      If we find hinted pages were already swapped out when syscall is called,
      it's pointless to keep the swapped-out pages in pte.  Instead, let's
      free the cold page because swapin is more expensive than (alloc page +
      zeroing).
      
      With this patch, it reduced swapin from 879,585 to 1,878 so elapsed time
      
      1) dontneed: 6.10user 233.50system 0:50.44elapsed
      2) madvfree: 6.03user 401.17system 1:30.67elapsed
      2) madvfree + below patch: 6.70user 339.14system 1:04.45elapsed
      Signed-off-by: NMinchan Kim <minchan@kernel.org>
      Acked-by: NMichal Hocko <mhocko@suse.com>
      Acked-by: NHugh Dickins <hughd@google.com>
      Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
      Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
      Cc: Shaohua Li <shli@kernel.org>
      Cc: <yalin.wang2010@gmail.com>
      Cc: Andrea Arcangeli <aarcange@redhat.com>
      Cc: Andy Lutomirski <luto@amacapital.net>
      Cc: Arnd Bergmann <arnd@arndb.de>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: Catalin Marinas <catalin.marinas@arm.com>
      Cc: Chen Gang <gang.chen.5i5j@gmail.com>
      Cc: Chris Zankel <chris@zankel.net>
      Cc: Daniel Micay <danielmicay@gmail.com>
      Cc: Darrick J. Wong <darrick.wong@oracle.com>
      Cc: David S. Miller <davem@davemloft.net>
      Cc: Helge Deller <deller@gmx.de>
      Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
      Cc: Jason Evans <je@fb.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
      Cc: Kirill A. Shutemov <kirill@shutemov.name>
      Cc: Matt Turner <mattst88@gmail.com>
      Cc: Max Filippov <jcmvbkbc@gmail.com>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: Michael Kerrisk <mtk.manpages@gmail.com>
      Cc: Mika Penttil <mika.penttila@nextfour.com>
      Cc: Ralf Baechle <ralf@linux-mips.org>
      Cc: Richard Henderson <rth@twiddle.net>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Roland Dreier <roland@kernel.org>
      Cc: Russell King <rmk@arm.linux.org.uk>
      Cc: Shaohua Li <shli@kernel.org>
      Cc: Will Deacon <will.deacon@arm.com>
      Cc: Wu Fengguang <fengguang.wu@intel.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      64b42bc1
    • M
      mm: support madvise(MADV_FREE) · 854e9ed0
      Minchan Kim 提交于
      Linux doesn't have an ability to free pages lazy while other OS already
      have been supported that named by madvise(MADV_FREE).
      
      The gain is clear that kernel can discard freed pages rather than
      swapping out or OOM if memory pressure happens.
      
      Without memory pressure, freed pages would be reused by userspace
      without another additional overhead(ex, page fault + allocation +
      zeroing).
      
      Jason Evans said:
      
      : Facebook has been using MAP_UNINITIALIZED
      : (https://lkml.org/lkml/2012/1/18/308) in some of its applications for
      : several years, but there are operational costs to maintaining this
      : out-of-tree in our kernel and in jemalloc, and we are anxious to retire it
      : in favor of MADV_FREE.  When we first enabled MAP_UNINITIALIZED it
      : increased throughput for much of our workload by ~5%, and although the
      : benefit has decreased using newer hardware and kernels, there is still
      : enough benefit that we cannot reasonably retire it without a replacement.
      :
      : Aside from Facebook operations, there are numerous broadly used
      : applications that would benefit from MADV_FREE.  The ones that immediately
      : come to mind are redis, varnish, and MariaDB.  I don't have much insight
      : into Android internals and development process, but I would hope to see
      : MADV_FREE support eventually end up there as well to benefit applications
      : linked with the integrated jemalloc.
      :
      : jemalloc will use MADV_FREE once it becomes available in the Linux kernel.
      : In fact, jemalloc already uses MADV_FREE or equivalent everywhere it's
      : available: *BSD, OS X, Windows, and Solaris -- every platform except Linux
      : (and AIX, but I'm not sure it even compiles on AIX).  The lack of
      : MADV_FREE on Linux forced me down a long series of increasingly
      : sophisticated heuristics for madvise() volume reduction, and even so this
      : remains a common performance issue for people using jemalloc on Linux.
      : Please integrate MADV_FREE; many people will benefit substantially.
      
      How it works:
      
      When madvise syscall is called, VM clears dirty bit of ptes of the
      range.  If memory pressure happens, VM checks dirty bit of page table
      and if it found still "clean", it means it's a "lazyfree pages" so VM
      could discard the page instead of swapping out.  Once there was store
      operation for the page before VM peek a page to reclaim, dirty bit is
      set so VM can swap out the page instead of discarding.
      
      One thing we should notice is that basically, MADV_FREE relies on dirty
      bit in page table entry to decide whether VM allows to discard the page
      or not.  IOW, if page table entry includes marked dirty bit, VM
      shouldn't discard the page.
      
      However, as a example, if swap-in by read fault happens, page table
      entry doesn't have dirty bit so MADV_FREE could discard the page
      wrongly.
      
      For avoiding the problem, MADV_FREE did more checks with PageDirty and
      PageSwapCache.  It worked out because swapped-in page lives on swap
      cache and since it is evicted from the swap cache, the page has PG_dirty
      flag.  So both page flags check effectively prevent wrong discarding by
      MADV_FREE.
      
      However, a problem in above logic is that swapped-in page has PG_dirty
      still after they are removed from swap cache so VM cannot consider the
      page as freeable any more even if madvise_free is called in future.
      
      Look at below example for detail.
      
          ptr = malloc();
          memset(ptr);
          ..
          ..
          .. heavy memory pressure so all of pages are swapped out
          ..
          ..
          var = *ptr; -> a page swapped-in and could be removed from
                         swapcache. Then, page table doesn't mark
                         dirty bit and page descriptor includes PG_dirty
          ..
          ..
          madvise_free(ptr); -> It doesn't clear PG_dirty of the page.
          ..
          ..
          ..
          .. heavy memory pressure again.
          .. In this time, VM cannot discard the page because the page
          .. has *PG_dirty*
      
      To solve the problem, this patch clears PG_dirty if only the page is
      owned exclusively by current process when madvise is called because
      PG_dirty represents ptes's dirtiness in several processes so we could
      clear it only if we own it exclusively.
      
      Firstly, heavy users would be general allocators(ex, jemalloc, tcmalloc
      and hope glibc supports it) and jemalloc/tcmalloc already have supported
      the feature for other OS(ex, FreeBSD)
      
        barrios@blaptop:~/benchmark/ebizzy$ lscpu
        Architecture:          x86_64
        CPU op-mode(s):        32-bit, 64-bit
        Byte Order:            Little Endian
        CPU(s):                12
        On-line CPU(s) list:   0-11
        Thread(s) per core:    1
        Core(s) per socket:    1
        Socket(s):             12
        NUMA node(s):          1
        Vendor ID:             GenuineIntel
        CPU family:            6
        Model:                 2
        Stepping:              3
        CPU MHz:               3200.185
        BogoMIPS:              6400.53
        Virtualization:        VT-x
        Hypervisor vendor:     KVM
        Virtualization type:   full
        L1d cache:             32K
        L1i cache:             32K
        L2 cache:              4096K
        NUMA node0 CPU(s):     0-11
        ebizzy benchmark(./ebizzy -S 10 -n 512)
      
        Higher avg is better.
      
         vanilla-jemalloc             MADV_free-jemalloc
      
        1 thread
        records: 10                   records: 10
        avg:   2961.90                avg:  12069.70
        std:     71.96(2.43%)         std:    186.68(1.55%)
        max:   3070.00                max:  12385.00
        min:   2796.00                min:  11746.00
      
        2 thread
        records: 10                   records: 10
        avg:   5020.00                avg:  17827.00
        std:    264.87(5.28%)         std:    358.52(2.01%)
        max:   5244.00                max:  18760.00
        min:   4251.00                min:  17382.00
      
        4 thread
        records: 10                   records: 10
        avg:   8988.80                avg:  27930.80
        std:   1175.33(13.08%)        std:   3317.33(11.88%)
        max:   9508.00                max:  30879.00
        min:   5477.00                min:  21024.00
      
        8 thread
        records: 10                   records: 10
        avg:  13036.50                avg:  33739.40
        std:    170.67(1.31%)         std:   5146.22(15.25%)
        max:  13371.00                max:  40572.00
        min:  12785.00                min:  24088.00
      
        16 thread
        records: 10                   records: 10
        avg:  11092.40                avg:  31424.20
        std:    710.60(6.41%)         std:   3763.89(11.98%)
        max:  12446.00                max:  36635.00
        min:   9949.00                min:  25669.00
      
        32 thread
        records: 10                   records: 10
        avg:  11067.00                avg:  34495.80
        std:    971.06(8.77%)         std:   2721.36(7.89%)
        max:  12010.00                max:  38598.00
        min:   9002.00                min:  30636.00
      
      In summary, MADV_FREE is about much faster than MADV_DONTNEED.
      
      This patch (of 12):
      
      Add core MADV_FREE implementation.
      
      [akpm@linux-foundation.org: small cleanups]
      Signed-off-by: NMinchan Kim <minchan@kernel.org>
      Acked-by: NMichal Hocko <mhocko@suse.com>
      Acked-by: NHugh Dickins <hughd@google.com>
      Cc: Mika Penttil <mika.penttila@nextfour.com>
      Cc: Michael Kerrisk <mtk.manpages@gmail.com>
      Cc: Johannes Weiner <hannes@cmpxchg.org>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
      Cc: Jason Evans <je@fb.com>
      Cc: Daniel Micay <danielmicay@gmail.com>
      Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
      Cc: Shaohua Li <shli@kernel.org>
      Cc: <yalin.wang2010@gmail.com>
      Cc: Andy Lutomirski <luto@amacapital.net>
      Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
      Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
      Cc: "Shaohua Li" <shli@kernel.org>
      Cc: Andrea Arcangeli <aarcange@redhat.com>
      Cc: Arnd Bergmann <arnd@arndb.de>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: Catalin Marinas <catalin.marinas@arm.com>
      Cc: Chen Gang <gang.chen.5i5j@gmail.com>
      Cc: Chris Zankel <chris@zankel.net>
      Cc: Darrick J. Wong <darrick.wong@oracle.com>
      Cc: David S. Miller <davem@davemloft.net>
      Cc: Helge Deller <deller@gmx.de>
      Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
      Cc: Matt Turner <mattst88@gmail.com>
      Cc: Max Filippov <jcmvbkbc@gmail.com>
      Cc: Ralf Baechle <ralf@linux-mips.org>
      Cc: Richard Henderson <rth@twiddle.net>
      Cc: Roland Dreier <roland@kernel.org>
      Cc: Russell King <rmk@arm.linux.org.uk>
      Cc: Shaohua Li <shli@kernel.org>
      Cc: Will Deacon <will.deacon@arm.com>
      Cc: Wu Fengguang <fengguang.wu@intel.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      854e9ed0
  17. 09 9月, 2015 1 次提交
  18. 05 9月, 2015 2 次提交
  19. 02 6月, 2015 1 次提交
    • T
      writeback: separate out include/linux/backing-dev-defs.h · 66114cad
      Tejun Heo 提交于
      With the planned cgroup writeback support, backing-dev related
      declarations will be more widely used across block and cgroup;
      unfortunately, including backing-dev.h from include/linux/blkdev.h
      makes cyclic include dependency quite likely.
      
      This patch separates out backing-dev-defs.h which only has the
      essential definitions and updates blkdev.h to include it.  c files
      which need access to more backing-dev details now include
      backing-dev.h directly.  This takes backing-dev.h off the common
      include dependency chain making it a lot easier to use it across block
      and cgroup.
      
      v2: fs/fat build failure fixed.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Reviewed-by: NJan Kara <jack@suse.cz>
      Cc: Jens Axboe <axboe@kernel.dk>
      Signed-off-by: NJens Axboe <axboe@fb.com>
      66114cad
  20. 17 2月, 2015 1 次提交
    • M
      vfs: remove get_xip_mem · e748dcd0
      Matthew Wilcox 提交于
      All callers of get_xip_mem() are now gone.  Remove checks for it,
      initialisers of it, documentation of it and the only implementation of it.
       Also remove mm/filemap_xip.c as it is now empty.  Also remove
      documentation of the long-gone get_xip_page().
      Signed-off-by: NMatthew Wilcox <matthew.r.wilcox@intel.com>
      Cc: Andreas Dilger <andreas.dilger@intel.com>
      Cc: Boaz Harrosh <boaz@plexistor.com>
      Cc: Christoph Hellwig <hch@lst.de>
      Cc: Dave Chinner <david@fromorbit.com>
      Cc: Jan Kara <jack@suse.cz>
      Cc: Jens Axboe <axboe@kernel.dk>
      Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
      Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
      Cc: Randy Dunlap <rdunlap@infradead.org>
      Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
      Cc: Theodore Ts'o <tytso@mit.edu>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      e748dcd0
  21. 11 2月, 2015 2 次提交
  22. 21 1月, 2015 1 次提交
  23. 08 11月, 2014 1 次提交