- 18 10月, 2021 2 次提交
-
-
由 Alvin Šipraga 提交于
This commit implements a basic version of the 8 byte tag protocol used in the Realtek RTL8365MB-VC unmanaged switch, which carries with it a protocol version of 0x04. The implementation itself only handles the parsing of the EtherType value and Realtek protocol version, together with the source or destination port fields. The rest is left unimplemented for now. The tag format is described in a confidential document provided to my company by Realtek Semiconductor Corp. Permission has been granted by the vendor to publish this driver based on that material, together with an extract from the document describing the tag format and its fields. It is hoped that this will help future implementors who do not have access to the material but who wish to extend the functionality of drivers for chips which use this protocol. In addition, two possible values of the REASON field are specified, based on experiments on my end. Realtek does not specify what value this field can take. Signed-off-by: NAlvin Šipraga <alsi@bang-olufsen.dk> Reviewed-by: NVladimir Oltean <olteanv@gmail.com> Reviewed-by: NLinus Walleij <linus.walleij@linaro.org> Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com> Tested-by: NArınç ÜNAL <arinc.unal@arinc9.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Alvin Šipraga 提交于
Jakub pointed out that we have a new ethtool API for reporting device statistics in a standardized way, via .get_eth_{phy,mac,ctrl}_stats. Add a small amount of plumbing to allow DSA drivers to take advantage of this when exposing statistics. Suggested-by: NJakub Kicinski <kuba@kernel.org> Signed-off-by: NAlvin Šipraga <alsi@bang-olufsen.dk> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 19 9月, 2021 2 次提交
-
-
由 Vladimir Oltean 提交于
Commit 86f8b1c0 ("net: dsa: Do not make user port errors fatal") decided it was fine to ignore errors on certain ports that fail to probe, and go on with the ports that do probe fine. Commit fb6ec87f ("net: dsa: Fix type was not set for devlink port") noticed that devlink_port_type_eth_set(dlp, dp->slave); does not get called, and devlink notices after a timeout of 3600 seconds and prints a WARN_ON. So it went ahead to unregister the devlink port. And because there exists an UNUSED port flavour, we actually re-register the devlink port as UNUSED. Commit 08156ba4 ("net: dsa: Add devlink port regions support to DSA") added devlink port regions, which are set up by the driver and not by DSA. When we trigger the devlink port deregistration and reregistration as unused, devlink now prints another WARN_ON, from here: devlink_port_unregister: WARN_ON(!list_empty(&devlink_port->region_list)); So the port still has regions, which makes sense, because they were set up by the driver, and the driver doesn't know we're unregistering the devlink port. Somebody needs to tear them down, and optionally (actually it would be nice, to be consistent) set them up again for the new devlink port. But DSA's layering stays in our way quite badly here. The options I've considered are: 1. Introduce a function in devlink to just change a port's type and flavour. No dice, devlink keeps a lot of state, it really wants the port to not be registered when you set its parameters, so changing anything can only be done by destroying what we currently have and recreating it. 2. Make DSA cache the parameters passed to dsa_devlink_port_region_create, and the region returned, keep those in a list, then when the devlink port unregister needs to take place, the existing devlink regions are destroyed by DSA, and we replay the creation of new regions using the cached parameters. Problem: mv88e6xxx keeps the region pointers in chip->ports[port].region, and these will remain stale after DSA frees them. There are many things DSA can do, but updating mv88e6xxx's private pointers is not one of them. 3. Just let the driver do it (i.e. introduce a very specific method called ds->ops->port_reinit_as_unused, which unregisters its devlink port devlink regions, then the old devlink port, then registers the new one, then the devlink port regions for it). While it does work, as opposed to the others, it's pretty horrible from an API perspective and we can do better. 4. Introduce a new pair of methods, ->port_setup and ->port_teardown, which in the case of mv88e6xxx must register and unregister the devlink port regions. Call these 2 methods when the port must be reinitialized as unused. Naturally, I went for the 4th approach. Fixes: 08156ba4 ("net: dsa: Add devlink port regions support to DSA") Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Vladimir Oltean 提交于
Lino reports that on his system with bcmgenet as DSA master and KSZ9897 as a switch, rebooting or shutting down never works properly. What does the bcmgenet driver have special to trigger this, that other DSA masters do not? It has an implementation of ->shutdown which simply calls its ->remove implementation. Otherwise said, it unregisters its network interface on shutdown. This message can be seen in a loop, and it hangs the reboot process there: unregister_netdevice: waiting for eth0 to become free. Usage count = 3 So why 3? A usage count of 1 is normal for a registered network interface, and any virtual interface which links itself as an upper of that will increment it via dev_hold. In the case of DSA, this is the call path: dsa_slave_create -> netdev_upper_dev_link -> __netdev_upper_dev_link -> __netdev_adjacent_dev_insert -> dev_hold So a DSA switch with 3 interfaces will result in a usage count elevated by two, and netdev_wait_allrefs will wait until they have gone away. Other stacked interfaces, like VLAN, watch NETDEV_UNREGISTER events and delete themselves, but DSA cannot just vanish and go poof, at most it can unbind itself from the switch devices, but that must happen strictly earlier compared to when the DSA master unregisters its net_device, so reacting on the NETDEV_UNREGISTER event is way too late. It seems that it is a pretty established pattern to have a driver's ->shutdown hook redirect to its ->remove hook, so the same code is executed regardless of whether the driver is unbound from the device, or the system is just shutting down. As Florian puts it, it is quite a big hammer for bcmgenet to unregister its net_device during shutdown, but having a common code path with the driver unbind helps ensure it is well tested. So DSA, for better or for worse, has to live with that and engage in an arms race of implementing the ->shutdown hook too, from all individual drivers, and do something sane when paired with masters that unregister their net_device there. The only sane thing to do, of course, is to unlink from the master. However, complications arise really quickly. The pattern of redirecting ->shutdown to ->remove is not unique to bcmgenet or even to net_device drivers. In fact, SPI controllers do it too (see dspi_shutdown -> dspi_remove), and presumably, I2C controllers and MDIO controllers do it too (this is something I have not researched too deeply, but even if this is not the case today, it is certainly plausible to happen in the future, and must be taken into consideration). Since DSA switches might be SPI devices, I2C devices, MDIO devices, the insane implication is that for the exact same DSA switch device, we might have both ->shutdown and ->remove getting called. So we need to do something with that insane environment. The pattern I've come up with is "if this, then not that", so if either ->shutdown or ->remove gets called, we set the device's drvdata to NULL, and in the other hook, we check whether the drvdata is NULL and just do nothing. This is probably not necessary for platform devices, just for devices on buses, but I would really insist for consistency among drivers, because when code is copy-pasted, it is not always copy-pasted from the best sources. So depending on whether the DSA switch's ->remove or ->shutdown will get called first, we cannot really guarantee even for the same driver if rebooting will result in the same code path on all platforms. But nonetheless, we need to do something minimally reasonable on ->shutdown too to fix the bug. Of course, the ->remove will do more (a full teardown of the tree, with all data structures freed, and this is why the bug was not caught for so long). The new ->shutdown method is kept separate from dsa_unregister_switch not because we couldn't have unregistered the switch, but simply in the interest of doing something quick and to the point. The big question is: does the DSA switch's ->shutdown get called earlier than the DSA master's ->shutdown? If not, there is still a risk that we might still trigger the WARN_ON in unregister_netdevice that says we are attempting to unregister a net_device which has uppers. That's no good. Although the reference to the master net_device won't physically go away even if DSA's ->shutdown comes afterwards, remember we have a dev_hold on it. The answer to that question lies in this comment above device_link_add: * A side effect of the link creation is re-ordering of dpm_list and the * devices_kset list by moving the consumer device and all devices depending * on it to the ends of these lists (that does not happen to devices that have * not been registered when this function is called). so the fact that DSA uses device_link_add towards its master is not exactly for nothing. device_shutdown() walks devices_kset from the back, so this is our guarantee that DSA's shutdown happens before the master's shutdown. Fixes: 2f1e8ea7 ("net: dsa: link interfaces with the DSA master to get rid of lockdep warnings") Link: https://lore.kernel.org/netdev/20210909095324.12978-1-LinoSanfilippo@gmx.de/Reported-by: NLino Sanfilippo <LinoSanfilippo@gmx.de> Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Tested-by: NAndrew Lunn <andrew@lunn.ch> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 16 9月, 2021 1 次提交
-
-
由 Vladimir Oltean 提交于
Sometimes when unbinding the mv88e6xxx driver on Turris MOX, these error messages appear: mv88e6085 d0032004.mdio-mii:12: port 1 failed to delete be:79:b4:9e:9e:96 vid 1 from fdb: -2 mv88e6085 d0032004.mdio-mii:12: port 1 failed to delete be:79:b4:9e:9e:96 vid 0 from fdb: -2 mv88e6085 d0032004.mdio-mii:12: port 1 failed to delete d8:58:d7:00:ca:6d vid 100 from fdb: -2 mv88e6085 d0032004.mdio-mii:12: port 1 failed to delete d8:58:d7:00:ca:6d vid 1 from fdb: -2 mv88e6085 d0032004.mdio-mii:12: port 1 failed to delete d8:58:d7:00:ca:6d vid 0 from fdb: -2 (and similarly for other ports) What happens is that DSA has a policy "even if there are bugs, let's at least not leak memory" and dsa_port_teardown() clears the dp->fdbs and dp->mdbs lists, which are supposed to be empty. But deleting that cleanup code, the warnings go away. => the FDB and MDB lists (used for refcounting on shared ports, aka CPU and DSA ports) will eventually be empty, but are not empty by the time we tear down those ports. Aka we are deleting them too soon. The addresses that DSA complains about are host-trapped addresses: the local addresses of the ports, and the MAC address of the bridge device. The problem is that offloading those entries happens from a deferred work item scheduled by the SWITCHDEV_FDB_DEL_TO_DEVICE handler, and this races with the teardown of the CPU and DSA ports where the refcounting is kept. In fact, not only it races, but fundamentally speaking, if we iterate through the port list linearly, we might end up tearing down the shared ports even before we delete a DSA user port which has a bridge upper. So as it turns out, we need to first tear down the user ports (and the unused ones, for no better place of doing that), then the shared ports (the CPU and DSA ports). In between, we need to ensure that all work items scheduled by our switchdev handlers (which only run for user ports, hence the reason why we tear them down first) have finished. Fixes: 161ca59d ("net: dsa: reference count the MDB entries at the cross-chip notifier level") Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com> Link: https://lore.kernel.org/r/20210914134726.2305133-1-vladimir.oltean@nxp.comSigned-off-by: NJakub Kicinski <kuba@kernel.org>
-
- 24 8月, 2021 1 次提交
-
-
由 Vladimir Oltean 提交于
As explained in commit e358bef7 ("net: dsa: Give drivers the chance to veto certain upper devices"), the hellcreek driver uses some tricks to comply with the network stack expectations: it enforces port separation in standalone mode using VLANs. For untagged traffic, bridging between ports is prevented by using different PVIDs, and for VLAN-tagged traffic, it never accepts 8021q uppers with the same VID on two ports, so packets with one VLAN cannot leak from one port to another. That is almost fine*, and has worked because hellcreek relied on an implicit behavior of the DSA core that was changed by the previous patch: the standalone ports declare the 'rx-vlan-filter' feature as 'on [fixed]'. Since most of the DSA drivers are actually VLAN-unaware in standalone mode, that feature was actually incorrectly reflecting the hardware/driver state, so there was a desire to fix it. This leaves the hellcreek driver in a situation where it has to explicitly request this behavior from the DSA framework. We configure the ports as follows: - Standalone: 'rx-vlan-filter' is on. An 8021q upper on top of a standalone hellcreek port will go through dsa_slave_vlan_rx_add_vid and will add a VLAN to the hardware tables, giving the driver the opportunity to refuse it through .port_prechangeupper. - Bridged with vlan_filtering=0: 'rx-vlan-filter' is off. An 8021q upper on top of a bridged hellcreek port will not go through dsa_slave_vlan_rx_add_vid, because there will not be any attempt to offload this VLAN. The driver already disables VLAN awareness, so that upper should receive the traffic it needs. - Bridged with vlan_filtering=1: 'rx-vlan-filter' is on. An 8021q upper on top of a bridged hellcreek port will call dsa_slave_vlan_rx_add_vid, and can again be vetoed through .port_prechangeupper. *It is not actually completely fine, because if I follow through correctly, we can have the following situation: ip link add br0 type bridge vlan_filtering 0 ip link set lan0 master br0 # lan0 now becomes VLAN-unaware ip link set lan0 nomaster # lan0 fails to become VLAN-aware again, therefore breaking isolation This patch fixes that corner case by extending the DSA core logic, based on this requested attribute, to change the VLAN awareness state of the switch (port) when it leaves the bridge. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com> Acked-by: NKurt Kanzenbach <kurt@linutronix.de> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 23 8月, 2021 1 次提交
-
-
由 Vladimir Oltean 提交于
Right now, cross-tree bridging setups work somewhat by mistake. In the case of cross-tree bridging with sja1105, all switch instances need to agree upon a common VLAN ID for forwarding a packet that belongs to a certain bridging domain. With TX forwarding offload, the VLAN ID is the bridge VLAN for VLAN-aware bridging, and the tag_8021q TX forwarding offload VID (a VLAN which has non-zero VBID bits) for VLAN-unaware bridging. The VBID for VLAN-unaware bridging is derived from the dp->bridge_num value calculated by DSA independently for each switch tree. If ports from one tree join one bridge, and ports from another tree join another bridge, DSA will assign them the same bridge_num, even though the bridges are different. If cross-tree bridging is supported, this is an issue. Modify DSA to calculate the bridge_num globally across all switch trees. This has the implication for a driver that the dp->bridge_num value that DSA will assign to its ports might not be contiguous, if there are boards with multiple DSA drivers instantiated. Additionally, all bridge_num values eat up towards each switch's ds->num_fwd_offloading_bridges maximum, which is potentially unfortunate, and can be seen as a limitation introduced by this patch. However, that is the lesser evil for now. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 09 8月, 2021 2 次提交
-
-
由 Vladimir Oltean 提交于
Now that DSA keeps track of the port learning state, it becomes superfluous to keep an additional variable with this information in the sja1105 driver. Remove it. The DSA core's learning state is present in struct dsa_port *dp. To avoid the antipattern where we iterate through a DSA switch's ports and then call dsa_to_port to obtain the "dp" reference (which is bad because dsa_to_port iterates through the DSA switch tree once again), just iterate through the dst->ports and operate on those directly. The sja1105 had an extra use of priv->learn_ena on non-user ports. DSA does not touch the learning state of those ports - drivers are free to do what they wish on them. Mark that information with a comment in struct dsa_port and let sja1105 set dp->learning for cascade ports. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Vladimir Oltean 提交于
Currently DSA leaves it down to device drivers to fast age the FDB on a port when address learning is disabled on it. There are 2 reasons for doing that in the first place: - when address learning is disabled by user space, through IFLA_BRPORT_LEARNING or the brport_attr_learning sysfs, what user space typically wants to achieve is to operate in a mode with no dynamic FDB entry on that port. But if the port is already up, some addresses might have been already learned on it, and it seems silly to wait for 5 minutes for them to expire until something useful can be done. - when a port leaves a bridge and becomes standalone, DSA turns off address learning on it. This also has the nice side effect of flushing the dynamically learned bridge FDB entries on it, which is a good idea because standalone ports should not have bridge FDB entries on them. We let drivers manage fast ageing under this condition because if DSA were to do it, it would need to track each port's learning state, and act upon the transition, which it currently doesn't. But there are 2 reasons why doing it is better after all: - drivers might get it wrong and not do it (see b53_port_set_learning) - we would like to flush the dynamic entries from the software bridge too, and letting drivers do that would be another pain point So track the port learning state and trigger a fast age process automatically within DSA. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 06 8月, 2021 1 次提交
-
-
由 Vladimir Oltean 提交于
Commit 08cc83cc ("net: dsa: add support for BRIDGE_MROUTER attribute") added an option for users to turn off multicast flooding towards the CPU if they turn off the IGMP querier on a bridge which already has enslaved ports (echo 0 > /sys/class/net/br0/bridge/multicast_router). And commit a8b659e7 ("net: dsa: act as passthrough for bridge port flags") simply papered over that issue, because it moved the decision to flood the CPU with multicast (or not) from the DSA core down to individual drivers, instead of taking a more radical position then. The truth is that disabling multicast flooding to the CPU is simply something we are not prepared to do now, if at all. Some reasons: - ICMP6 neighbor solicitation messages are unregistered multicast packets as far as the bridge is concerned. So if we stop flooding multicast, the outside world cannot ping the bridge device's IPv6 link-local address. - There might be foreign interfaces bridged with our DSA switch ports (sending a packet towards the host does not necessarily equal termination, but maybe software forwarding). So if there is no one interested in that multicast traffic in the local network stack, that doesn't mean nobody is. - PTP over L4 (IPv4, IPv6) is multicast, but is unregistered as far as the bridge is concerned. This should reach the CPU port. - The switch driver might not do FDB partitioning. And since we don't even bother to do more fine-grained flood disabling (such as "disable flooding _from_port_N_ towards the CPU port" as opposed to "disable flooding _from_any_port_ towards the CPU port"), this breaks standalone ports, or even multiple bridges where one has an IGMP querier and one doesn't. Reverting the logic makes all of the above work. Fixes: a8b659e7 ("net: dsa: act as passthrough for bridge port flags") Fixes: 08cc83cc ("net: dsa: add support for BRIDGE_MROUTER attribute") Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 02 8月, 2021 1 次提交
-
-
由 Vladimir Oltean 提交于
No tagging driver uses this. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 28 7月, 2021 1 次提交
-
-
由 Arnd Bergmann 提交于
Most users of ndo_do_ioctl are ethernet drivers that implement the MII commands SIOCGMIIPHY/SIOCGMIIREG/SIOCSMIIREG, or hardware timestamping with SIOCSHWTSTAMP/SIOCGHWTSTAMP. Separate these from the few drivers that use ndo_do_ioctl to implement SIOCBOND, SIOCBR and SIOCWANDEV commands. This is a purely cosmetic change intended to help readers find their way through the implementation. Cc: Doug Ledford <dledford@redhat.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jay Vosburgh <j.vosburgh@gmail.com> Cc: Veaceslav Falico <vfalico@gmail.com> Cc: Andy Gospodarek <andy@greyhouse.net> Cc: Andrew Lunn <andrew@lunn.ch> Cc: Vivien Didelot <vivien.didelot@gmail.com> Cc: Florian Fainelli <f.fainelli@gmail.com> Cc: Vladimir Oltean <olteanv@gmail.com> Cc: Leon Romanovsky <leon@kernel.org> Cc: linux-rdma@vger.kernel.org Signed-off-by: NArnd Bergmann <arnd@arndb.de> Acked-by: NJason Gunthorpe <jgg@nvidia.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 27 7月, 2021 1 次提交
-
-
由 Vladimir Oltean 提交于
This reverts commit cc1939e4. Currently 2 classes of DSA drivers are able to send/receive packets directly through the DSA master: - drivers with DSA_TAG_PROTO_NONE - sja1105 Now that sja1105 has gained the ability to perform traffic termination even under the tricky case (VLAN-aware bridge), and that is much more functional (we can perform VLAN-aware bridging with foreign interfaces), there is no reason to keep this code in the receive path of the network core. So delete it. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 23 7月, 2021 2 次提交
-
-
由 Vladimir Oltean 提交于
For a DSA switch, to offload the forwarding process of a bridge device means to send the packets coming from the software bridge as data plane packets. This is contrary to everything that DSA has done so far, because the current taggers only know to send control packets (ones that target a specific destination port), whereas data plane packets are supposed to be forwarded according to the FDB lookup, much like packets ingressing on any regular ingress port. If the FDB lookup process returns multiple destination ports (flooding, multicast), then replication is also handled by the switch hardware - the bridge only sends a single packet and avoids the skb_clone(). DSA keeps for each bridge port a zero-based index (the number of the bridge). Multiple ports performing TX forwarding offload to the same bridge have the same dp->bridge_num value, and ports not offloading the TX data plane of a bridge have dp->bridge_num = -1. The tagger can check if the packet that is being transmitted on has skb->offload_fwd_mark = true or not. If it does, it can be sure that the packet belongs to the data plane of a bridge, further information about which can be obtained based on dp->bridge_dev and dp->bridge_num. It can then compose a DSA tag for injecting a data plane packet into that bridge number. For the switch driver side, we offer two new dsa_switch_ops methods, called .port_bridge_fwd_offload_{add,del}, which are modeled after .port_bridge_{join,leave}. These methods are provided in case the driver needs to configure the hardware to treat packets coming from that bridge software interface as data plane packets. The switchdev <-> bridge interaction happens during the netdev_master_upper_dev_link() call, so to switch drivers, the effect is that the .port_bridge_fwd_offload_add() method is called immediately after .port_bridge_join(). If the bridge number exceeds the number of bridges for which the switch driver can offload the TX data plane (and this includes the case where the driver can offload none), DSA falls back to simply returning tx_fwd_offload = false in the switchdev_bridge_port_offload() call. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Vladimir Oltean 提交于
In preparation of supporting data plane forwarding on behalf of a software bridge, some drivers might need to view bridges as virtual switches behind the CPU port in a cross-chip topology. Give them some help and let them know how many physical switches there are in the tree, so that they can count the virtual switches starting from that number on. Note that the first dsa_switch_ops method where this information is reliably available is .setup(). This is because of how DSA works: in a tree with 3 switches, each calling dsa_register_switch(), the first 2 will advance until dsa_tree_setup() -> dsa_tree_setup_routing_table() and exit with error code 0 because the topology is not complete. Since probing is parallel at this point, one switch does not know about the existence of the other. Then the third switch comes, and for it, dsa_tree_setup_routing_table() returns complete = true. This switch goes ahead and calls dsa_tree_setup_switches() for everybody else, calling their .setup() methods too. This acts as the synchronization point. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 20 7月, 2021 2 次提交
-
-
由 Vladimir Oltean 提交于
Make tag_8021q a more central element of DSA and move the 2 driver specific operations outside of struct dsa_8021q_context (which is supposed to hold dynamic data and not really constant function pointers). Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Vladimir Oltean 提交于
The basic problem description is as follows: Be there 3 switches in a daisy chain topology: | sw0p0 sw0p1 sw0p2 sw0p3 sw0p4 [ user ] [ user ] [ user ] [ dsa ] [ cpu ] | +---------+ | sw1p0 sw1p1 sw1p2 sw1p3 sw1p4 [ user ] [ user ] [ user ] [ dsa ] [ dsa ] | +---------+ | sw2p0 sw2p1 sw2p2 sw2p3 sw2p4 [ user ] [ user ] [ user ] [ user ] [ dsa ] The CPU will not be able to ping through the user ports of the bottom-most switch (like for example sw2p0), simply because tag_8021q was not coded up for this scenario - it has always assumed DSA switch trees with a single switch. To add support for the topology above, we must admit that the RX VLAN of sw2p0 must be added on some ports of switches 0 and 1 as well. This is in fact a textbook example of thing that can use the cross-chip notifier framework that DSA has set up in switch.c. There is only one problem: core DSA (switch.c) is not able right now to make the connection between a struct dsa_switch *ds and a struct dsa_8021q_context *ctx. Right now, it is drivers who call into tag_8021q.c and always provide a struct dsa_8021q_context *ctx pointer, and tag_8021q.c calls them back with the .tag_8021q_vlan_{add,del} methods. But with cross-chip notifiers, it is possible for tag_8021q to call drivers without drivers having ever asked for anything. A good example is right above: when sw2p0 wants to set itself up for tag_8021q, the .tag_8021q_vlan_add method needs to be called for switches 1 and 0, so that they transport sw2p0's VLANs towards the CPU without dropping them. So instead of letting drivers manage the tag_8021q context, add a tag_8021q_ctx pointer inside of struct dsa_switch, which will be populated when dsa_tag_8021q_register() returns success. The patch is fairly long-winded because we are partly reverting commit 5899ee36 ("net: dsa: tag_8021q: add a context structure") which made the driver-facing tag_8021q API use "ctx" instead of "ds". Now that we can access "ctx" directly from "ds", this is no longer needed. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 30 6月, 2021 3 次提交
-
-
由 Vladimir Oltean 提交于
The same concerns expressed for host MDB entries are valid for host FDBs just as well: - in the case of multiple bridges spanning the same switch chip, deleting a host FDB entry that belongs to one bridge will result in breakage to the other bridge - not deleting FDB entries across DSA links means that the switch's hardware tables will eventually run out, given enough wear&tear So do the same thing and introduce reference counting for CPU ports and DSA links using the same data structures as we have for MDB entries. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Vladimir Oltean 提交于
Ever since the cross-chip notifiers were introduced, the design was meant to be simplistic and just get the job done without worrying too much about dangling resources left behind. For example, somebody installs an MDB entry on sw0p0 in this daisy chain topology. It gets installed using ds->ops->port_mdb_add() on sw0p0, sw1p4 and sw2p4. | sw0p0 sw0p1 sw0p2 sw0p3 sw0p4 [ user ] [ user ] [ user ] [ dsa ] [ cpu ] [ x ] [ ] [ ] [ ] [ ] | +---------+ | sw1p0 sw1p1 sw1p2 sw1p3 sw1p4 [ user ] [ user ] [ user ] [ dsa ] [ dsa ] [ ] [ ] [ ] [ ] [ x ] | +---------+ | sw2p0 sw2p1 sw2p2 sw2p3 sw2p4 [ user ] [ user ] [ user ] [ user ] [ dsa ] [ ] [ ] [ ] [ ] [ x ] Then the same person deletes that MDB entry. The cross-chip notifier for deletion only matches sw0p0: | sw0p0 sw0p1 sw0p2 sw0p3 sw0p4 [ user ] [ user ] [ user ] [ dsa ] [ cpu ] [ x ] [ ] [ ] [ ] [ ] | +---------+ | sw1p0 sw1p1 sw1p2 sw1p3 sw1p4 [ user ] [ user ] [ user ] [ dsa ] [ dsa ] [ ] [ ] [ ] [ ] [ ] | +---------+ | sw2p0 sw2p1 sw2p2 sw2p3 sw2p4 [ user ] [ user ] [ user ] [ user ] [ dsa ] [ ] [ ] [ ] [ ] [ ] Why? Because the DSA links are 'trunk' ports, if we just go ahead and delete the MDB from sw1p4 and sw2p4 directly, we might delete those multicast entries when they are still needed. Just consider the fact that somebody does: - add a multicast MAC address towards sw0p0 [ via the cross-chip notifiers it gets installed on the DSA links too ] - add the same multicast MAC address towards sw0p1 (another port of that same switch) - delete the same multicast MAC address from sw0p0. At this point, if we deleted the MAC address from the DSA links, it would be flooded, even though there is still an entry on switch 0 which needs it not to. So that is why deletions only match the targeted source port and nothing on DSA links. Of course, dangling resources means that the hardware tables will eventually run out given enough additions/removals, but hey, at least it's simple. But there is a bigger concern which needs to be addressed, and that is our support for SWITCHDEV_OBJ_ID_HOST_MDB. DSA simply translates such an object into a dsa_port_host_mdb_add() which ends up as ds->ops->port_mdb_add() on the upstream port, and a similar thing happens on deletion: dsa_port_host_mdb_del() will trigger ds->ops->port_mdb_del() on the upstream port. When there are 2 VLAN-unaware bridges spanning the same switch (which is a use case DSA proudly supports), each bridge will install its own SWITCHDEV_OBJ_ID_HOST_MDB entries. But upon deletion, DSA goes ahead and emits a DSA_NOTIFIER_MDB_DEL for dp->cpu_dp, which is shared between the user ports enslaved to br0 and the user ports enslaved to br1. Not good. The host-trapped multicast addresses installed by br1 will be deleted when any state changes in br0 (IGMP timers expire, or ports leave, etc). To avoid this, we could of course go the route of the zero-sum game and delete the DSA_NOTIFIER_MDB_DEL call for dp->cpu_dp. But the better design is to just admit that on shared ports like DSA links and CPU ports, we should be reference counting calls, even if this consumes some dynamic memory which DSA has traditionally avoided. On the flip side, the hardware tables of switches are limited in size, so it would be good if the OS managed them properly instead of having them eventually overflow. To address the memory usage concern, we only apply the refcounting of MDB entries on ports that are really shared (CPU ports and DSA links) and not on user ports. In a typical single-switch setup, this means only the CPU port (and the host MDB entries are not that many, really). The name of the newly introduced data structures (dsa_mac_addr) is chosen in such a way that will be reusable for host FDB entries (next patch). With this change, we can finally have the same matching logic for the MDB additions and deletions, as well as for their host-trapped variants. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Vladimir Oltean 提交于
In preparation for the new cross-chip notifiers for host addresses, let's introduce some more topology helpers which we are going to use to discern switches that are in our path towards the dedicated CPU port from switches that aren't. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 22 6月, 2021 1 次提交
-
-
由 Vladimir Oltean 提交于
The difference between dsa_is_user_port and dsa_port_is_user is that the former needs to look up the list of ports of the DSA switch tree in order to find the struct dsa_port, while the latter directly receives it as an argument. dsa_is_user_port is already in widespread use and has its place, so there isn't any chance of converting all callers to a single form. But being able to do: dsa_port_is_user(dp) instead of dsa_is_user_port(dp->ds, dp->index) is much more efficient too, especially when the "dp" comes from an iterator over the DSA switch tree - this reduces the complexity from quadratic to linear. Move these helpers from dsa2.c to include/net/dsa.h so that others can use them too. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com> Reviewed-by: NAndrew Lunn <andrew@lunn.ch> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 12 6月, 2021 2 次提交
-
-
由 Vladimir Oltean 提交于
The SJA1110 has improved a few things compared to SJA1105: - To send a control packet from the host port with SJA1105, one needed to program a one-shot "management route" over SPI. This is no longer true with SJA1110, you can actually send "in-band control extensions" in the packets sent by DSA, these are in fact DSA tags which contain the destination port and switch ID. - When receiving a control packet from the switch with SJA1105, the source port and switch ID were written in bytes 3 and 4 of the destination MAC address of the frame (which was a very poor shot at a DSA header). If the control packet also had an RX timestamp, that timestamp was sent in an actual follow-up packet, so there were reordering concerns on multi-core/multi-queue DSA masters, where the metadata frame with the RX timestamp might get processed before the actual packet to which that timestamp belonged (there is no way to pair a packet to its timestamp other than the order in which they were received). On SJA1110, this is no longer true, control packets have the source port, switch ID and timestamp all in the DSA tags. - Timestamps from the switch were partial: to get a 64-bit timestamp as required by PTP stacks, one would need to take the partial 24-bit or 32-bit timestamp from the packet, then read the current PTP time very quickly, and then patch in the high bits of the current PTP time into the captured partial timestamp, to reconstruct what the full 64-bit timestamp must have been. That is awful because packet processing is done in NAPI context, but reading the current PTP time is done over SPI and therefore needs sleepable context. But it also aggravated a few things: - Not only is there a DSA header in SJA1110, but there is a DSA trailer in fact, too. So DSA needs to be extended to support taggers which have both a header and a trailer. Very unconventional - my understanding is that the trailer exists because the timestamps couldn't be prepared in time for putting them in the header area. - Like SJA1105, not all packets sent to the CPU have the DSA tag added to them, only control packets do: * the ones which match the destination MAC filters/traps in MAC_FLTRES1 and MAC_FLTRES0 * the ones which match FDB entries which have TRAP or TAKETS bits set So we could in theory hack something up to request the switch to take timestamps for all packets that reach the CPU, and those would be DSA-tagged and contain the source port / switch ID by virtue of the fact that there needs to be a timestamp trailer provided. BUT: - The SJA1110 does not parse its own DSA tags in a way that is useful for routing in cross-chip topologies, a la Marvell. And the sja1105 driver already supports cross-chip bridging from the SJA1105 days. It does that by automatically setting up the DSA links as VLAN trunks which contain all the necessary tag_8021q RX VLANs that must be communicated between the switches that span the same bridge. So when using tag_8021q on sja1105, it is possible to have 2 switches with ports sw0p0, sw0p1, sw1p0, sw1p1, and 2 VLAN-unaware bridges br0 and br1, and br0 can take sw0p0 and sw1p0, and br1 can take sw0p1 and sw1p1, and forwarding will happen according to the expected rules of the Linux bridge. We like that, and we don't want that to go away, so as a matter of fact, the SJA1110 tagger still needs to support tag_8021q. So the sja1110 tagger is a hybrid between tag_8021q for data packets, and the native hardware support for control packets. On RX, packets have a 13-byte trailer if they contain an RX timestamp. That trailer is padded in such a way that its byte 8 (the start of the "residence time" field - not parsed by Linux because we don't care) is aligned on a 16 byte boundary. So the padding has a variable length between 0 and 15 bytes. The DSA header contains the offset of the beginning of the padding relative to the beginning of the frame (and the end of the padding is obviously the end of the packet minus 13 bytes, the length of the trailer). So we discard it. Packets which don't have a trailer contain the source port and switch ID information in the header (they are "trap-to-host" packets). Packets which have a trailer contain the source port and switch ID in the trailer. On TX, the destination port mask and switch ID is always in the trailer, so we always need to say in the header that a trailer is present. The header needs a custom EtherType and this was chosen as 0xdadc, after 0xdada which is for Marvell and 0xdadb which is for VLANs in VLAN-unaware mode on SJA1105 (and SJA1110 in fact too). Because we use tag_8021q in concert with the native tagging protocol, control packets will have 2 DSA tags. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Vladimir Oltean 提交于
Some really really weird switches just couldn't decide whether to use a normal or a tail tagger, so they just did both. This creates problems for DSA, because we only have the concept of an 'overhead' which can be applied to the headroom or to the tailroom of the skb (like for example during the central TX reallocation procedure), depending on the value of bool tail_tag, but not to both. We need to generalize DSA to cater for these odd switches by transforming the 'overhead / tail_tag' pair into 'needed_headroom / needed_tailroom'. The DSA master's MTU is increased to account for both. The flow dissector code is modified such that it only calls the DSA adjustment callback if the tagger has a non-zero header length. Taggers are trivially modified to declare either needed_headroom or needed_tailroom, based on the tail_tag value that they currently declare. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 28 4月, 2021 3 次提交
-
-
由 Yangbo Lu 提交于
Free skb->cb usage in core driver and let device drivers decide to use or not. The reason having a DSA_SKB_CB(skb)->clone was because dsa_skb_tx_timestamp() which may set the clone pointer was called before p->xmit() which would use the clone if any, and the device driver has no way to initialize the clone pointer. This patch just put memset(skb->cb, 0, sizeof(skb->cb)) at beginning of dsa_slave_xmit(). Some new features in the future, like one-step timestamp may need more bytes of skb->cb to use in dsa_skb_tx_timestamp(), and p->xmit(). Signed-off-by: NYangbo Lu <yangbo.lu@nxp.com> Acked-by: NRichard Cochran <richardcochran@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Yangbo Lu 提交于
It was a waste to clone skb directly in dsa_skb_tx_timestamp(). For one-step timestamping, a clone was not needed. For any failure of port_txtstamp (this may usually happen), the skb clone had to be freed. So this patch moves skb cloning for tx timestamp out of dsa core, and let drivers clone skb in port_txtstamp if they really need. Signed-off-by: NYangbo Lu <yangbo.lu@nxp.com> Tested-by: NKurt Kanzenbach <kurt@linutronix.de> Acked-by: NRichard Cochran <richardcochran@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Yangbo Lu 提交于
Move ptp_classify_raw out of dsa core driver for handling tx timestamp request. Let device drivers do this if they want. Not all drivers want to limit tx timestamping for only PTP packet. Signed-off-by: NYangbo Lu <yangbo.lu@nxp.com> Tested-by: NKurt Kanzenbach <kurt@linutronix.de> Acked-by: NRichard Cochran <richardcochran@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 21 4月, 2021 2 次提交
-
-
由 Tobias Waldekranz 提交于
Some combinations of tag protocols and Ethernet controllers are incompatible, and it is hard for the driver to keep track of these. Therefore, allow the device tree author (typically the board vendor) to inform the driver of this fact by selecting an alternate protocol that is known to work. Signed-off-by: NTobias Waldekranz <tobias@waldekranz.com> Reviewed-by: NVladimir Oltean <olteanv@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Oleksij Rempel 提交于
Most of generic selftest should be able to work with probably all ethernet controllers. The DSA switches are not exception, so enable it by default at least for DSA. This patch was tested with SJA1105 and AR9331. Signed-off-by: NOleksij Rempel <o.rempel@pengutronix.de> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 14 4月, 2021 1 次提交
-
-
由 Michael Walle 提交于
of_get_mac_address() returns a "const void*" pointer to a MAC address. Lately, support to fetch the MAC address by an NVMEM provider was added. But this will only work with platform devices. It will not work with PCI devices (e.g. of an integrated root complex) and esp. not with DSA ports. There is an of_* variant of the nvmem binding which works without devices. The returned data of a nvmem_cell_read() has to be freed after use. On the other hand the return of_get_mac_address() points to some static data without a lifetime. The trick for now, was to allocate a device resource managed buffer which is then returned. This will only work if we have an actual device. Change it, so that the caller of of_get_mac_address() has to supply a buffer where the MAC address is written to. Unfortunately, this will touch all drivers which use the of_get_mac_address(). Usually the code looks like: const char *addr; addr = of_get_mac_address(np); if (!IS_ERR(addr)) ether_addr_copy(ndev->dev_addr, addr); This can then be simply rewritten as: of_get_mac_address(np, ndev->dev_addr); Sometimes is_valid_ether_addr() is used to test the MAC address. of_get_mac_address() already makes sure, it just returns a valid MAC address. Thus we can just test its return code. But we have to be careful if there are still other sources for the MAC address before the of_get_mac_address(). In this case we have to keep the is_valid_ether_addr() call. The following coccinelle patch was used to convert common cases to the new style. Afterwards, I've manually gone over the drivers and fixed the return code variable: either used a new one or if one was already available use that. Mansour Moufid, thanks for that coccinelle patch! <spml> @a@ identifier x; expression y, z; @@ - x = of_get_mac_address(y); + x = of_get_mac_address(y, z); <... - ether_addr_copy(z, x); ...> @@ identifier a.x; @@ - if (<+... x ...+>) {} @@ identifier a.x; @@ if (<+... x ...+>) { ... } - else {} @@ identifier a.x; expression e; @@ - if (<+... x ...+>@e) - {} - else + if (!(e)) {...} @@ expression x, y, z; @@ - x = of_get_mac_address(y, z); + of_get_mac_address(y, z); ... when != x </spml> All drivers, except drivers/net/ethernet/aeroflex/greth.c, were compile-time tested. Suggested-by: NAndrew Lunn <andrew@lunn.ch> Signed-off-by: NMichael Walle <michael@walle.cc> Reviewed-by: NAndrew Lunn <andrew@lunn.ch> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 19 3月, 2021 1 次提交
-
-
由 Tobias Waldekranz 提交于
In order for a driver to be able to query a bridge for information about itself, e.g. reading out port flags, it has to use a netdev that is known to the bridge. In the simple case, that is just the netdev representing the port, e.g. swp0 or swp1 in this example: br0 / \ swp0 swp1 But in the case of an offloaded lag, this will be the bond or team interface, e.g. bond0 in this example: br0 / bond0 / \ swp0 swp1 Add a helper that hides some of this complexity from the drivers. Then, redefine dsa_port_offloads_bridge_port using the helper to avoid double accounting of the set of possible offloaded uppers. Signed-off-by: NTobias Waldekranz <tobias@waldekranz.com> Reviewed-by: NVladimir Oltean <olteanv@gmail.com> Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 18 3月, 2021 1 次提交
-
-
由 Álvaro Fernández Rojas 提交于
Add support for legacy Broadcom tags, which are similar to DSA_TAG_PROTO_BRCM. These tags are used on BCM5325, BCM5365 and BCM63xx switches. Signed-off-by: NÁlvaro Fernández Rojas <noltari@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 17 2月, 2021 1 次提交
-
-
由 Horatiu Vultur 提交于
Add support for offloading MRP in HW. Currently implement the switchdev calls 'SWITCHDEV_OBJ_ID_MRP', 'SWITCHDEV_OBJ_ID_RING_ROLE_MRP', to allow to create MRP instances and to set the role of these instances. Add DSA_NOTIFIER_MRP_ADD/DEL and DSA_NOTIFIER_MRP_ADD/DEL_RING_ROLE which calls to .port_mrp_add/del and .port_mrp_add/del_ring_role in the DSA driver for the switch. Signed-off-by: NHoratiu Vultur <horatiu.vultur@microchip.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 15 2月, 2021 3 次提交
-
-
由 Vladimir Oltean 提交于
Some drivers can't dynamically change the VLAN filtering option, or impose some restrictions, it would be nice to propagate this info through netlink instead of printing it to a kernel log that might never be read. Also netlink extack includes the module that emitted the message, which means that it's easier to figure out which ones are driver-generated errors as opposed to command misuse. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Vladimir Oltean 提交于
Allow drivers to communicate their restrictions to user space directly, instead of printing to the kernel log. Where the conversion would have been lossy and things like VLAN ID could no longer be conveyed (due to the lack of support for printf format specifier in netlink extack), I chose to keep the messages in full form to the kernel log only, and leave it up to individual driver maintainers to move more messages to extack. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Vladimir Oltean 提交于
The ocelot tagger is a hot mess currently, it relies on memory initialized by the attached driver for basic frame transmission. This is against all that DSA tagging protocols stand for, which is that the transmission and reception of a DSA-tagged frame, the data path, should be independent from the switch control path, because the tag protocol is in principle hot-pluggable and reusable across switches (even if in practice it wasn't until very recently). But if another driver like dsa_loop wants to make use of tag_ocelot, it couldn't. This was done to have common code between Felix and Ocelot, which have one bit difference in the frame header format. Quoting from commit 67c24049 ("net: dsa: felix: create a template for the DSA tags on xmit"): Other alternatives have been analyzed, such as: - Create a separate tag_seville.c: too much code duplication for just 1 bit field difference. - Create a separate DSA_TAG_PROTO_SEVILLE under tag_ocelot.c, just like tag_brcm.c, which would have a separate .xmit function. Again, too much code duplication for just 1 bit field difference. - Allocate the template from the init function of the tag_ocelot.c module, instead of from the driver: couldn't figure out a method of accessing the correct port template corresponding to the correct tagger in the .xmit function. The really interesting part is that Seville should have had its own tagging protocol defined - it is not compatible on the wire with Ocelot, even for that single bit. In principle, a packet generated by DSA_TAG_PROTO_OCELOT when booted on NXP LS1028A would look in a certain way, but when booted on NXP T1040 it would look differently. The reverse is also true: a packet generated by a Seville switch would be interpreted incorrectly by Wireshark if it was told it was generated by an Ocelot switch. Actually things are a bit more nuanced. If we concentrate only on the DSA tag, what I said above is true, but Ocelot/Seville also support an optional DSA tag prefix, which can be short or long, and it is possible to distinguish the two taggers based on an integer constant put in that prefix. Nonetheless, creating a separate tagger is still justified, since the tag prefix is optional, and without it, there is again no way to distinguish. Claiming backwards binary compatibility is a bit more tough, since I've already changed the format of tag_ocelot once, in commit 5124197c ("net: dsa: tag_ocelot: use a short prefix on both ingress and egress"). Therefore I am not very concerned with treating this as a bugfix and backporting it to stable kernels (which would be another mess due to the fact that there would be lots of conflicts with the other DSA_TAG_PROTO* definitions). It's just simpler to say that the string values of the taggers have ABI value starting with kernel 5.12, which will be when the changing of tag protocol via /sys/class/net/<dsa-master>/dsa/tagging goes live. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 13 2月, 2021 1 次提交
-
-
由 Vladimir Oltean 提交于
There are multiple ways in which a PORT_BRIDGE_FLAGS attribute can be expressed by the bridge through switchdev, and not all of them can be emulated by DSA mid-layer API at the same time. One possible configuration is when the bridge offloads the port flags using a mask that has a single bit set - therefore only one feature should change. However, DSA currently groups together unicast and multicast flooding in the .port_egress_floods method, which limits our options when we try to add support for turning off broadcast flooding: do we extend .port_egress_floods with a third parameter which b53 and mv88e6xxx will ignore? But that means that the DSA layer, which currently implements the PRE_BRIDGE_FLAGS attribute all by itself, will see that .port_egress_floods is implemented, and will report that all 3 types of flooding are supported - not necessarily true. Another configuration is when the user specifies more than one flag at the same time, in the same netlink message. If we were to create one individual function per offloadable bridge port flag, we would limit the expressiveness of the switch driver of refusing certain combinations of flag values. For example, a switch may not have an explicit knob for flooding of unknown multicast, just for flooding in general. In that case, the only correct thing to do is to allow changes to BR_FLOOD and BR_MCAST_FLOOD in tandem, and never allow mismatched values. But having a separate .port_set_unicast_flood and .port_set_multicast_flood would not allow the driver to possibly reject that. Also, DSA doesn't consider it necessary to inform the driver that a SWITCHDEV_ATTR_ID_BRIDGE_MROUTER attribute was offloaded, because it just calls .port_egress_floods for the CPU port. When we'll add support for the plain SWITCHDEV_ATTR_ID_PORT_MROUTER, that will become a real problem because the flood settings will need to be held statefully in the DSA middle layer, otherwise changing the mrouter port attribute will impact the flooding attribute. And that's _assuming_ that the underlying hardware doesn't have anything else to do when a multicast router attaches to a port than flood unknown traffic to it. If it does, there will need to be a dedicated .port_set_mrouter anyway. So we need to let the DSA drivers see the exact form that the bridge passes this switchdev attribute in, otherwise we are standing in the way. Therefore we also need to use this form of language when communicating to the driver that it needs to configure its initial (before bridge join) and final (after bridge leave) port flags. The b53 and mv88e6xxx drivers are converted to the passthrough API and their implementation of .port_egress_floods is split into two: a function that configures unicast flooding and another for multicast. The mv88e6xxx implementation is quite hairy, and it turns out that the implementations of unknown unicast flooding are actually the same for 6185 and for 6352: behind the confusing names actually lie two individual bits: NO_UNKNOWN_MC -> FLOOD_UC = 0x4 = BIT(2) NO_UNKNOWN_UC -> FLOOD_MC = 0x8 = BIT(3) so there was no reason to entangle them in the first place. Whereas the 6185 writes to MV88E6185_PORT_CTL0_FORWARD_UNKNOWN of PORT_CTL0, which has the exact same bit index. I have left the implementations separate though, for the only reason that the names are different enough to confuse me, since I am not able to double-check with a user manual. The multicast flooding setting for 6185 is in a different register than for 6352 though. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 12 2月, 2021 1 次提交
-
-
由 George McCollister 提交于
Add support for offloading of HSR/PRP (IEC 62439-3) tag insertion tag removal, duplicate generation and forwarding on DSA switches. Add DSA_NOTIFIER_HSR_JOIN and DSA_NOTIFIER_HSR_LEAVE which trigger calls to .port_hsr_join and .port_hsr_leave in the DSA driver for the switch. The DSA switch driver should then set netdev feature flags for the HSR/PRP operation that it offloads. NETIF_F_HW_HSR_TAG_INS NETIF_F_HW_HSR_TAG_RM NETIF_F_HW_HSR_FWD NETIF_F_HW_HSR_DUP Signed-off-by: NGeorge McCollister <george.mccollister@gmail.com> Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com> Reviewed-by: NVladimir Oltean <olteanv@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 30 1月, 2021 3 次提交
-
-
由 Vladimir Oltean 提交于
There are use cases for which the existing tagger, based on the NPI (Node Processor Interface) functionality, is insufficient. Namely: - Frames injected through the NPI port bypass the frame analyzer, so no source address learning is performed, no TSN stream classification, etc. - Flow control is not functional over an NPI port (PAUSE frames are encapsulated in the same Extraction Frame Header as all other frames) - There can be at most one NPI port configured for an Ocelot switch. But in NXP LS1028A and T1040 there are two Ethernet CPU ports. The non-NPI port is currently either disabled, or operated as a plain user port (albeit an internally-facing one). Having the ability to configure the two CPU ports symmetrically could pave the way for e.g. creating a LAG between them, to increase bandwidth seamlessly for the system. So there is a desire to have an alternative to the NPI mode. This change keeps the default tagger for the Seville and Felix switches as "ocelot", but it can be changed via the following device attribute: echo ocelot-8021q > /sys/class/<dsa-master>/dsa/tagging Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: NFlorian Fainelli <f.fainelli@gmail.com> Signed-off-by: NJakub Kicinski <kuba@kernel.org>
-
由 Vladimir Oltean 提交于
Currently DSA exposes the following sysfs: $ cat /sys/class/net/eno2/dsa/tagging ocelot which is a read-only device attribute, introduced in the kernel as commit 98cdb480 ("net: dsa: Expose tagging protocol to user-space"), and used by libpcap since its commit 993db3800d7d ("Add support for DSA link-layer types"). It would be nice if we could extend this device attribute by making it writable: $ echo ocelot-8021q > /sys/class/net/eno2/dsa/tagging This is useful with DSA switches that can make use of more than one tagging protocol. It may be useful in dsa_loop in the future too, to perform offline testing of various taggers, or for changing between dsa and edsa on Marvell switches, if that is desirable. In terms of implementation, drivers can support this feature by implementing .change_tag_protocol, which should always leave the switch in a consistent state: either with the new protocol if things went well, or with the old one if something failed. Teardown of the old protocol, if necessary, must be handled by the driver. Some things remain as before: - The .get_tag_protocol is currently only called at probe time, to load the initial tagging protocol driver. Nonetheless, new drivers should report the tagging protocol in current use now. - The driver should manage by itself the initial setup of tagging protocol, no later than the .setup() method, as well as destroying resources used by the last tagger in use, no earlier than the .teardown() method. For multi-switch DSA trees, error handling is a bit more complicated, since e.g. the 5th out of 7 switches may fail to change the tag protocol. When that happens, a revert to the original tag protocol is attempted, but that may fail too, leaving the tree in an inconsistent state despite each individual switch implementing .change_tag_protocol transactionally. Since the intersection between drivers that implement .change_tag_protocol and drivers that support D in DSA is currently the empty set, the possibility for this error to happen is ignored for now. Testing: $ insmod mscc_felix.ko [ 79.549784] mscc_felix 0000:00:00.5: Adding to iommu group 14 [ 79.565712] mscc_felix 0000:00:00.5: Failed to register DSA switch: -517 $ insmod tag_ocelot.ko $ rmmod mscc_felix.ko $ insmod mscc_felix.ko [ 97.261724] libphy: VSC9959 internal MDIO bus: probed [ 97.267363] mscc_felix 0000:00:00.5: Found PCS at internal MDIO address 0 [ 97.274998] mscc_felix 0000:00:00.5: Found PCS at internal MDIO address 1 [ 97.282561] mscc_felix 0000:00:00.5: Found PCS at internal MDIO address 2 [ 97.289700] mscc_felix 0000:00:00.5: Found PCS at internal MDIO address 3 [ 97.599163] mscc_felix 0000:00:00.5 swp0 (uninitialized): PHY [0000:00:00.3:10] driver [Microsemi GE VSC8514 SyncE] (irq=POLL) [ 97.862034] mscc_felix 0000:00:00.5 swp1 (uninitialized): PHY [0000:00:00.3:11] driver [Microsemi GE VSC8514 SyncE] (irq=POLL) [ 97.950731] mscc_felix 0000:00:00.5 swp0: configuring for inband/qsgmii link mode [ 97.964278] 8021q: adding VLAN 0 to HW filter on device swp0 [ 98.146161] mscc_felix 0000:00:00.5 swp2 (uninitialized): PHY [0000:00:00.3:12] driver [Microsemi GE VSC8514 SyncE] (irq=POLL) [ 98.238649] mscc_felix 0000:00:00.5 swp1: configuring for inband/qsgmii link mode [ 98.251845] 8021q: adding VLAN 0 to HW filter on device swp1 [ 98.433916] mscc_felix 0000:00:00.5 swp3 (uninitialized): PHY [0000:00:00.3:13] driver [Microsemi GE VSC8514 SyncE] (irq=POLL) [ 98.485542] mscc_felix 0000:00:00.5: configuring for fixed/internal link mode [ 98.503584] mscc_felix 0000:00:00.5: Link is Up - 2.5Gbps/Full - flow control rx/tx [ 98.527948] device eno2 entered promiscuous mode [ 98.544755] DSA: tree 0 setup $ ping 10.0.0.1 PING 10.0.0.1 (10.0.0.1): 56 data bytes 64 bytes from 10.0.0.1: seq=0 ttl=64 time=2.337 ms 64 bytes from 10.0.0.1: seq=1 ttl=64 time=0.754 ms ^C - 10.0.0.1 ping statistics - 2 packets transmitted, 2 packets received, 0% packet loss round-trip min/avg/max = 0.754/1.545/2.337 ms $ cat /sys/class/net/eno2/dsa/tagging ocelot $ cat ./test_ocelot_8021q.sh #!/bin/bash ip link set swp0 down ip link set swp1 down ip link set swp2 down ip link set swp3 down ip link set swp5 down ip link set eno2 down echo ocelot-8021q > /sys/class/net/eno2/dsa/tagging ip link set eno2 up ip link set swp0 up ip link set swp1 up ip link set swp2 up ip link set swp3 up ip link set swp5 up $ ./test_ocelot_8021q.sh ./test_ocelot_8021q.sh: line 9: echo: write error: Protocol not available $ rmmod tag_ocelot.ko rmmod: can't unload module 'tag_ocelot': Resource temporarily unavailable $ insmod tag_ocelot_8021q.ko $ ./test_ocelot_8021q.sh $ cat /sys/class/net/eno2/dsa/tagging ocelot-8021q $ rmmod tag_ocelot.ko $ rmmod tag_ocelot_8021q.ko rmmod: can't unload module 'tag_ocelot_8021q': Resource temporarily unavailable $ ping 10.0.0.1 PING 10.0.0.1 (10.0.0.1): 56 data bytes 64 bytes from 10.0.0.1: seq=0 ttl=64 time=0.953 ms 64 bytes from 10.0.0.1: seq=1 ttl=64 time=0.787 ms 64 bytes from 10.0.0.1: seq=2 ttl=64 time=0.771 ms $ rmmod mscc_felix.ko [ 645.544426] mscc_felix 0000:00:00.5: Link is Down [ 645.838608] DSA: tree 0 torn down $ rmmod tag_ocelot_8021q.ko Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NJakub Kicinski <kuba@kernel.org>
-
由 Vladimir Oltean 提交于
Cascading DSA switches can be done multiple ways. There is the brute force approach / tag stacking, where one upstream switch, located between leaf switches and the host Ethernet controller, will just happily transport the DSA header of those leaf switches as payload. For this kind of setups, DSA works without any special kind of treatment compared to a single switch - they just aren't aware of each other. Then there's the approach where the upstream switch understands the tags it transports from its leaves below, as it doesn't push a tag of its own, but it routes based on the source port & switch id information present in that tag (as opposed to DMAC & VID) and it strips the tag when egressing a front-facing port. Currently only Marvell implements the latter, and Marvell DSA trees contain only Marvell switches. So it is safe to say that DSA trees already have a single tag protocol shared by all switches, and in fact this is what makes the switches able to understand each other. This fact is also implied by the fact that currently, the tagging protocol is reported as part of a sysfs installed on the DSA master and not per port, so it must be the same for all the ports connected to that DSA master regardless of the switch that they belong to. It's time to make this official and enforce it (yes, this also means we won't have any "switch understands tag to some extent but is not able to speak it" hardware oddities that we'll support in the future). This is needed due to the imminent introduction of the dsa_switch_ops:: change_tag_protocol driver API. When that is introduced, we'll have to notify switches of the tagging protocol that they're configured to use. Currently the tag_ops structure pointer is held only for CPU ports. But there are switches which don't have CPU ports and nonetheless still need to be configured. These would be Marvell leaf switches whose upstream port is just a DSA link. How do we inform these of their tagging protocol setup/deletion? One answer to the above would be: iterate through the DSA switch tree's ports once, list the CPU ports, get their tag_ops, then iterate again now that we have it, and notify everybody of that tag_ops. But what to do if conflicts appear between one cpu_dp->tag_ops and another? There's no escaping the fact that conflict resolution needs to be done, so we can be upfront about it. Ease our work and just keep the master copy of the tag_ops inside the struct dsa_switch_tree. Reference counting is now moved to be per-tree too, instead of per-CPU port. There are many places in the data path that access master->dsa_ptr->tag_ops and we would introduce unnecessary performance penalty going through yet another indirection, so keep those right where they are. Signed-off-by: NVladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: NJakub Kicinski <kuba@kernel.org>
-