1. 16 12月, 2009 7 次提交
  2. 04 12月, 2009 1 次提交
  3. 29 10月, 2009 1 次提交
    • H
      hwpoison: fix oops on ksm pages · 92f7ba70
      Hugh Dickins 提交于
      Memory failure on a KSM page currently oopses on its NULL anon_vma in
      page_lock_anon_vma(): that may not be much worse than the consequence of
      ignoring it, but it is better to be consistent with how ZERO_PAGE and
      hugetlb pages and other awkward cases are treated.  Just skip it.
      
      We could fix it for 2.6.32 at the KSM end, by putting a dummy anon_vma
      pointer in there; but that would get harder next time, when KSM will put a
      pointer to something else there (and I'm not currently planning to do any
      work to open that up to memory_failure).  So I would prefer this simple
      PageKsm test, until the other exceptions are handled.
      Signed-off-by: NHugh Dickins <hugh.dickins@tiscali.co.uk>
      Cc: Andi Kleen <andi@firstfloor.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      92f7ba70
  4. 19 10月, 2009 3 次提交
  5. 16 9月, 2009 1 次提交
    • A
      HWPOISON: The high level memory error handler in the VM v7 · 6a46079c
      Andi Kleen 提交于
      Add the high level memory handler that poisons pages
      that got corrupted by hardware (typically by a two bit flip in a DIMM
      or a cache) on the Linux level. The goal is to prevent everyone
      from accessing these pages in the future.
      
      This done at the VM level by marking a page hwpoisoned
      and doing the appropriate action based on the type of page
      it is.
      
      The code that does this is portable and lives in mm/memory-failure.c
      
      To quote the overview comment:
      
      High level machine check handler. Handles pages reported by the
      hardware as being corrupted usually due to a 2bit ECC memory or cache
      failure.
      
      This focuses on pages detected as corrupted in the background.
      When the current CPU tries to consume corruption the currently
      running process can just be killed directly instead. This implies
      that if the error cannot be handled for some reason it's safe to
      just ignore it because no corruption has been consumed yet. Instead
      when that happens another machine check will happen.
      
      Handles page cache pages in various states. The tricky part
      here is that we can access any page asynchronous to other VM
      users, because memory failures could happen anytime and anywhere,
      possibly violating some of their assumptions. This is why this code
      has to be extremely careful. Generally it tries to use normal locking
      rules, as in get the standard locks, even if that means the
      error handling takes potentially a long time.
      
      Some of the operations here are somewhat inefficient and have non
      linear algorithmic complexity, because the data structures have not
      been optimized for this case. This is in particular the case
      for the mapping from a vma to a process. Since this case is expected
      to be rare we hope we can get away with this.
      
      There are in principle two strategies to kill processes on poison:
      - just unmap the data and wait for an actual reference before
      killing
      - kill as soon as corruption is detected.
      Both have advantages and disadvantages and should be used
      in different situations. Right now both are implemented and can
      be switched with a new sysctl vm.memory_failure_early_kill
      The default is early kill.
      
      The patch does some rmap data structure walking on its own to collect
      processes to kill. This is unusual because normally all rmap data structure
      knowledge is in rmap.c only. I put it here for now to keep
      everything together and rmap knowledge has been seeping out anyways
      
      Includes contributions from Johannes Weiner, Chris Mason, Fengguang Wu,
      Nick Piggin (who did a lot of great work) and others.
      
      Cc: npiggin@suse.de
      Cc: riel@redhat.com
      Signed-off-by: NAndi Kleen <ak@linux.intel.com>
      Acked-by: NRik van Riel <riel@redhat.com>
      Reviewed-by: NHidehiro Kawai <hidehiro.kawai.ez@hitachi.com>
      6a46079c