1. 17 9月, 2014 4 次提交
  2. 23 7月, 2014 2 次提交
  3. 19 7月, 2014 1 次提交
  4. 26 9月, 2013 1 次提交
  5. 24 9月, 2013 1 次提交
    • D
      KEYS: Introduce a search context structure · 4bdf0bc3
      David Howells 提交于
      Search functions pass around a bunch of arguments, each of which gets copied
      with each call.  Introduce a search context structure to hold these.
      
      Whilst we're at it, create a search flag that indicates whether the search
      should be directly to the description or whether it should iterate through all
      keys looking for a non-description match.
      
      This will be useful when keyrings use a generic data struct with generic
      routines to manage their content as the search terms can just be passed
      through to the iterator callback function.
      
      Also, for future use, the data to be supplied to the match function is
      separated from the description pointer in the search context.  This makes it
      clear which is being supplied.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      4bdf0bc3
  6. 08 10月, 2012 1 次提交
    • D
      KEYS: Add payload preparsing opportunity prior to key instantiate or update · cf7f601c
      David Howells 提交于
      Give the key type the opportunity to preparse the payload prior to the
      instantiation and update routines being called.  This is done with the
      provision of two new key type operations:
      
      	int (*preparse)(struct key_preparsed_payload *prep);
      	void (*free_preparse)(struct key_preparsed_payload *prep);
      
      If the first operation is present, then it is called before key creation (in
      the add/update case) or before the key semaphore is taken (in the update and
      instantiate cases).  The second operation is called to clean up if the first
      was called.
      
      preparse() is given the opportunity to fill in the following structure:
      
      	struct key_preparsed_payload {
      		char		*description;
      		void		*type_data[2];
      		void		*payload;
      		const void	*data;
      		size_t		datalen;
      		size_t		quotalen;
      	};
      
      Before the preparser is called, the first three fields will have been cleared,
      the payload pointer and size will be stored in data and datalen and the default
      quota size from the key_type struct will be stored into quotalen.
      
      The preparser may parse the payload in any way it likes and may store data in
      the type_data[] and payload fields for use by the instantiate() and update()
      ops.
      
      The preparser may also propose a description for the key by attaching it as a
      string to the description field.  This can be used by passing a NULL or ""
      description to the add_key() system call or the key_create_or_update()
      function.  This cannot work with request_key() as that required the description
      to tell the upcall about the key to be created.
      
      This, for example permits keys that store PGP public keys to generate their own
      name from the user ID and public key fingerprint in the key.
      
      The instantiate() and update() operations are then modified to look like this:
      
      	int (*instantiate)(struct key *key, struct key_preparsed_payload *prep);
      	int (*update)(struct key *key, struct key_preparsed_payload *prep);
      
      and the new payload data is passed in *prep, whether or not it was preparsed.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Signed-off-by: NRusty Russell <rusty@rustcorp.com.au>
      cf7f601c
  7. 13 9月, 2012 1 次提交
    • D
      KEYS: Add payload preparsing opportunity prior to key instantiate or update · d4f65b5d
      David Howells 提交于
      Give the key type the opportunity to preparse the payload prior to the
      instantiation and update routines being called.  This is done with the
      provision of two new key type operations:
      
      	int (*preparse)(struct key_preparsed_payload *prep);
      	void (*free_preparse)(struct key_preparsed_payload *prep);
      
      If the first operation is present, then it is called before key creation (in
      the add/update case) or before the key semaphore is taken (in the update and
      instantiate cases).  The second operation is called to clean up if the first
      was called.
      
      preparse() is given the opportunity to fill in the following structure:
      
      	struct key_preparsed_payload {
      		char		*description;
      		void		*type_data[2];
      		void		*payload;
      		const void	*data;
      		size_t		datalen;
      		size_t		quotalen;
      	};
      
      Before the preparser is called, the first three fields will have been cleared,
      the payload pointer and size will be stored in data and datalen and the default
      quota size from the key_type struct will be stored into quotalen.
      
      The preparser may parse the payload in any way it likes and may store data in
      the type_data[] and payload fields for use by the instantiate() and update()
      ops.
      
      The preparser may also propose a description for the key by attaching it as a
      string to the description field.  This can be used by passing a NULL or ""
      description to the add_key() system call or the key_create_or_update()
      function.  This cannot work with request_key() as that required the description
      to tell the upcall about the key to be created.
      
      This, for example permits keys that store PGP public keys to generate their own
      name from the user ID and public key fingerprint in the key.
      
      The instantiate() and update() operations are then modified to look like this:
      
      	int (*instantiate)(struct key *key, struct key_preparsed_payload *prep);
      	int (*update)(struct key *key, struct key_preparsed_payload *prep);
      
      and the new payload data is passed in *prep, whether or not it was preparsed.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      d4f65b5d
  8. 30 7月, 2012 1 次提交
  9. 17 11月, 2011 1 次提交
  10. 08 3月, 2011 2 次提交
  11. 17 10月, 2007 1 次提交
    • D
      KEYS: Make request_key() and co fundamentally asynchronous · 76181c13
      David Howells 提交于
      Make request_key() and co fundamentally asynchronous to make it easier for
      NFS to make use of them.  There are now accessor functions that do
      asynchronous constructions, a wait function to wait for construction to
      complete, and a completion function for the key type to indicate completion
      of construction.
      
      Note that the construction queue is now gone.  Instead, keys under
      construction are linked in to the appropriate keyring in advance, and that
      anyone encountering one must wait for it to be complete before they can use
      it.  This is done automatically for userspace.
      
      The following auxiliary changes are also made:
      
       (1) Key type implementation stuff is split from linux/key.h into
           linux/key-type.h.
      
       (2) AF_RXRPC provides a way to allocate null rxrpc-type keys so that AFS does
           not need to call key_instantiate_and_link() directly.
      
       (3) Adjust the debugging macros so that they're -Wformat checked even if
           they are disabled, and make it so they can be enabled simply by defining
           __KDEBUG to be consistent with other code of mine.
      
       (3) Documentation.
      
      [alan@lxorguk.ukuu.org.uk: keys: missing word in documentation]
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Signed-off-by: NAlan Cox <alan@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      76181c13