1. 19 8月, 2018 1 次提交
    • L
      deprecate the '__deprecated' attribute warnings entirely and for good · 771c0353
      Linus Torvalds 提交于
      We haven't had lots of deprecation warnings lately, but the rdma use of
      it made them flare up again.
      
      They are not useful.  They annoy everybody, and nobody ever does
      anything about them, because it's always "somebody elses problem".  And
      when people start thinking that warnings are normal, they stop looking
      at them, and the real warnings that mean something go unnoticed.
      
      If you want to get rid of a function, just get rid of it.  Convert every
      user to the new world order.
      
      And if you can't do that, then don't annoy everybody else with your
      marking that says "I couldn't be bothered to fix this, so I'll just spam
      everybody elses build logs with warnings about my laziness".
      
      Make a kernelnewbies wiki page about things that could be cleaned up,
      write a blog post about it, or talk to people on the mailing lists.  But
      don't add warnings to the kernel build about cleanup that you think
      should happen but you aren't doing yourself.
      
      Don't.  Just don't.
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      771c0353
  2. 18 8月, 2018 28 次提交
  3. 17 8月, 2018 1 次提交
  4. 15 8月, 2018 2 次提交
  5. 14 8月, 2018 2 次提交
  6. 13 8月, 2018 4 次提交
    • P
      clocksource: new RISC-V SBI timer driver · 62b01943
      Palmer Dabbelt 提交于
      The RISC-V ISA defines a per-hart real-time clock and timer, which is
      present on all systems.  The clock is accessed via the 'rdtime'
      pseudo-instruction (which reads a CSR), and the timer is set via an SBI
      call.
      
      Contains various improvements from Atish Patra <atish.patra@wdc.com>.
      Signed-off-by: NDmitriy Cherkasov <dmitriy@oss-tech.org>
      Signed-off-by: NPalmer Dabbelt <palmer@dabbelt.com>
      [hch: remove dead code, add SPDX tags, used riscv_of_processor_hart(),
       minor cleanups, merged  hotplug cpu support and other improvements
       from Atish]
      Signed-off-by: NChristoph Hellwig <hch@lst.de>
      Acked-by: NThomas Gleixner <tglx@linutronix.de>
      Reviewed-by: NAtish Patra <atish.patra@wdc.com>
      Signed-off-by: NPalmer Dabbelt <palmer@sifive.com>
      62b01943
    • A
      bpf: Introduce bpf_skb_ancestor_cgroup_id helper · 77236281
      Andrey Ignatov 提交于
      == Problem description ==
      
      It's useful to be able to identify cgroup associated with skb in TC so
      that a policy can be applied to this skb, and existing bpf_skb_cgroup_id
      helper can help with this.
      
      Though in real life cgroup hierarchy and hierarchy to apply a policy to
      don't map 1:1.
      
      It's often the case that there is a container and corresponding cgroup,
      but there are many more sub-cgroups inside container, e.g. because it's
      delegated to containerized application to control resources for its
      subsystems, or to separate application inside container from infra that
      belongs to containerization system (e.g. sshd).
      
      At the same time it may be useful to apply a policy to container as a
      whole.
      
      If multiple containers like this are run on a host (what is often the
      case) and many of them have sub-cgroups, it may not be possible to apply
      per-container policy in TC with existing helpers such as
      bpf_skb_under_cgroup or bpf_skb_cgroup_id:
      
      * bpf_skb_cgroup_id will return id of immediate cgroup associated with
        skb, i.e. if it's a sub-cgroup inside container, it can't be used to
        identify container's cgroup;
      
      * bpf_skb_under_cgroup can work only with one cgroup and doesn't scale,
        i.e. if there are N containers on a host and a policy has to be
        applied to M of them (0 <= M <= N), it'd require M calls to
        bpf_skb_under_cgroup, and, if M changes, it'd require to rebuild &
        load new BPF program.
      
      == Solution ==
      
      The patch introduces new helper bpf_skb_ancestor_cgroup_id that can be
      used to get id of cgroup v2 that is an ancestor of cgroup associated
      with skb at specified level of cgroup hierarchy.
      
      That way admin can place all containers on one level of cgroup hierarchy
      (what is a good practice in general and already used in many
      configurations) and identify specific cgroup on this level no matter
      what sub-cgroup skb is associated with.
      
      E.g. if there is a cgroup hierarchy:
        root/
        root/container1/
        root/container1/app11/
        root/container1/app11/sub-app-a/
        root/container1/app12/
        root/container2/
        root/container2/app21/
        root/container2/app22/
        root/container2/app22/sub-app-b/
      
      , then having skb associated with root/container1/app11/sub-app-a/ it's
      possible to get ancestor at level 1, what is container1 and apply policy
      for this container, or apply another policy if it's container2.
      
      Policies can be kept e.g. in a hash map where key is a container cgroup
      id and value is an action.
      
      Levels where container cgroups are created are usually known in advance
      whether cgroup hierarchy inside container may be hard to predict
      especially in case when its creation is delegated to containerized
      application.
      
      == Implementation details ==
      
      The helper gets ancestor by walking parents up to specified level.
      
      Another option would be to get different kind of "id" from
      cgroup->ancestor_ids[level] and use it with idr_find() to get struct
      cgroup for ancestor. But that would require radix lookup what doesn't
      seem to be better (at least it's not obviously better).
      
      Format of return value of the new helper is same as that of
      bpf_skb_cgroup_id.
      Signed-off-by: NAndrey Ignatov <rdna@fb.com>
      Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
      77236281
    • D
      bpf: decouple btf from seq bpf fs dump and enable more maps · e8d2bec0
      Daniel Borkmann 提交于
      Commit a26ca7c9 ("bpf: btf: Add pretty print support to
      the basic arraymap") and 699c86d6 ("bpf: btf: add pretty
      print for hash/lru_hash maps") enabled support for BTF and
      dumping via BPF fs for array and hash/lru map. However, both
      can be decoupled from each other such that regular BPF maps
      can be supported for attaching BTF key/value information,
      while not all maps necessarily need to dump via map_seq_show_elem()
      callback.
      
      The basic sanity check which is a prerequisite for all maps
      is that key/value size has to match in any case, and some maps
      can have extra checks via map_check_btf() callback, e.g.
      probing certain types or indicating no support in general. With
      that we can also enable retrieving BTF info for per-cpu map
      types and lpm.
      Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net>
      Acked-by: NAlexei Starovoitov <ast@kernel.org>
      Acked-by: NYonghong Song <yhs@fb.com>
      e8d2bec0
    • L
      init: rename and re-order boot_cpu_state_init() · b5b1404d
      Linus Torvalds 提交于
      This is purely a preparatory patch for upcoming changes during the 4.19
      merge window.
      
      We have a function called "boot_cpu_state_init()" that isn't really
      about the bootup cpu state: that is done much earlier by the similarly
      named "boot_cpu_init()" (note lack of "state" in name).
      
      This function initializes some hotplug CPU state, and needs to run after
      the percpu data has been properly initialized.  It even has a comment to
      that effect.
      
      Except it _doesn't_ actually run after the percpu data has been properly
      initialized.  On x86 it happens to do that, but on at least arm and
      arm64, the percpu base pointers are initialized by the arch-specific
      'smp_prepare_boot_cpu()' hook, which ran _after_ boot_cpu_state_init().
      
      This had some unexpected results, and in particular we have a patch
      pending for the merge window that did the obvious cleanup of using
      'this_cpu_write()' in the cpu hotplug init code:
      
        -       per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
        +       this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
      
      which is obviously the right thing to do.  Except because of the
      ordering issue, it actually failed miserably and unexpectedly on arm64.
      
      So this just fixes the ordering, and changes the name of the function to
      be 'boot_cpu_hotplug_init()' to make it obvious that it's about cpu
      hotplug state, because the core CPU state was supposed to have already
      been done earlier.
      
      Marked for stable, since the (not yet merged) patch that will show this
      problem is marked for stable.
      Reported-by: NVlastimil Babka <vbabka@suse.cz>
      Reported-by: NMian Yousaf Kaukab <yousaf.kaukab@suse.com>
      Suggested-by: NCatalin Marinas <catalin.marinas@arm.com>
      Acked-by: NThomas Gleixner <tglx@linutronix.de>
      Cc: Will Deacon <will.deacon@arm.com>
      Cc: stable@kernel.org
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      b5b1404d
  7. 12 8月, 2018 2 次提交