- 24 7月, 2018 11 次提交
-
-
由 Lukas Wunner 提交于
Up until now, pciehp's IRQ handler schedules a work item for each event, which in turn schedules a work item to enable or disable the slot. This double indirection was necessary because sleeping wasn't allowed in the IRQ handler. However it is now that pciehp has been converted to threaded IRQ handling and polling, so handle events synchronously in pciehp_ist() and remove the work item infrastructure (with the exception of work items to handle a button press after the 5 second delay). For link or presence change events, move the register read to determine the current link or presence state behind acquisition of the slot lock to prevent it from becoming stale while the lock is contended. Signed-off-by: NLukas Wunner <lukas@wunner.de> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com>
-
由 Lukas Wunner 提交于
If the attention button is pressed to power on the slot AND the user powers on the slot via sysfs before 5 seconds have elapsed AND powering on the slot fails because either the slot is unoccupied OR the latch is open, we neglect turning off the green LED so it keeps on blinking. That's because the error path of pciehp_sysfs_enable_slot() doesn't call pciehp_green_led_off(), unlike pciehp_power_thread() which does. The bug has been present since 2004 when the driver was introduced. Fix by deduplicating common code in pciehp_sysfs_enable_slot() and pciehp_power_thread() into a wrapper function pciehp_enable_slot() and renaming the existing function to __pciehp_enable_slot(). Same for pciehp_disable_slot(). This will also simplify the upcoming rework of pciehp's event handling. Signed-off-by: NLukas Wunner <lukas@wunner.de> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com>
-
由 Lukas Wunner 提交于
We've just converted pciehp to threaded IRQ handling, but still cannot sleep in pciehp_ist() because the function is also called in poll mode, which runs in softirq context (from a timer). Convert poll mode to a kthread so that pciehp_ist() always runs in task context. Signed-off-by: NLukas Wunner <lukas@wunner.de> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Cc: Thomas Gleixner <tglx@linutronix.de>
-
由 Lukas Wunner 提交于
pciehp's IRQ handler queues up a work item for each event signaled by the hardware. A more modern alternative is to let a long running kthread service the events. The IRQ handler's sole job is then to check whether the IRQ originated from the device in question, acknowledge its receipt to the hardware to quiesce the interrupt and wake up the kthread. One benefit is reduced latency to handle the IRQ, which is a necessity for realtime environments. Another benefit is that we can make pciehp simpler and more robust by handling events synchronously in process context, rather than asynchronously by queueing up work items. pciehp's usage of work items is a historic artifact, it predates the introduction of threaded IRQ handlers by two years. (The former was introduced in 2007 with commit 5d386e1a ("pciehp: Event handling rework"), the latter in 2009 with commit 3aa551c9 ("genirq: add threaded interrupt handler support").) Convert pciehp to threaded IRQ handling by retrieving the pending events in pciehp_isr(), saving them for later consumption by the thread handler pciehp_ist() and clearing them in the Slot Status register. By clearing the Slot Status (and thereby acknowledging the events) in pciehp_isr(), we can avoid requesting the IRQ with IRQF_ONESHOT, which would have the unpleasant side effect of starving devices sharing the IRQ until pciehp_ist() has finished. pciehp_isr() does not count how many times each event occurred, but merely records the fact *that* an event occurred. If the same event occurs a second time before pciehp_ist() is woken, that second event will not be recorded separately, which is problematic according to commit fad214b0 ("PCI: pciehp: Process all hotplug events before looking for new ones") because we may miss removal of a card in-between two back-to-back insertions. We're about to make pciehp_ist() resilient to missed events. The present commit regresses the driver's behavior temporarily in order to separate the changes into reviewable chunks. This doesn't affect regular slow-motion hotplug, only plug-unplug-plug operations that happen in a timespan shorter than wakeup of the IRQ thread. Signed-off-by: NLukas Wunner <lukas@wunner.de> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Mayurkumar Patel <mayurkumar.patel@intel.com> Cc: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
-
由 Lukas Wunner 提交于
Document the driver's data structures to lower the barrier to entry for contributors. Signed-off-by: NLukas Wunner <lukas@wunner.de> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com>
-
由 Lukas Wunner 提交于
Since commit 0f4bd801 ("PCI: hotplug: Drop checking of PCI_BRIDGE_ CONTROL in *_unconfigure_device()"), pciehp_unconfigure_device() can no longer fail, so declare it and its sole caller remove_board() void, in keeping with the usual kernel pattern that enablement can fail, but disablement cannot. No functional change intended. Signed-off-by: NLukas Wunner <lukas@wunner.de> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Cc: Mika Westerberg <mika.westerberg@linux.intel.com>
-
由 Lukas Wunner 提交于
pciehp_disable_slot() checks if the ctrl attribute of the slot is NULL and bails out if so. However the function is not called prior to the attribute being set in pcie_init_slot(), and pcie_init_slot() is not called if ctrl is NULL. So the check is unnecessary. Drop it. It has been present ever since the driver was introduced in 2004, but it was already unnecessary back then: https://git.kernel.org/tglx/history/c/c16b4b14d980Signed-off-by: NLukas Wunner <lukas@wunner.de> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com>
-
由 Lukas Wunner 提交于
Commit b440bde7 ("PCI: Add pci_ignore_hotplug() to ignore hotplug events for a device") iterates over the devices on a hotplug port's subordinate bus in pciehp's IRQ handler without acquiring pci_bus_sem. It is thus possible for a user to cause a crash by concurrently manipulating the device list, e.g. by disabling slot power via sysfs on a different CPU or by initiating a remove/rescan via sysfs. This can't be fixed by acquiring pci_bus_sem because it may sleep. The simplest fix is to avoid the list iteration altogether and just check the ignore_hotplug flag on the port itself. This works because pci_ignore_hotplug() sets the flag both on the device as well as on its parent bridge. We do lose the ability to print the name of the device blocking hotplug in the debug message, but that's probably bearable. Fixes: b440bde7 ("PCI: Add pci_ignore_hotplug() to ignore hotplug events for a device") Signed-off-by: NLukas Wunner <lukas@wunner.de> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Cc: stable@vger.kernel.org
-
由 Lukas Wunner 提交于
When pciehp is unbound (e.g. on unplug of a Thunderbolt device), the hotplug_slot struct is deregistered and thus freed before freeing the IRQ. The IRQ handler and the work items it schedules print the slot name referenced from the freed structure in various informational and debug log messages, each time resulting in a quadruple dereference of freed pointers (hotplug_slot -> pci_slot -> kobject -> name). At best the slot name is logged as "(null)", at worst kernel memory is exposed in logs or the driver crashes: pciehp 0000:10:00.0:pcie204: Slot((null)): Card not present An attacker may provoke the bug by unplugging multiple devices on a Thunderbolt daisy chain at once. Unplugging can also be simulated by powering down slots via sysfs. The bug is particularly easy to trigger in poll mode. It has been present since the driver's introduction in 2004: https://git.kernel.org/tglx/history/c/c16b4b14d980 Fix by rearranging teardown such that the IRQ is freed first. Run the work items queued by the IRQ handler to completion before freeing the hotplug_slot struct by draining the work queue from the ->release_slot callback which is invoked by pci_hp_deregister(). Signed-off-by: NLukas Wunner <lukas@wunner.de> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Cc: stable@vger.kernel.org # v2.6.4
-
由 Lukas Wunner 提交于
If addition of sysfs files fails on registration of a hotplug slot, the struct pci_slot as well as the entry in the slot_list is leaked. The issue has been present since the hotplug core was introduced in 2002: https://git.kernel.org/tglx/history/c/a8a2069f432c Perhaps the idea was that even though sysfs addition fails, the slot should still be usable. But that's not how drivers use the interface, they abort probe if a non-zero value is returned. Signed-off-by: NLukas Wunner <lukas@wunner.de> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Cc: stable@vger.kernel.org # v2.4.15+ Cc: Greg Kroah-Hartman <greg@kroah.com>
-
由 Lukas Wunner 提交于
Ten years ago, commit 58319b80 ("PCI: Hotplug core: remove 'name'") dropped the name element from struct hotplug_slot but neglected to update the skeleton driver. That same year, commit f46753c5 ("PCI: introduce pci_slot") raised the number of arguments to pci_hp_register() from one to four. Fourteen years ago, historic commit 7ab60fc1b8e7 ("PCI Hotplug skeleton: final cleanups") removed all usages of the retval variable from pcihp_skel_init() but not the variable itself, provoking a compiler warning: https://git.kernel.org/tglx/history/c/7ab60fc1b8e7 It seems fair to assume the driver hasn't been used as a template for a new driver in a while. Per Bjorn's and Christoph's preference, delete it. Signed-off-by: NLukas Wunner <lukas@wunner.de> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Cc: Christoph Hellwig <hch@lst.de>
-
- 27 6月, 2018 1 次提交
-
-
由 Bjorn Helgaas 提交于
The shpchp driver registers for all PCI bridge devices. Its probe method should fail if either (1) the bridge doesn't have an SHPC or (2) the OS isn't allowed to use it (the platform firmware may be operating the SHPC itself). Separate these two tests into: - A new shpc_capable() that looks for the SHPC hardware and is applicable on all systems (ACPI and non-ACPI), and - A simplified acpi_get_hp_hw_control_from_firmware() that we call only when we already know an SHPC exists and there may be ACPI methods to either request permission to use it (_OSC) or transfer control to the OS (OSHP). acpi_get_hp_hw_control_from_firmware() is implemented when CONFIG_ACPI=y, but does nothing if the current platform doesn't support ACPI. Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Reviewed-by: NMika Westerberg <mika.westerberg@linux.intel.com>
-
- 26 6月, 2018 1 次提交
-
-
由 Bjorn Helgaas 提交于
An SHPC can be operated either by platform firmware or by the OS. The OS uses a host bridge ACPI _OSC method to negotiate for control of SHPC. If firmware wants to prevent an OS from operating an SHPC, it must supply an _OSC method that declines to grant SHPC ownership to the OS. If acpi_pci_find_root() returns NULL, it means there's no ACPI host bridge device (PNP0A03 or PNP0A08) and hence no _OSC method, so the OS is always allowed to manage the SHPC. Fix a NULL pointer dereference when CONFIG_ACPI=y but the current hardware/firmware platform doesn't support ACPI. In that case, acpi_get_hp_hw_control_from_firmware() is implemented but acpi_pci_find_root() returns NULL. Fixes: 90cc0c3c ("PCI: shpchp: Add shpchp_is_native()") Link: https://lkml.kernel.org/r/20180621164715.28160-1-marc.zyngier@arm.comReported-by: NMarc Zyngier <marc.zyngier@arm.com> Tested-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Reviewed-by: NMika Westerberg <mika.westerberg@linux.intel.com>
-
- 13 6月, 2018 2 次提交
-
-
由 Kees Cook 提交于
The devm_kzalloc() function has a 2-factor argument form, devm_kcalloc(). This patch replaces cases of: devm_kzalloc(handle, a * b, gfp) with: devm_kcalloc(handle, a * b, gfp) as well as handling cases of: devm_kzalloc(handle, a * b * c, gfp) with: devm_kzalloc(handle, array3_size(a, b, c), gfp) as it's slightly less ugly than: devm_kcalloc(handle, array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: devm_kzalloc(handle, 4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. Some manual whitespace fixes were needed in this patch, as Coccinelle really liked to write "=devm_kcalloc..." instead of "= devm_kcalloc...". The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ expression HANDLE; type TYPE; expression THING, E; @@ ( devm_kzalloc(HANDLE, - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | devm_kzalloc(HANDLE, - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression HANDLE; expression COUNT; typedef u8; typedef __u8; @@ ( devm_kzalloc(HANDLE, - sizeof(u8) * (COUNT) + COUNT , ...) | devm_kzalloc(HANDLE, - sizeof(__u8) * (COUNT) + COUNT , ...) | devm_kzalloc(HANDLE, - sizeof(char) * (COUNT) + COUNT , ...) | devm_kzalloc(HANDLE, - sizeof(unsigned char) * (COUNT) + COUNT , ...) | devm_kzalloc(HANDLE, - sizeof(u8) * COUNT + COUNT , ...) | devm_kzalloc(HANDLE, - sizeof(__u8) * COUNT + COUNT , ...) | devm_kzalloc(HANDLE, - sizeof(char) * COUNT + COUNT , ...) | devm_kzalloc(HANDLE, - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ expression HANDLE; type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ expression HANDLE; identifier SIZE, COUNT; @@ - devm_kzalloc + devm_kcalloc (HANDLE, - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression HANDLE; expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( devm_kzalloc(HANDLE, - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | devm_kzalloc(HANDLE, - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | devm_kzalloc(HANDLE, - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | devm_kzalloc(HANDLE, - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | devm_kzalloc(HANDLE, - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | devm_kzalloc(HANDLE, - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | devm_kzalloc(HANDLE, - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | devm_kzalloc(HANDLE, - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression HANDLE; expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( devm_kzalloc(HANDLE, - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | devm_kzalloc(HANDLE, - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | devm_kzalloc(HANDLE, - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | devm_kzalloc(HANDLE, - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | devm_kzalloc(HANDLE, - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | devm_kzalloc(HANDLE, - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ expression HANDLE; identifier STRIDE, SIZE, COUNT; @@ ( devm_kzalloc(HANDLE, - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | devm_kzalloc(HANDLE, - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | devm_kzalloc(HANDLE, - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | devm_kzalloc(HANDLE, - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | devm_kzalloc(HANDLE, - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | devm_kzalloc(HANDLE, - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | devm_kzalloc(HANDLE, - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | devm_kzalloc(HANDLE, - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression HANDLE; expression E1, E2, E3; constant C1, C2, C3; @@ ( devm_kzalloc(HANDLE, C1 * C2 * C3, ...) | devm_kzalloc(HANDLE, - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | devm_kzalloc(HANDLE, - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | devm_kzalloc(HANDLE, - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | devm_kzalloc(HANDLE, - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression HANDLE; expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( devm_kzalloc(HANDLE, sizeof(THING) * C2, ...) | devm_kzalloc(HANDLE, sizeof(TYPE) * C2, ...) | devm_kzalloc(HANDLE, C1 * C2 * C3, ...) | devm_kzalloc(HANDLE, C1 * C2, ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - (E1) * E2 + E1, E2 , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - (E1) * (E2) + E1, E2 , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - E1 * E2 + E1, E2 , ...) ) Signed-off-by: NKees Cook <keescook@chromium.org>
-
由 Kees Cook 提交于
The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: NKees Cook <keescook@chromium.org>
-
- 11 6月, 2018 12 次提交
-
-
由 Bjorn Helgaas 提交于
Use "PCI Express" consistently in Kconfig text. No functional change intended. Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Reviewed-by: NKeith Busch <keith.busch@intel.com>
-
由 Bjorn Helgaas 提交于
Hoist aerdrv.c, aer_inject.c up to drivers/pci/pcie/ so they're next to other PCIe service drivers. No functional change intended. Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Reviewed-by: NKeith Busch <keith.busch@intel.com>
-
由 Bjorn Helgaas 提交于
Squash Kconfig.debug into Kconfig. No functional change intended. Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Reviewed-by: NKeith Busch <keith.busch@intel.com>
-
由 Bjorn Helgaas 提交于
Most of the things in aerdrv.h are only used in aerdrv.c, so move them there. No functional change intended. Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Reviewed-by: NKeith Busch <keith.busch@intel.com>
-
由 Bjorn Helgaas 提交于
The aer_irq() declaration is the only thing needed by aer_inject.c. Move it to portdrv.h so we eventually get rid of aerdrv.h completely. No functional change intended. Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Reviewed-by: NKeith Busch <keith.busch@intel.com>
-
由 Bjorn Helgaas 提交于
Move pcie_aer_get_firmware_first() to portdrv.h, where it can be more easily shared between AER and DPC. Then DPC no longer needs to include aer/aerdrv.h. No functional change intended. Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Reviewed-by: NKeith Busch <keith.busch@intel.com>
-
由 Bjorn Helgaas 提交于
pcie_port_bus_type is already declared in portdrv.h, so remove the unnecessary duplicate declaration in aerdrv.h. No functional change intended. Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Reviewed-by: NKeith Busch <keith.busch@intel.com>
-
由 Bjorn Helgaas 提交于
Squash ecrc.c into aerdrv.c. No functional change intended. Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Reviewed-by: NKeith Busch <keith.busch@intel.com>
-
由 Bjorn Helgaas 提交于
Squash aerdrv_acpi.c into aerdrv.c. No functional change intended. Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Reviewed-by: NKeith Busch <keith.busch@intel.com>
-
由 Bjorn Helgaas 提交于
Squash aerdrv_errprint.c into aerdrv.c. No functional change intended. Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Reviewed-by: NKeith Busch <keith.busch@intel.com>
-
由 Bjorn Helgaas 提交于
Squash aerdrv_core.c into aerdrv.c. No functional change intended. Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Reviewed-by: NKeith Busch <keith.busch@intel.com>
-
由 Bjorn Helgaas 提交于
Reorder code to group probe/remove stuff together. No functional change intended. Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Reviewed-by: NKeith Busch <keith.busch@intel.com>
-
- 08 6月, 2018 2 次提交
-
-
由 Bjorn Helgaas 提交于
Reorder code to remove forward declarations. No functional change intended. Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Reviewed-by: NKeith Busch <keith.busch@intel.com>
-
由 Shawn Lin 提交于
Native PCI drivers for root complex devices were originally all in drivers/pci/host/. Some of these devices can also be operated in endpoint mode. Drivers for endpoint mode didn't seem to fit in the "host" directory, so we put both the root complex and endpoint drivers in per-device directories, e.g., drivers/pci/dwc/, drivers/pci/cadence/, etc. These per-device directories contain trivial Kconfig and Makefiles and clutter drivers/pci/. Make a new drivers/pci/controllers/ directory and collect all the device-specific drivers there. No functional change intended. Link: https://lkml.kernel.org/r/1520304202-232891-1-git-send-email-shawn.lin@rock-chips.comSigned-off-by: NShawn Lin <shawn.lin@rock-chips.com> [bhelgaas: changelog] Signed-off-by: NBjorn Helgaas <bhelgaas@google.com>
-
- 06 6月, 2018 2 次提交
-
-
由 Keith Busch 提交于
The AER driver only needed the pcie_device to get to the port pci_dev. Save the pci_dev pointer directly in struct aer_rpc and remove the unnecessary indirection. Signed-off-by: NKeith Busch <keith.busch@intel.com> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com>
-
由 Keith Busch 提交于
Remove unused "struct pcie_device *" parameters to handle_error_source() and aer_process_err_devices(). No functional change intended. Signed-off-by: NKeith Busch <keith.busch@intel.com> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com>
-
- 05 6月, 2018 9 次提交
-
-
由 Arnd Bergmann 提交于
When CONFIG_GPIOLIB is disabled, we run into a build failure: drivers/pci/dwc/pcie-qcom.c: In function 'qcom_pcie_probe': drivers/pci/dwc/pcie-qcom.c:1223:16: error: implicit declaration of function 'devm_gpiod_get_optional'; did you mean 'devm_regulator_get_optional'? [-Werror=implicit-function-declaration] pcie->reset = devm_gpiod_get_optional(dev, "perst", GPIOD_OUT_LOW); Including gpio/consumer.h directly is the correct fix. Signed-off-by: NArnd Bergmann <arnd@arndb.de> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Reviewed-by: NBjorn Andersson <bjorn.andersson@linaro.org>
-
由 Mika Westerberg 提交于
pci_scan_child_bus_extend() complains when we assign an unreachable secondary bus number to a bridge. For example, given the topology below: +-1b.0-[01-39]----00.0-[02-3a]--+-00.0-[03]----00.0 +-01.0-[04-39]-- \-02.0-[3a]----00.0 it logs the following messages: pci_bus 0000:3a: [bus 3a] partially hidden behind bridge 0000:02 [bus 02-39] pci_bus 0000:3a: [bus 3a] partially hidden behind bridge 0000:01 [bus 01-39] These messages are incorrect (0000:02 is a bus, not a bridge) and confusing. Make the message more understandable: pci 0000:02:02.0: devices behind bridge are unusable because [bus 3a] cannot be assigned for them Also, remove the reference to CardBus, because this issue affects all varieties of PCI, not just CardBus. Suggested-by: NBjorn Helgaas <bhelgaas@google.com> Signed-off-by: NMika Westerberg <mika.westerberg@linux.intel.com> [bhelgaas: changelog] Signed-off-by: NBjorn Helgaas <bhelgaas@google.com>
-
由 Mika Westerberg 提交于
It is not immediately clear what the two functions actually return so add kernel-doc comment explaining it a bit better. Suggested-by: NBjorn Helgaas <bhelgaas@google.com> Signed-off-by: NMika Westerberg <mika.westerberg@linux.intel.com> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Reviewed-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Reviewed-by: NAndy Shevchenko <andriy.shevchenko@linux.intel.com>
-
由 Mika Westerberg 提交于
If there is only a single bridge on the bus, we assign all resources to it. Currently this is done as a part of the resource distribution loop but it does not have to be there, and moving it outside actually improves readability because we can then save one indent level in the loop. While there we can add hotplug_bridges == 1 && normal_bridges == 0 to the same block because they are dealt the same way. Suggested-by: NBjorn Helgaas <bhelgaas@google.com> Signed-off-by: NMika Westerberg <mika.westerberg@linux.intel.com> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Reviewed-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Reviewed-by: NAndy Shevchenko <andriy.shevchenko@linux.intel.com>
-
由 Mika Westerberg 提交于
When distributing extra bus number space to hotplug bridges for future extension, we don't account for the fact that there might be non-hotplug bridges on the bus after the hotplug bridges. For example: 01:00.0 --+- 02:00.0 (HotPlug-) -- Thunderbolt host controller +- 02:01.0 (HotPlug+) \- 02:02.0 (HotPlug-) -- xHCI host controller pci_scan_child_bus_extend() is supposed to distribute the remaining bus numbers to the hotplug bridge at 02:01.0, but only after accounting for all bridges on bus 02. Since we don't check whether there's another non-hotplug bridge after the hotplug bridge 02:01.0, it may not leave space for the non-hotplug bridge: pci 0000:00:1b.0: PCI bridge to [bus 01-39] (Root Port) pci 0000:01:00.0: PCI bridge to [bus 02-39] ... pci 0000:02:00.0: PCI bridge to [bus 03] pci 0000:02:01.0: PCI bridge to [bus 04] pci_bus 0000:04: [bus 04-39] extended by 0x35 pci_bus 0000:04: bus scan returning with max=39 pci_bus 0000:04: busn_res: [bus 04-39] end is updated to 39 pci 0000:02:02.0: scanning [bus 00-00] behind bridge, pass 1 pci_bus 0000:3a: scanning bus pci_bus 0000:3a: bus scan returning with max=3a pci_bus 0000:3a: busn_res: [bus 3a] end is updated to 3a pci_bus 0000:3a: [bus 3a] partially hidden behind bridge 0000:02 [bus 02-39] pci_bus 0000:3a: [bus 3a] partially hidden behind bridge 0000:01 [bus 01-39] pci_bus 0000:02: bus scan returning with max=3a pci_bus 0000:02: busn_res: [bus 02-39] end can not be updated to 3a The resulting 'lspci -t' output looks like this: +-1b.0-[01-39]----00.0-[02-3a]--+-00.0-[03]----00.0 ^^ +-01.0-[04-39]-- \-02.0-[3a]----00.0 ^^ The xHCI host controller behind 02:02.0 is not usable because it would have to be assigned bus 3a, which is not accessible through 00:1b.0. To fix this, reserve at least one bus for each bridge while scanning already configured bridges. Then use this information in the second scan to correct the available extra bus space for hotplug bridges. After this change the 'lspci -t' output is what is expected: +-1b.0-[01-39]----00.0-[02-39]--+-00.0-[03]----00.0 +-01.0-[04-38]-- \-02.0-[39]----00.0 The xHCI controller is now on bus 39, where it is usable. Fixes: 1c02ea81 ("PCI: Distribute available buses to hotplug-capable bridges") Reported-by: NMario Limonciello <mario.limonciello@dell.com> Signed-off-by: NMika Westerberg <mika.westerberg@linux.intel.com> [bhelgaas: changelog] Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Reviewed-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Reviewed-by: NAndy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: stable@vger.kernel.org
-
由 Mika Westerberg 提交于
Remove unnecessary parentheses. Signed-off-by: NMika Westerberg <mika.westerberg@linux.intel.com> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Reviewed-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Mika Westerberg 提交于
Following PCIehp mark the unplugged PCI devices disconnected. This makes sure PCI core code leaves the now missing hardware registers alone. Signed-off-by: NMika Westerberg <mika.westerberg@linux.intel.com> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Reviewed-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Reviewed-by: NAndy Shevchenko <andriy.shevchenko@linux.intel.com>
-
由 Mika Westerberg 提交于
When acpiphp re-enumerates a PCI hierarchy because of an ACPI Notify() event, we should skip bridges managed by native hotplug (pciehp or shpchp). We don't want to scan below a native hotplug bridge until the hotplug controller generates a hot-add event. A typical scenario is a Root Port leading to a Thunderbolt host router that remains powered off until something is connected to it. See [1] for the lspci details. 1. Before something is connected, only the Root Port exists. It has PCI_EXP_SLTCAP_HPC set and pciehp is responsible for hotplug: 00:1b.0 Root Port (HotPlug+) 2. When a USB-C or Thunderbolt device is connected, the Switch in the Thunderbolt host router is powered up, the Root Port signals a hotplug add event and pciehp enumerates the Switch: 01:00.0 Switch Upstream Port to [bus 02-39] 02:00.0 Switch Downstream Port to [bus 03] (HotPlug-, to NHI) 02:01.0 Switch Downstream Port to [bus 04-38] (HotPlug+, to Thunderbolt connector) 02:02.0 Switch Downstream Port to [bus 39] (HotPlug-, to xHCI) The 02:00.0 and 02:02.0 Ports lead to Endpoints that are not powered up yet. The Ports have PCI_EXP_SLTCAP_HPC cleared, so pciehp doesn't handle hotplug for them and we assign minimal resources to them. The 02:01.0 Port has PCI_EXP_SLTCAP_HPC set, so pciehp handles native hotplug events for it. 3. The BIOS powers up the xHCI controller. If a Thunderbolt device was connected (not just a USB-C device), it also powers up the NHI. Then it sends an ACPI Notify() to the Root Port, and acpiphp enumerates the new device(s): 03:00.0 Thunderbolt Host Controller (NHI) Endpoint 39:00.0 xHCI Endpoint 4. If a Thunderbolt device was connected, the host router firmware uses the NHI to set up Thunderbolt tunnels and triggers a native hotplug event (via 02:01.0 in this example). Then pciehp enumerates the new Thunderbolt devices: 04:00.0 Switch Upstream Port to [bus 05-38] 05:01.0 Switch Downstream Port to [bus 06-09] (HotPlug-) 05:04.0 Switch Downstream Port to [bus 0a-38] (HotPlug+) In this example, 05:01.0 leads to another Switch and some NICs. This subtree is static, so 05:01.0 doesn't support hotplug and has PCI_EXP_SLTCAP_HPC cleared. In step 3, acpiphp previously enumerated everything below the Root Port, including things below the 02:01.0 Port. We don't want that because pciehp expects to manage hotplug below that Port, and firmware on the host router may be in the middle of configuring its Link so it may not be ready yet. To make this work better with the native PCIe (pciehp) and standard PCI (shpchp) hotplug drivers, we let them handle all slot management and resource allocation for hotplug bridges and restrict ACPI hotplug to non-hotplug bridges. [1] https://bugzilla.kernel.org/show_bug.cgi?id=199581#c5 Link: https://lkml.kernel.org/r/20180529160155.1738-1-mika.westerberg@linux.intel.comSigned-off-by: NMika Westerberg <mika.westerberg@linux.intel.com> [bhelgaas: changelog, use hotplug_is_native() instead of dev->is_hotplug_bridge] Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Reviewed-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Reviewed-by: NAndy Shevchenko <andriy.shevchenko@linux.intel.com>
-
由 Mika Westerberg 提交于
In the same way we do for pciehp, add shpchp_is_native(), which returns true if the bridge should be handled by the native SHPC driver. Then convert the driver to use this function. Signed-off-by: NMika Westerberg <mika.westerberg@linux.intel.com> Signed-off-by: NBjorn Helgaas <bhelgaas@google.com>
-