1. 27 9月, 2018 1 次提交
    • A
      jump_label: Annotate entries that operate on __init code earlier · 19483677
      Ard Biesheuvel 提交于
      Jump table entries are mostly read-only, with the exception of the
      init and module loader code that defuses entries that point into init
      code when the code being referred to is freed.
      
      For robustness, it would be better to move these entries into the
      ro_after_init section, but clearing the 'code' member of each jump
      table entry referring to init code at module load time races with the
      module_enable_ro() call that remaps the ro_after_init section read
      only, so we'd like to do it earlier.
      
      So given that whether such an entry refers to init code can be decided
      much earlier, we can pull this check forward. Since we may still need
      the code entry at this point, let's switch to setting a low bit in the
      'key' member just like we do to annotate the default state of a jump
      table entry.
      Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org>
      Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
      Reviewed-by: NKees Cook <keescook@chromium.org>
      Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      Cc: linux-arm-kernel@lists.infradead.org
      Cc: linux-s390@vger.kernel.org
      Cc: Arnd Bergmann <arnd@arndb.de>
      Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
      Cc: Will Deacon <will.deacon@arm.com>
      Cc: Catalin Marinas <catalin.marinas@arm.com>
      Cc: Steven Rostedt <rostedt@goodmis.org>
      Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
      Cc: Jessica Yu <jeyu@kernel.org>
      Link: https://lkml.kernel.org/r/20180919065144.25010-8-ard.biesheuvel@linaro.org
      19483677
  2. 24 8月, 2018 1 次提交
  3. 23 8月, 2018 5 次提交
  4. 18 8月, 2018 1 次提交
  5. 13 8月, 2018 1 次提交
    • L
      init: rename and re-order boot_cpu_state_init() · b5b1404d
      Linus Torvalds 提交于
      This is purely a preparatory patch for upcoming changes during the 4.19
      merge window.
      
      We have a function called "boot_cpu_state_init()" that isn't really
      about the bootup cpu state: that is done much earlier by the similarly
      named "boot_cpu_init()" (note lack of "state" in name).
      
      This function initializes some hotplug CPU state, and needs to run after
      the percpu data has been properly initialized.  It even has a comment to
      that effect.
      
      Except it _doesn't_ actually run after the percpu data has been properly
      initialized.  On x86 it happens to do that, but on at least arm and
      arm64, the percpu base pointers are initialized by the arch-specific
      'smp_prepare_boot_cpu()' hook, which ran _after_ boot_cpu_state_init().
      
      This had some unexpected results, and in particular we have a patch
      pending for the merge window that did the obvious cleanup of using
      'this_cpu_write()' in the cpu hotplug init code:
      
        -       per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
        +       this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
      
      which is obviously the right thing to do.  Except because of the
      ordering issue, it actually failed miserably and unexpectedly on arm64.
      
      So this just fixes the ordering, and changes the name of the function to
      be 'boot_cpu_hotplug_init()' to make it obvious that it's about cpu
      hotplug state, because the core CPU state was supposed to have already
      been done earlier.
      
      Marked for stable, since the (not yet merged) patch that will show this
      problem is marked for stable.
      Reported-by: NVlastimil Babka <vbabka@suse.cz>
      Reported-by: NMian Yousaf Kaukab <yousaf.kaukab@suse.com>
      Suggested-by: NCatalin Marinas <catalin.marinas@arm.com>
      Acked-by: NThomas Gleixner <tglx@linutronix.de>
      Cc: Will Deacon <will.deacon@arm.com>
      Cc: stable@kernel.org
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      b5b1404d
  6. 11 8月, 2018 1 次提交
  7. 10 8月, 2018 1 次提交
    • E
      signal: Don't restart fork when signals come in. · c3ad2c3b
      Eric W. Biederman 提交于
      Wen Yang <wen.yang99@zte.com.cn> and majiang <ma.jiang@zte.com.cn>
      report that a periodic signal received during fork can cause fork to
      continually restart preventing an application from making progress.
      
      The code was being overly pessimistic.  Fork needs to guarantee that a
      signal sent to multiple processes is logically delivered before the
      fork and just to the forking process or logically delivered after the
      fork to both the forking process and it's newly spawned child.  For
      signals like periodic timers that are always delivered to a single
      process fork can safely complete and let them appear to logically
      delivered after the fork().
      
      While examining this issue I also discovered that fork today will miss
      signals delivered to multiple processes during the fork and handled by
      another thread.  Similarly the current code will also miss blocked
      signals that are delivered to multiple process, as those signals will
      not appear pending during fork.
      
      Add a list of each thread that is currently forking, and keep on that
      list a signal set that records all of the signals sent to multiple
      processes.  When fork completes initialize the new processes
      shared_pending signal set with it.  The calculate_sigpending function
      will see those signals and set TIF_SIGPENDING causing the new task to
      take the slow path to userspace to handle those signals.  Making it
      appear as if those signals were received immediately after the fork.
      
      It is not possible to send real time signals to multiple processes and
      exceptions don't go to multiple processes, which means that that are
      no signals sent to multiple processes that require siginfo.  This
      means it is safe to not bother collecting siginfo on signals sent
      during fork.
      
      The sigaction of a child of fork is initially the same as the
      sigaction of the parent process.  So a signal the parent ignores the
      child will also initially ignore.  Therefore it is safe to ignore
      signals sent to multiple processes and ignored by the forking process.
      
      Signals sent to only a single process or only a single thread and delivered
      during fork are treated as if they are received after the fork, and generally
      not dealt with.  They won't cause any problems.
      
      V2: Added removal from the multiprocess list on failure.
      V3: Use -ERESTARTNOINTR directly
      V4: - Don't queue both SIGCONT and SIGSTOP
          - Initialize signal_struct.multiprocess in init_task
          - Move setting of shared_pending to before the new task
            is visible to signals.  This prevents signals from comming
            in before shared_pending.signal is set to delayed.signal
            and being lost.
      V5: - rework list add and delete to account for idle threads
      v6: - Use sigdelsetmask when removing stop signals
      
      Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=200447
      Reported-by: Wen Yang <wen.yang99@zte.com.cn> and
      Reported-by: Nmajiang <ma.jiang@zte.com.cn>
      Fixes: 4a2c7a78 ("[PATCH] make fork() atomic wrt pgrp/session signals")
      Signed-off-by: N"Eric W. Biederman" <ebiederm@xmission.com>
      c3ad2c3b
  8. 09 8月, 2018 1 次提交
  9. 02 8月, 2018 3 次提交
  10. 31 7月, 2018 1 次提交
    • J
      tracing: Centralize preemptirq tracepoints and unify their usage · c3bc8fd6
      Joel Fernandes (Google) 提交于
      This patch detaches the preemptirq tracepoints from the tracers and
      keeps it separate.
      
      Advantages:
      * Lockdep and irqsoff event can now run in parallel since they no longer
      have their own calls.
      
      * This unifies the usecase of adding hooks to an irqsoff and irqson
      event, and a preemptoff and preempton event.
        3 users of the events exist:
        - Lockdep
        - irqsoff and preemptoff tracers
        - irqs and preempt trace events
      
      The unification cleans up several ifdefs and makes the code in preempt
      tracer and irqsoff tracers simpler. It gets rid of all the horrific
      ifdeferry around PROVE_LOCKING and makes configuration of the different
      users of the tracepoints more easy and understandable. It also gets rid
      of the time_* function calls from the lockdep hooks used to call into
      the preemptirq tracer which is not needed anymore. The negative delta in
      lines of code in this patch is quite large too.
      
      In the patch we introduce a new CONFIG option PREEMPTIRQ_TRACEPOINTS
      as a single point for registering probes onto the tracepoints. With
      this,
      the web of config options for preempt/irq toggle tracepoints and its
      users becomes:
      
       PREEMPT_TRACER   PREEMPTIRQ_EVENTS  IRQSOFF_TRACER PROVE_LOCKING
             |                 |     \         |           |
             \    (selects)    /      \        \ (selects) /
            TRACE_PREEMPT_TOGGLE       ----> TRACE_IRQFLAGS
                            \                  /
                             \ (depends on)   /
                           PREEMPTIRQ_TRACEPOINTS
      
      Other than the performance tests mentioned in the previous patch, I also
      ran the locking API test suite. I verified that all tests cases are
      passing.
      
      I also injected issues by not registering lockdep probes onto the
      tracepoints and I see failures to confirm that the probes are indeed
      working.
      
      This series + lockdep probes not registered (just to inject errors):
      [    0.000000]      hard-irqs-on + irq-safe-A/21:  ok  |  ok  |  ok  |
      [    0.000000]      soft-irqs-on + irq-safe-A/21:  ok  |  ok  |  ok  |
      [    0.000000]        sirq-safe-A => hirqs-on/12:FAILED|FAILED|  ok  |
      [    0.000000]        sirq-safe-A => hirqs-on/21:FAILED|FAILED|  ok  |
      [    0.000000]          hard-safe-A + irqs-on/12:FAILED|FAILED|  ok  |
      [    0.000000]          soft-safe-A + irqs-on/12:FAILED|FAILED|  ok  |
      [    0.000000]          hard-safe-A + irqs-on/21:FAILED|FAILED|  ok  |
      [    0.000000]          soft-safe-A + irqs-on/21:FAILED|FAILED|  ok  |
      [    0.000000]     hard-safe-A + unsafe-B #1/123:  ok  |  ok  |  ok  |
      [    0.000000]     soft-safe-A + unsafe-B #1/123:  ok  |  ok  |  ok  |
      
      With this series + lockdep probes registered, all locking tests pass:
      
      [    0.000000]      hard-irqs-on + irq-safe-A/21:  ok  |  ok  |  ok  |
      [    0.000000]      soft-irqs-on + irq-safe-A/21:  ok  |  ok  |  ok  |
      [    0.000000]        sirq-safe-A => hirqs-on/12:  ok  |  ok  |  ok  |
      [    0.000000]        sirq-safe-A => hirqs-on/21:  ok  |  ok  |  ok  |
      [    0.000000]          hard-safe-A + irqs-on/12:  ok  |  ok  |  ok  |
      [    0.000000]          soft-safe-A + irqs-on/12:  ok  |  ok  |  ok  |
      [    0.000000]          hard-safe-A + irqs-on/21:  ok  |  ok  |  ok  |
      [    0.000000]          soft-safe-A + irqs-on/21:  ok  |  ok  |  ok  |
      [    0.000000]     hard-safe-A + unsafe-B #1/123:  ok  |  ok  |  ok  |
      [    0.000000]     soft-safe-A + unsafe-B #1/123:  ok  |  ok  |  ok  |
      
      Link: http://lkml.kernel.org/r/20180730222423.196630-4-joel@joelfernandes.orgAcked-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      Reviewed-by: NNamhyung Kim <namhyung@kernel.org>
      Signed-off-by: NJoel Fernandes (Google) <joel@joelfernandes.org>
      Signed-off-by: NSteven Rostedt (VMware) <rostedt@goodmis.org>
      c3bc8fd6
  11. 21 7月, 2018 3 次提交
    • E
      pid: Implement PIDTYPE_TGID · 6883f81a
      Eric W. Biederman 提交于
      Everywhere except in the pid array we distinguish between a tasks pid and
      a tasks tgid (thread group id).  Even in the enumeration we want that
      distinction sometimes so we have added __PIDTYPE_TGID.  With leader_pid
      we almost have an implementation of PIDTYPE_TGID in struct signal_struct.
      
      Add PIDTYPE_TGID as a first class member of the pid_type enumeration and
      into the pids array.  Then remove the __PIDTYPE_TGID special case and the
      leader_pid in signal_struct.
      
      The net size increase is just an extra pointer added to struct pid and
      an extra pair of pointers of an hlist_node added to task_struct.
      
      The effect on code maintenance is the removal of a number of special
      cases today and the potential to remove many more special cases as
      PIDTYPE_TGID gets used to it's fullest.  The long term potential
      is allowing zombie thread group leaders to exit, which will remove
      a lot more special cases in the code.
      Signed-off-by: N"Eric W. Biederman" <ebiederm@xmission.com>
      6883f81a
    • E
      pids: Move the pgrp and session pid pointers from task_struct to signal_struct · 2c470475
      Eric W. Biederman 提交于
      To access these fields the code always has to go to group leader so
      going to signal struct is no loss and is actually a fundamental simplification.
      
      This saves a little bit of memory by only allocating the pid pointer array
      once instead of once for every thread, and even better this removes a
      few potential races caused by the fact that group_leader can be changed
      by de_thread, while signal_struct can not.
      Signed-off-by: N"Eric W. Biederman" <ebiederm@xmission.com>
      2c470475
    • E
      pids: Initialize leader_pid in init_task · 2896b0f0
      Eric W. Biederman 提交于
      This is cheap and no cost so we might as well.
      Signed-off-by: N"Eric W. Biederman" <ebiederm@xmission.com>
      2896b0f0
  12. 20 7月, 2018 3 次提交
    • J
      x86/mm/pti: Introduce pti_finalize() · b976690f
      Joerg Roedel 提交于
      Introduce a new function to finalize the kernel mappings for the userspace
      page-table after all ro/nx protections have been applied to the kernel
      mappings.
      
      Also move the call to pti_clone_kernel_text() to that function so that it
      will run on 32 bit kernels too.
      Signed-off-by: NJoerg Roedel <jroedel@suse.de>
      Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
      Tested-by: NPavel Machek <pavel@ucw.cz>
      Cc: "H . Peter Anvin" <hpa@zytor.com>
      Cc: linux-mm@kvack.org
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Andy Lutomirski <luto@kernel.org>
      Cc: Dave Hansen <dave.hansen@intel.com>
      Cc: Josh Poimboeuf <jpoimboe@redhat.com>
      Cc: Juergen Gross <jgross@suse.com>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Borislav Petkov <bp@alien8.de>
      Cc: Jiri Kosina <jkosina@suse.cz>
      Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
      Cc: Brian Gerst <brgerst@gmail.com>
      Cc: David Laight <David.Laight@aculab.com>
      Cc: Denys Vlasenko <dvlasenk@redhat.com>
      Cc: Eduardo Valentin <eduval@amazon.com>
      Cc: Greg KH <gregkh@linuxfoundation.org>
      Cc: Will Deacon <will.deacon@arm.com>
      Cc: aliguori@amazon.com
      Cc: daniel.gruss@iaik.tugraz.at
      Cc: hughd@google.com
      Cc: keescook@google.com
      Cc: Andrea Arcangeli <aarcange@redhat.com>
      Cc: Waiman Long <llong@redhat.com>
      Cc: "David H . Gutteridge" <dhgutteridge@sympatico.ca>
      Cc: joro@8bytes.org
      Link: https://lkml.kernel.org/r/1531906876-13451-30-git-send-email-joro@8bytes.org
      b976690f
    • P
      sched/clock: Enable sched clock early · 857baa87
      Pavel Tatashin 提交于
      Allow sched_clock() to be used before schec_clock_init() is called.  This
      provides a way to get early boot timestamps on machines with unstable
      clocks.
      Signed-off-by: NPavel Tatashin <pasha.tatashin@oracle.com>
      Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
      Cc: steven.sistare@oracle.com
      Cc: daniel.m.jordan@oracle.com
      Cc: linux@armlinux.org.uk
      Cc: schwidefsky@de.ibm.com
      Cc: heiko.carstens@de.ibm.com
      Cc: john.stultz@linaro.org
      Cc: sboyd@codeaurora.org
      Cc: hpa@zytor.com
      Cc: douly.fnst@cn.fujitsu.com
      Cc: peterz@infradead.org
      Cc: prarit@redhat.com
      Cc: feng.tang@intel.com
      Cc: pmladek@suse.com
      Cc: gnomes@lxorguk.ukuu.org.uk
      Cc: linux-s390@vger.kernel.org
      Cc: boris.ostrovsky@oracle.com
      Cc: jgross@suse.com
      Cc: pbonzini@redhat.com
      Link: https://lkml.kernel.org/r/20180719205545.16512-24-pasha.tatashin@oracle.com
      857baa87
    • P
      sched/clock: Move sched clock initialization and merge with generic clock · 5d2a4e91
      Pavel Tatashin 提交于
      sched_clock_postinit() initializes a generic clock on systems where no
      other clock is provided. This function may be called only after
      timekeeping_init().
      
      Rename sched_clock_postinit to generic_clock_inti() and call it from
      sched_clock_init(). Move the call for sched_clock_init() until after
      time_init().
      Suggested-by: NPeter Zijlstra <peterz@infradead.org>
      Signed-off-by: NPavel Tatashin <pasha.tatashin@oracle.com>
      Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
      Cc: steven.sistare@oracle.com
      Cc: daniel.m.jordan@oracle.com
      Cc: linux@armlinux.org.uk
      Cc: schwidefsky@de.ibm.com
      Cc: heiko.carstens@de.ibm.com
      Cc: john.stultz@linaro.org
      Cc: sboyd@codeaurora.org
      Cc: hpa@zytor.com
      Cc: douly.fnst@cn.fujitsu.com
      Cc: prarit@redhat.com
      Cc: feng.tang@intel.com
      Cc: pmladek@suse.com
      Cc: gnomes@lxorguk.ukuu.org.uk
      Cc: linux-s390@vger.kernel.org
      Cc: boris.ostrovsky@oracle.com
      Cc: jgross@suse.com
      Cc: pbonzini@redhat.com
      Link: https://lkml.kernel.org/r/20180719205545.16512-23-pasha.tatashin@oracle.com
      5d2a4e91
  13. 18 7月, 2018 1 次提交
    • L
      kbuild: Add build salt to the kernel and modules · 9afb719e
      Laura Abbott 提交于
      In Fedora, the debug information is packaged separately (foo-debuginfo) and
      can be installed separately. There's been a long standing issue where only
      one version of a debuginfo info package can be installed at a time. There's
      been an effort for Fedora for parallel debuginfo to rectify this problem.
      
      Part of the requirement to allow parallel debuginfo to work is that build ids
      are unique between builds. The existing upstream rpm implementation ensures
      this by re-calculating the build-id using the version and release as a
      seed. This doesn't work 100% for the kernel because of the vDSO which is
      its own binary and doesn't get updated when embedded.
      
      Fix this by adding some data in an ELF note for both the kernel and modules.
      The data is controlled via a Kconfig option so distributions can set it
      to an appropriate value to ensure uniqueness between builds.
      Suggested-by: NMasahiro Yamada <yamada.masahiro@socionext.com>
      Signed-off-by: NLaura Abbott <labbott@redhat.com>
      Signed-off-by: NMasahiro Yamada <yamada.masahiro@socionext.com>
      9afb719e
  14. 28 6月, 2018 1 次提交
  15. 25 6月, 2018 1 次提交
  16. 14 6月, 2018 1 次提交
    • C
      dma-mapping: move all DMA mapping code to kernel/dma · cf65a0f6
      Christoph Hellwig 提交于
      Currently the code is split over various files with dma- prefixes in the
      lib/ and drives/base directories, and the number of files keeps growing.
      Move them into a single directory to keep the code together and remove
      the file name prefixes.  To match the irq infrastructure this directory
      is placed under the kernel/ directory.
      Signed-off-by: NChristoph Hellwig <hch@lst.de>
      cf65a0f6
  17. 08 6月, 2018 2 次提交
  18. 06 6月, 2018 1 次提交
    • M
      rseq: Introduce restartable sequences system call · d7822b1e
      Mathieu Desnoyers 提交于
      Expose a new system call allowing each thread to register one userspace
      memory area to be used as an ABI between kernel and user-space for two
      purposes: user-space restartable sequences and quick access to read the
      current CPU number value from user-space.
      
      * Restartable sequences (per-cpu atomics)
      
      Restartables sequences allow user-space to perform update operations on
      per-cpu data without requiring heavy-weight atomic operations.
      
      The restartable critical sections (percpu atomics) work has been started
      by Paul Turner and Andrew Hunter. It lets the kernel handle restart of
      critical sections. [1] [2] The re-implementation proposed here brings a
      few simplifications to the ABI which facilitates porting to other
      architectures and speeds up the user-space fast path.
      
      Here are benchmarks of various rseq use-cases.
      
      Test hardware:
      
      arm32: ARMv7 Processor rev 4 (v7l) "Cubietruck", 2-core
      x86-64: Intel E5-2630 v3@2.40GHz, 16-core, hyperthreading
      
      The following benchmarks were all performed on a single thread.
      
      * Per-CPU statistic counter increment
      
                      getcpu+atomic (ns/op)    rseq (ns/op)    speedup
      arm32:                344.0                 31.4          11.0
      x86-64:                15.3                  2.0           7.7
      
      * LTTng-UST: write event 32-bit header, 32-bit payload into tracer
                   per-cpu buffer
      
                      getcpu+atomic (ns/op)    rseq (ns/op)    speedup
      arm32:               2502.0                 2250.0         1.1
      x86-64:               117.4                   98.0         1.2
      
      * liburcu percpu: lock-unlock pair, dereference, read/compare word
      
                      getcpu+atomic (ns/op)    rseq (ns/op)    speedup
      arm32:                751.0                 128.5          5.8
      x86-64:                53.4                  28.6          1.9
      
      * jemalloc memory allocator adapted to use rseq
      
      Using rseq with per-cpu memory pools in jemalloc at Facebook (based on
      rseq 2016 implementation):
      
      The production workload response-time has 1-2% gain avg. latency, and
      the P99 overall latency drops by 2-3%.
      
      * Reading the current CPU number
      
      Speeding up reading the current CPU number on which the caller thread is
      running is done by keeping the current CPU number up do date within the
      cpu_id field of the memory area registered by the thread. This is done
      by making scheduler preemption set the TIF_NOTIFY_RESUME flag on the
      current thread. Upon return to user-space, a notify-resume handler
      updates the current CPU value within the registered user-space memory
      area. User-space can then read the current CPU number directly from
      memory.
      
      Keeping the current cpu id in a memory area shared between kernel and
      user-space is an improvement over current mechanisms available to read
      the current CPU number, which has the following benefits over
      alternative approaches:
      
      - 35x speedup on ARM vs system call through glibc
      - 20x speedup on x86 compared to calling glibc, which calls vdso
        executing a "lsl" instruction,
      - 14x speedup on x86 compared to inlined "lsl" instruction,
      - Unlike vdso approaches, this cpu_id value can be read from an inline
        assembly, which makes it a useful building block for restartable
        sequences.
      - The approach of reading the cpu id through memory mapping shared
        between kernel and user-space is portable (e.g. ARM), which is not the
        case for the lsl-based x86 vdso.
      
      On x86, yet another possible approach would be to use the gs segment
      selector to point to user-space per-cpu data. This approach performs
      similarly to the cpu id cache, but it has two disadvantages: it is
      not portable, and it is incompatible with existing applications already
      using the gs segment selector for other purposes.
      
      Benchmarking various approaches for reading the current CPU number:
      
      ARMv7 Processor rev 4 (v7l)
      Machine model: Cubietruck
      - Baseline (empty loop):                                    8.4 ns
      - Read CPU from rseq cpu_id:                               16.7 ns
      - Read CPU from rseq cpu_id (lazy register):               19.8 ns
      - glibc 2.19-0ubuntu6.6 getcpu:                           301.8 ns
      - getcpu system call:                                     234.9 ns
      
      x86-64 Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz:
      - Baseline (empty loop):                                    0.8 ns
      - Read CPU from rseq cpu_id:                                0.8 ns
      - Read CPU from rseq cpu_id (lazy register):                0.8 ns
      - Read using gs segment selector:                           0.8 ns
      - "lsl" inline assembly:                                   13.0 ns
      - glibc 2.19-0ubuntu6 getcpu:                              16.6 ns
      - getcpu system call:                                      53.9 ns
      
      - Speed (benchmark taken on v8 of patchset)
      
      Running 10 runs of hackbench -l 100000 seems to indicate, contrary to
      expectations, that enabling CONFIG_RSEQ slightly accelerates the
      scheduler:
      
      Configuration: 2 sockets * 8-core Intel(R) Xeon(R) CPU E5-2630 v3 @
      2.40GHz (directly on hardware, hyperthreading disabled in BIOS, energy
      saving disabled in BIOS, turboboost disabled in BIOS, cpuidle.off=1
      kernel parameter), with a Linux v4.6 defconfig+localyesconfig,
      restartable sequences series applied.
      
      * CONFIG_RSEQ=n
      
      avg.:      41.37 s
      std.dev.:   0.36 s
      
      * CONFIG_RSEQ=y
      
      avg.:      40.46 s
      std.dev.:   0.33 s
      
      - Size
      
      On x86-64, between CONFIG_RSEQ=n/y, the text size increase of vmlinux is
      567 bytes, and the data size increase of vmlinux is 5696 bytes.
      
      [1] https://lwn.net/Articles/650333/
      [2] http://www.linuxplumbersconf.org/2013/ocw/system/presentations/1695/original/LPC%20-%20PerCpu%20Atomics.pdfSigned-off-by: NMathieu Desnoyers <mathieu.desnoyers@efficios.com>
      Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
      Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      Cc: Joel Fernandes <joelaf@google.com>
      Cc: Catalin Marinas <catalin.marinas@arm.com>
      Cc: Dave Watson <davejwatson@fb.com>
      Cc: Will Deacon <will.deacon@arm.com>
      Cc: Andi Kleen <andi@firstfloor.org>
      Cc: "H . Peter Anvin" <hpa@zytor.com>
      Cc: Chris Lameter <cl@linux.com>
      Cc: Russell King <linux@arm.linux.org.uk>
      Cc: Andrew Hunter <ahh@google.com>
      Cc: Michael Kerrisk <mtk.manpages@gmail.com>
      Cc: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com>
      Cc: Paul Turner <pjt@google.com>
      Cc: Boqun Feng <boqun.feng@gmail.com>
      Cc: Josh Triplett <josh@joshtriplett.org>
      Cc: Steven Rostedt <rostedt@goodmis.org>
      Cc: Ben Maurer <bmaurer@fb.com>
      Cc: Alexander Viro <viro@zeniv.linux.org.uk>
      Cc: linux-api@vger.kernel.org
      Cc: Andy Lutomirski <luto@amacapital.net>
      Cc: Andrew Morton <akpm@linux-foundation.org>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Link: http://lkml.kernel.org/r/20151027235635.16059.11630.stgit@pjt-glaptop.roam.corp.google.com
      Link: http://lkml.kernel.org/r/20150624222609.6116.86035.stgit@kitami.mtv.corp.google.com
      Link: https://lkml.kernel.org/r/20180602124408.8430-3-mathieu.desnoyers@efficios.com
      d7822b1e
  19. 29 5月, 2018 3 次提交
    • M
      kconfig: replace $(UNAME_RELEASE) with function call · 2972666a
      Masahiro Yamada 提交于
      Now that 'shell' function is supported, this can be self-contained in
      Kconfig.
      Signed-off-by: NMasahiro Yamada <yamada.masahiro@socionext.com>
      Reviewed-by: NKees Cook <keescook@chromium.org>
      Reviewed-by: NUlf Magnusson <ulfalizer@gmail.com>
      2972666a
    • M
      kconfig: reference environment variables directly and remove 'option env=' · 104daea1
      Masahiro Yamada 提交于
      To get access to environment variables, Kconfig needs to define a
      symbol using "option env=" syntax.  It is tedious to add a symbol entry
      for each environment variable given that we need to define much more
      such as 'CC', 'AS', 'srctree' etc. to evaluate the compiler capability
      in Kconfig.
      
      Adding '$' for symbol references is grammatically inconsistent.
      Looking at the code, the symbols prefixed with 'S' are expanded by:
       - conf_expand_value()
         This is used to expand 'arch/$ARCH/defconfig' and 'defconfig_list'
       - sym_expand_string_value()
         This is used to expand strings in 'source' and 'mainmenu'
      
      All of them are fixed values independent of user configuration.  So,
      they can be changed into the direct expansion instead of symbols.
      
      This change makes the code much cleaner.  The bounce symbols 'SRCARCH',
      'ARCH', 'SUBARCH', 'KERNELVERSION' are gone.
      
      sym_init() hard-coding 'UNAME_RELEASE' is also gone.  'UNAME_RELEASE'
      should be replaced with an environment variable.
      
      ARCH_DEFCONFIG is a normal symbol, so it should be simply referenced
      without '$' prefix.
      
      The new syntax is addicted by Make.  The variable reference needs
      parentheses, like $(FOO), but you can omit them for single-letter
      variables, like $F.  Yet, in Makefiles, people tend to use the
      parenthetical form for consistency / clarification.
      
      At this moment, only the environment variable is supported, but I will
      extend the concept of 'variable' later on.
      
      The variables are expanded in the lexer so we can simplify the token
      handling on the parser side.
      
      For example, the following code works.
      
      [Example code]
      
        config MY_TOOLCHAIN_LIST
                string
                default "My tools: CC=$(CC), AS=$(AS), CPP=$(CPP)"
      
      [Result]
      
        $ make -s alldefconfig && tail -n 1 .config
        CONFIG_MY_TOOLCHAIN_LIST="My tools: CC=gcc, AS=as, CPP=gcc -E"
      Signed-off-by: NMasahiro Yamada <yamada.masahiro@socionext.com>
      Reviewed-by: NKees Cook <keescook@chromium.org>
      104daea1
    • M
      kbuild: remove CONFIG_CROSS_COMPILE support · f1089c92
      Masahiro Yamada 提交于
      Kbuild provides a couple of ways to specify CROSS_COMPILE:
      
      [1] Command line
      [2] Environment
      [3] arch/*/Makefile (only some architectures)
      [4] CONFIG_CROSS_COMPILE
      
      [4] is problematic for the compiler capability tests in Kconfig.
      CONFIG_CROSS_COMPILE allows users to change the compiler prefix from
      'make menuconfig', etc.  It means, the compiler options would have
      to be all re-calculated everytime CONFIG_CROSS_COMPILE is changed.
      
      To avoid complexity and performance issues, I'd like to evaluate
      the shell commands statically, i.e. only parsing Kconfig files.
      
      I guess the majority is [1] or [2].  Currently, there are only
      5 defconfig files that specify CONFIG_CROSS_COMPILE.
        arch/arm/configs/lpc18xx_defconfig
        arch/hexagon/configs/comet_defconfig
        arch/nds32/configs/defconfig
        arch/openrisc/configs/or1ksim_defconfig
        arch/openrisc/configs/simple_smp_defconfig
      Signed-off-by: NMasahiro Yamada <yamada.masahiro@socionext.com>
      Reviewed-by: NKees Cook <keescook@chromium.org>
      f1089c92
  20. 26 5月, 2018 1 次提交
  21. 18 5月, 2018 1 次提交
  22. 17 5月, 2018 1 次提交
  23. 15 5月, 2018 2 次提交
  24. 12 5月, 2018 1 次提交
  25. 07 5月, 2018 1 次提交
  26. 12 4月, 2018 1 次提交