1. 06 9月, 2016 3 次提交
  2. 31 8月, 2016 1 次提交
  3. 30 8月, 2016 8 次提交
  4. 27 8月, 2016 2 次提交
    • V
      fs/seq_file: fix out-of-bounds read · 088bf2ff
      Vegard Nossum 提交于
      seq_read() is a nasty piece of work, not to mention buggy.
      
      It has (I think) an old bug which allows unprivileged userspace to read
      beyond the end of m->buf.
      
      I was getting these:
      
          BUG: KASAN: slab-out-of-bounds in seq_read+0xcd2/0x1480 at addr ffff880116889880
          Read of size 2713 by task trinity-c2/1329
          CPU: 2 PID: 1329 Comm: trinity-c2 Not tainted 4.8.0-rc1+ #96
          Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.9.3-0-ge2fc41e-prebuilt.qemu-project.org 04/01/2014
          Call Trace:
            kasan_object_err+0x1c/0x80
            kasan_report_error+0x2cb/0x7e0
            kasan_report+0x4e/0x80
            check_memory_region+0x13e/0x1a0
            kasan_check_read+0x11/0x20
            seq_read+0xcd2/0x1480
            proc_reg_read+0x10b/0x260
            do_loop_readv_writev.part.5+0x140/0x2c0
            do_readv_writev+0x589/0x860
            vfs_readv+0x7b/0xd0
            do_readv+0xd8/0x2c0
            SyS_readv+0xb/0x10
            do_syscall_64+0x1b3/0x4b0
            entry_SYSCALL64_slow_path+0x25/0x25
          Object at ffff880116889100, in cache kmalloc-4096 size: 4096
          Allocated:
          PID = 1329
            save_stack_trace+0x26/0x80
            save_stack+0x46/0xd0
            kasan_kmalloc+0xad/0xe0
            __kmalloc+0x1aa/0x4a0
            seq_buf_alloc+0x35/0x40
            seq_read+0x7d8/0x1480
            proc_reg_read+0x10b/0x260
            do_loop_readv_writev.part.5+0x140/0x2c0
            do_readv_writev+0x589/0x860
            vfs_readv+0x7b/0xd0
            do_readv+0xd8/0x2c0
            SyS_readv+0xb/0x10
            do_syscall_64+0x1b3/0x4b0
            return_from_SYSCALL_64+0x0/0x6a
          Freed:
          PID = 0
          (stack is not available)
          Memory state around the buggy address:
           ffff88011688a000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
           ffff88011688a080: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
          >ffff88011688a100: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
      		       ^
           ffff88011688a180: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
           ffff88011688a200: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
          ==================================================================
          Disabling lock debugging due to kernel taint
      
      This seems to be the same thing that Dave Jones was seeing here:
      
        https://lkml.org/lkml/2016/8/12/334
      
      There are multiple issues here:
      
        1) If we enter the function with a non-empty buffer, there is an attempt
           to flush it. But it was not clearing m->from after doing so, which
           means that if we try to do this flush twice in a row without any call
           to traverse() in between, we are going to be reading from the wrong
           place -- the splat above, fixed by this patch.
      
        2) If there's a short write to userspace because of page faults, the
           buffer may already contain multiple lines (i.e. pos has advanced by
           more than 1), but we don't save the progress that was made so the
           next call will output what we've already returned previously. Since
           that is a much less serious issue (and I have a headache after
           staring at seq_read() for the past 8 hours), I'll leave that for now.
      
      Link: http://lkml.kernel.org/r/1471447270-32093-1-git-send-email-vegard.nossum@oracle.comSigned-off-by: NVegard Nossum <vegard.nossum@oracle.com>
      Reported-by: NDave Jones <davej@codemonkey.org.uk>
      Cc: Al Viro <viro@zeniv.linux.org.uk>
      Cc: <stable@vger.kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      088bf2ff
    • E
      dlm: fix malfunction of dlm_tool caused by debugfs changes · 079d37df
      Eric Ren 提交于
      With the current kernel, `dlm_tool lockdebug` fails as below:
      
      "dlm_tool lockdebug ED0BD86DCE724393918A1AE8FDBF1EE3
      can't open /sys/kernel/debug/dlm/ED0BD86DCE724393918A1AE8FDBF1EE3:
      Operation not permitted"
      
      This is because table_open() depends on file->f_op to tell which
      seq_file ops should be passed down. But, the original file ops in
      file->f_op is replaced by "debugfs_full_proxy_file_operations" with
      commit 49d200de ("debugfs: prevent access to removed files'
      private data").
      
      Currently, I can think up 2 solutions: 1st, replace
      debugfs_create_file() with debugfs_create_file_unsafe();
      2nd, make different table_open#() accordingly. The 1st one
      is neat, but I don't thoroughly understand its risk. Maybe
      someone has a better one.
      Signed-off-by: NEric Ren <zren@suse.com>
      Signed-off-by: NDavid Teigland <teigland@redhat.com>
      079d37df
  5. 25 8月, 2016 21 次提交
    • A
      fs/block_dev: fix potential NULL ptr deref in freeze_bdev() · 5bb53c0f
      Andrey Ryabinin 提交于
      Calling freeze_bdev() twice on the same block device without mounted
      filesystem get_super() will return NULL, which will lead to NULL-ptr
      dereference later in drop_super().
      
      Check get_super() result to fix that.
      
      Note, that this is a purely theoretical issue. We have only 3
      freeze_bdev() callers. 2 of them are in filesystem code and used on a
      device with mounted fs. The third one in lock_fs() has protection in
      upper-layer code against freezing block device the second time without
      thawing it first.
      Signed-off-by: NAndrey Ryabinin <aryabinin@virtuozzo.com>
      Reviewed-by: NChristoph Hellwig <hch@lst.de>
      Signed-off-by: NJens Axboe <axboe@fb.com>
      5bb53c0f
    • F
      Btrfs: fix lockdep warning on deadlock against an inode's log mutex · 28a23593
      Filipe Manana 提交于
      Commit 44f714da ("Btrfs: improve performance on fsync against new
      inode after rename/unlink"), which landed in 4.8-rc2, introduced a
      possibility for a deadlock due to double locking of an inode's log mutex
      by the same task, which lockdep reports with:
      
      [23045.433975] =============================================
      [23045.434748] [ INFO: possible recursive locking detected ]
      [23045.435426] 4.7.0-rc6-btrfs-next-34+ #1 Not tainted
      [23045.436044] ---------------------------------------------
      [23045.436044] xfs_io/3688 is trying to acquire lock:
      [23045.436044]  (&ei->log_mutex){+.+...}, at: [<ffffffffa038552d>] btrfs_log_inode+0x13a/0xc95 [btrfs]
      [23045.436044]
                     but task is already holding lock:
      [23045.436044]  (&ei->log_mutex){+.+...}, at: [<ffffffffa038552d>] btrfs_log_inode+0x13a/0xc95 [btrfs]
      [23045.436044]
                     other info that might help us debug this:
      [23045.436044]  Possible unsafe locking scenario:
      
      [23045.436044]        CPU0
      [23045.436044]        ----
      [23045.436044]   lock(&ei->log_mutex);
      [23045.436044]   lock(&ei->log_mutex);
      [23045.436044]
                      *** DEADLOCK ***
      
      [23045.436044]  May be due to missing lock nesting notation
      
      [23045.436044] 3 locks held by xfs_io/3688:
      [23045.436044]  #0:  (&sb->s_type->i_mutex_key#15){+.+...}, at: [<ffffffffa035f2ae>] btrfs_sync_file+0x14e/0x425 [btrfs]
      [23045.436044]  #1:  (sb_internal#2){.+.+.+}, at: [<ffffffff8118446b>] __sb_start_write+0x5f/0xb0
      [23045.436044]  #2:  (&ei->log_mutex){+.+...}, at: [<ffffffffa038552d>] btrfs_log_inode+0x13a/0xc95 [btrfs]
      [23045.436044]
                     stack backtrace:
      [23045.436044] CPU: 4 PID: 3688 Comm: xfs_io Not tainted 4.7.0-rc6-btrfs-next-34+ #1
      [23045.436044] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.9.1-0-gb3ef39f-prebuilt.qemu-project.org 04/01/2014
      [23045.436044]  0000000000000000 ffff88022f5f7860 ffffffff8127074d ffffffff82a54b70
      [23045.436044]  ffffffff82a54b70 ffff88022f5f7920 ffffffff81092897 ffff880228015d68
      [23045.436044]  0000000000000000 ffffffff82a54b70 ffffffff829c3f00 ffff880228015d68
      [23045.436044] Call Trace:
      [23045.436044]  [<ffffffff8127074d>] dump_stack+0x67/0x90
      [23045.436044]  [<ffffffff81092897>] __lock_acquire+0xcbb/0xe4e
      [23045.436044]  [<ffffffff8109155f>] ? mark_lock+0x24/0x201
      [23045.436044]  [<ffffffff8109179a>] ? mark_held_locks+0x5e/0x74
      [23045.436044]  [<ffffffff81092de0>] lock_acquire+0x12f/0x1c3
      [23045.436044]  [<ffffffff81092de0>] ? lock_acquire+0x12f/0x1c3
      [23045.436044]  [<ffffffffa038552d>] ? btrfs_log_inode+0x13a/0xc95 [btrfs]
      [23045.436044]  [<ffffffffa038552d>] ? btrfs_log_inode+0x13a/0xc95 [btrfs]
      [23045.436044]  [<ffffffff814a51a4>] mutex_lock_nested+0x77/0x3a7
      [23045.436044]  [<ffffffffa038552d>] ? btrfs_log_inode+0x13a/0xc95 [btrfs]
      [23045.436044]  [<ffffffffa039705e>] ? btrfs_release_delayed_node+0xb/0xd [btrfs]
      [23045.436044]  [<ffffffffa038552d>] btrfs_log_inode+0x13a/0xc95 [btrfs]
      [23045.436044]  [<ffffffffa038552d>] ? btrfs_log_inode+0x13a/0xc95 [btrfs]
      [23045.436044]  [<ffffffff810a0ed1>] ? vprintk_emit+0x453/0x465
      [23045.436044]  [<ffffffffa0385a61>] btrfs_log_inode+0x66e/0xc95 [btrfs]
      [23045.436044]  [<ffffffffa03c084d>] log_new_dir_dentries+0x26c/0x359 [btrfs]
      [23045.436044]  [<ffffffffa03865aa>] btrfs_log_inode_parent+0x4a6/0x628 [btrfs]
      [23045.436044]  [<ffffffffa0387552>] btrfs_log_dentry_safe+0x5a/0x75 [btrfs]
      [23045.436044]  [<ffffffffa035f464>] btrfs_sync_file+0x304/0x425 [btrfs]
      [23045.436044]  [<ffffffff811acaf4>] vfs_fsync_range+0x8c/0x9e
      [23045.436044]  [<ffffffff811acb22>] vfs_fsync+0x1c/0x1e
      [23045.436044]  [<ffffffff811acc79>] do_fsync+0x31/0x4a
      [23045.436044]  [<ffffffff811ace99>] SyS_fsync+0x10/0x14
      [23045.436044]  [<ffffffff814a88e5>] entry_SYSCALL_64_fastpath+0x18/0xa8
      [23045.436044]  [<ffffffff8108f039>] ? trace_hardirqs_off_caller+0x3f/0xaa
      
      An example reproducer for this is:
      
         $ mkfs.btrfs -f /dev/sdb
         $ mount /dev/sdb /mnt
         $ mkdir /mnt/dir
         $ touch /mnt/dir/foo
         $ sync
         $ mv /mnt/dir/foo /mnt/dir/bar
         $ touch /mnt/dir/foo
         $ xfs_io -c "fsync" /mnt/dir/bar
      
      This is because while logging the inode of file bar we end up logging its
      parent directory (since its inode has an unlink_trans field matching the
      current transaction id due to the rename operation), which in turn logs
      the inodes for all its new dentries, so that the new inode for the new
      file named foo gets logged which in turn triggered another logging attempt
      for the inode we are fsync'ing, since that inode had an old name that
      corresponds to the name of the new inode.
      
      So fix this by ensuring that when logging the inode for a new dentry that
      has a name matching an old name of some other inode, we don't log again
      the original inode that we are fsync'ing.
      
      Fixes: 44f714da ("Btrfs: improve performance on fsync against new inode after rename/unlink")
      Signed-off-by: NFilipe Manana <fdmanana@suse.com>
      Signed-off-by: NDavid Sterba <dsterba@suse.com>
      Signed-off-by: NChris Mason <clm@fb.com>
      28a23593
    • L
      Btrfs: detect corruption when non-root leaf has zero item · 1ba98d08
      Liu Bo 提交于
      Right now we treat leaf which has zero item as a valid one
      because we could have an empty tree, that is, a root that is
      also a leaf without any item, however, in the same case but
      when the leaf is not a root, we can end up with hitting the
      BUG_ON(1) in btrfs_extend_item() called by
      setup_inline_extent_backref().
      
      This makes us check the situation as a corruption if leaf is
      not its own root.
      Signed-off-by: NLiu Bo <bo.li.liu@oracle.com>
      Reviewed-by: NDavid Sterba <dsterba@suse.com>
      Signed-off-by: NDavid Sterba <dsterba@suse.com>
      Signed-off-by: NChris Mason <clm@fb.com>
      1ba98d08
    • L
      Btrfs: check btree node's nritems · 053ab70f
      Liu Bo 提交于
      When btree node (level = 1) has nritems which equals to zero,
      we can end up with panic due to insert_ptr()'s
      
      BUG_ON(slot > nritems);
      
      where slot is 1 and nritems is 0, as copy_for_split() calls
      insert_ptr(.., path->slots[1] + 1, ...);
      
      A invalid value results in the whole mess, this adds the check
      for btree's node nritems so that we stop reading block when
      when something is wrong.
      Signed-off-by: NLiu Bo <bo.li.liu@oracle.com>
      Reviewed-by: NDavid Sterba <dsterba@suse.com>
      Signed-off-by: NDavid Sterba <dsterba@suse.com>
      Signed-off-by: NChris Mason <clm@fb.com>
      053ab70f
    • J
      btrfs: don't create or leak aliased root while cleaning up orphans · 35bbb97f
      Jeff Mahoney 提交于
      commit 909c3a22 (Btrfs: fix loading of orphan roots leading to BUG_ON)
      avoids the BUG_ON but can add an aliased root to the dead_roots list or
      leak the root.
      
      Since we've already been loading roots into the radix tree, we should
      use it before looking the root up on disk.
      
      Cc: <stable@vger.kernel.org> # 4.5
      Signed-off-by: NJeff Mahoney <jeffm@suse.com>
      Reviewed-by: NDavid Sterba <dsterba@suse.com>
      Signed-off-by: NDavid Sterba <dsterba@suse.com>
      Signed-off-by: NChris Mason <clm@fb.com>
      35bbb97f
    • J
      Btrfs: fix em leak in find_first_block_group · 187ee58c
      Josef Bacik 提交于
      We need to call free_extent_map() on the em we look up.
      Signed-off-by: NJosef Bacik <jbacik@fb.com>
      Reviewed-by: NOmar Sandoval <osandov@fb.com>
      Signed-off-by: NDavid Sterba <dsterba@suse.com>
      Signed-off-by: NChris Mason <clm@fb.com>
      187ee58c
    • A
      btrfs: do not background blkdev_put() · 14238819
      Anand Jain 提交于
      At the end of unmount/dev-delete, if the device exclusive open is not
      actually closed, then there might be a race with another program in
      the userland who is trying to open the device in exclusive mode and
      it may fail for eg:
            unmount /btrfs; fsck /dev/x
            btrfs dev del /dev/x /btrfs; fsck /dev/x
      so here background blkdev_put() is not a choice
      Signed-off-by: NAnand Jain <Anand.Jain@oracle.com>
      Reviewed-by: NDavid Sterba <dsterba@suse.com>
      Signed-off-by: NDavid Sterba <dsterba@suse.com>
      Signed-off-by: NChris Mason <clm@fb.com>
      14238819
    • L
      Btrfs: clarify do_chunk_alloc()'s return value · 28b737f6
      Liu Bo 提交于
      Function start_transaction() can return ERR_PTR(1) when flush is
      BTRFS_RESERVE_FLUSH_LIMIT, so the call graph is
      
      start_transaction (return ERR_PTR(1))
        -> btrfs_block_rsv_add (return 1)
           -> reserve_metadata_bytes (return 1)
              -> flush_space (return 1)
                 -> do_chunk_alloc  (return 1)
      
      With BTRFS_RESERVE_FLUSH_LIMIT, if flush_space is already on the
      flush_state of ALLOC_CHUNK and it successfully allocates a new
      chunk, then instead of trying to reserve space again,
      reserve_metadata_bytes returns 1 immediately.
      
      Eventually the callers who call start_transaction() usually just
      do the IS_ERR() check which ERR_PTR(1) can pass, then it'll get
      a panic when dereferencing a pointer which is ERR_PTR(1).
      
      The following patch fixes the above problem.
      "btrfs: flush_space: treat return value of do_chunk_alloc properly"
      https://patchwork.kernel.org/patch/7778651/
      
      This add comments to clarify do_chunk_alloc()'s return value.
      Signed-off-by: NLiu Bo <bo.li.liu@oracle.com>
      Signed-off-by: NDavid Sterba <dsterba@suse.com>
      Signed-off-by: NChris Mason <clm@fb.com>
      28b737f6
    • W
      btrfs: fix fsfreeze hang caused by delayed iputs deal · 9e7cc91a
      Wang Xiaoguang 提交于
      When running fstests generic/068, sometimes we got below deadlock:
        xfs_io          D ffff8800331dbb20     0  6697   6693 0x00000080
        ffff8800331dbb20 ffff88007acfc140 ffff880034d895c0 ffff8800331dc000
        ffff880032d243e8 fffffffeffffffff ffff880032d24400 0000000000000001
        ffff8800331dbb38 ffffffff816a9045 ffff880034d895c0 ffff8800331dbba8
        Call Trace:
        [<ffffffff816a9045>] schedule+0x35/0x80
        [<ffffffff816abab2>] rwsem_down_read_failed+0xf2/0x140
        [<ffffffff8118f5e1>] ? __filemap_fdatawrite_range+0xd1/0x100
        [<ffffffff8134f978>] call_rwsem_down_read_failed+0x18/0x30
        [<ffffffffa06631fc>] ? btrfs_alloc_block_rsv+0x2c/0xb0 [btrfs]
        [<ffffffff810d32b5>] percpu_down_read+0x35/0x50
        [<ffffffff81217dfc>] __sb_start_write+0x2c/0x40
        [<ffffffffa067f5d5>] start_transaction+0x2a5/0x4d0 [btrfs]
        [<ffffffffa067f857>] btrfs_join_transaction+0x17/0x20 [btrfs]
        [<ffffffffa068ba34>] btrfs_evict_inode+0x3c4/0x5d0 [btrfs]
        [<ffffffff81230a1a>] evict+0xba/0x1a0
        [<ffffffff812316b6>] iput+0x196/0x200
        [<ffffffffa06851d0>] btrfs_run_delayed_iputs+0x70/0xc0 [btrfs]
        [<ffffffffa067f1d8>] btrfs_commit_transaction+0x928/0xa80 [btrfs]
        [<ffffffffa0646df0>] btrfs_freeze+0x30/0x40 [btrfs]
        [<ffffffff81218040>] freeze_super+0xf0/0x190
        [<ffffffff81229275>] do_vfs_ioctl+0x4a5/0x5c0
        [<ffffffff81003176>] ? do_audit_syscall_entry+0x66/0x70
        [<ffffffff810038cf>] ? syscall_trace_enter_phase1+0x11f/0x140
        [<ffffffff81229409>] SyS_ioctl+0x79/0x90
        [<ffffffff81003c12>] do_syscall_64+0x62/0x110
        [<ffffffff816acbe1>] entry_SYSCALL64_slow_path+0x25/0x25
      
      >From this warning, freeze_super() already holds SB_FREEZE_FS, but
      btrfs_freeze() will call btrfs_commit_transaction() again, if
      btrfs_commit_transaction() finds that it has delayed iputs to handle,
      it'll start_transaction(), which will try to get SB_FREEZE_FS lock
      again, then deadlock occurs.
      
      The root cause is that in btrfs, sync_filesystem(sb) does not make
      sure all metadata is updated. There still maybe some codes adding
      delayed iputs, see below sample race window:
      
               CPU1                                  |         CPU2
      |-> freeze_super()                             |
          |-> sync_filesystem(sb);                   |
          |                                          |-> cleaner_kthread()
          |                                          |   |-> btrfs_delete_unused_bgs()
          |                                          |       |-> btrfs_remove_chunk()
          |                                          |           |-> btrfs_remove_block_group()
          |                                          |               |-> btrfs_add_delayed_iput()
          |                                          |
          |-> sb->s_writers.frozen = SB_FREEZE_FS;   |
          |-> sb_wait_write(sb, SB_FREEZE_FS);       |
          |   acquire SB_FREEZE_FS lock.             |
          |                                          |
          |-> btrfs_freeze()                         |
              |-> btrfs_commit_transaction()         |
                  |-> btrfs_run_delayed_iputs()      |
                  |   will handle delayed iputs,     |
                  |   that means start_transaction() |
                  |   will be called, which will try |
                  |   to get SB_FREEZE_FS lock.      |
      
      To fix this issue, introduce a "int fs_frozen" to record internally whether
      fs has been frozen. If fs has been frozen, we can not handle delayed iputs.
      Signed-off-by: NWang Xiaoguang <wangxg.fnst@cn.fujitsu.com>
      Reviewed-by: NDavid Sterba <dsterba@suse.com>
      [ add comment to btrfs_freeze ]
      Signed-off-by: NDavid Sterba <dsterba@suse.com>
      Signed-off-by: NChris Mason <clm@fb.com>
      9e7cc91a
    • W
      btrfs: update btrfs_space_info's bytes_may_use timely · 18513091
      Wang Xiaoguang 提交于
      This patch can fix some false ENOSPC errors, below test script can
      reproduce one false ENOSPC error:
      	#!/bin/bash
      	dd if=/dev/zero of=fs.img bs=$((1024*1024)) count=128
      	dev=$(losetup --show -f fs.img)
      	mkfs.btrfs -f -M $dev
      	mkdir /tmp/mntpoint
      	mount $dev /tmp/mntpoint
      	cd /tmp/mntpoint
      	xfs_io -f -c "falloc 0 $((64*1024*1024))" testfile
      
      Above script will fail for ENOSPC reason, but indeed fs still has free
      space to satisfy this request. Please see call graph:
      btrfs_fallocate()
      |-> btrfs_alloc_data_chunk_ondemand()
      |   bytes_may_use += 64M
      |-> btrfs_prealloc_file_range()
          |-> btrfs_reserve_extent()
              |-> btrfs_add_reserved_bytes()
              |   alloc_type is RESERVE_ALLOC_NO_ACCOUNT, so it does not
              |   change bytes_may_use, and bytes_reserved += 64M. Now
              |   bytes_may_use + bytes_reserved == 128M, which is greater
              |   than btrfs_space_info's total_bytes, false enospc occurs.
              |   Note, the bytes_may_use decrease operation will be done in
              |   end of btrfs_fallocate(), which is too late.
      
      Here is another simple case for buffered write:
                          CPU 1              |              CPU 2
                                             |
      |-> cow_file_range()                   |-> __btrfs_buffered_write()
          |-> btrfs_reserve_extent()         |   |
          |                                  |   |
          |                                  |   |
          |    .....                         |   |-> btrfs_check_data_free_space()
          |                                  |
          |                                  |
          |-> extent_clear_unlock_delalloc() |
      
      In CPU 1, btrfs_reserve_extent()->find_free_extent()->
      btrfs_add_reserved_bytes() do not decrease bytes_may_use, the decrease
      operation will be delayed to be done in extent_clear_unlock_delalloc().
      Assume in this case, btrfs_reserve_extent() reserved 128MB data, CPU2's
      btrfs_check_data_free_space() tries to reserve 100MB data space.
      If
      	100MB > data_sinfo->total_bytes - data_sinfo->bytes_used -
      		data_sinfo->bytes_reserved - data_sinfo->bytes_pinned -
      		data_sinfo->bytes_readonly - data_sinfo->bytes_may_use
      btrfs_check_data_free_space() will try to allcate new data chunk or call
      btrfs_start_delalloc_roots(), or commit current transaction in order to
      reserve some free space, obviously a lot of work. But indeed it's not
      necessary as long as decreasing bytes_may_use timely, we still have
      free space, decreasing 128M from bytes_may_use.
      
      To fix this issue, this patch chooses to update bytes_may_use for both
      data and metadata in btrfs_add_reserved_bytes(). For compress path, real
      extent length may not be equal to file content length, so introduce a
      ram_bytes argument for btrfs_reserve_extent(), find_free_extent() and
      btrfs_add_reserved_bytes(), it's becasue bytes_may_use is increased by
      file content length. Then compress path can update bytes_may_use
      correctly. Also now we can discard RESERVE_ALLOC_NO_ACCOUNT, RESERVE_ALLOC
      and RESERVE_FREE.
      
      As we know, usually EXTENT_DO_ACCOUNTING is used for error path. In
      run_delalloc_nocow(), for inode marked as NODATACOW or extent marked as
      PREALLOC, we also need to update bytes_may_use, but can not pass
      EXTENT_DO_ACCOUNTING, because it also clears metadata reservation, so
      here we introduce EXTENT_CLEAR_DATA_RESV flag to indicate btrfs_clear_bit_hook()
      to update btrfs_space_info's bytes_may_use.
      
      Meanwhile __btrfs_prealloc_file_range() will call
      btrfs_free_reserved_data_space() internally for both sucessful and failed
      path, btrfs_prealloc_file_range()'s callers does not need to call
      btrfs_free_reserved_data_space() any more.
      Signed-off-by: NWang Xiaoguang <wangxg.fnst@cn.fujitsu.com>
      Reviewed-by: NJosef Bacik <jbacik@fb.com>
      Signed-off-by: NDavid Sterba <dsterba@suse.com>
      Signed-off-by: NChris Mason <clm@fb.com>
      18513091
    • W
      btrfs: divide btrfs_update_reserved_bytes() into two functions · 4824f1f4
      Wang Xiaoguang 提交于
      This patch divides btrfs_update_reserved_bytes() into
      btrfs_add_reserved_bytes() and btrfs_free_reserved_bytes(), and
      next patch will extend btrfs_add_reserved_bytes()to fix some
      false ENOSPC error, please see later patch for detailed info.
      Signed-off-by: NWang Xiaoguang <wangxg.fnst@cn.fujitsu.com>
      Reviewed-by: NJosef Bacik <jbacik@fb.com>
      Signed-off-by: NDavid Sterba <dsterba@suse.com>
      Signed-off-by: NChris Mason <clm@fb.com>
      4824f1f4
    • W
      btrfs: use correct offset for reloc_inode in prealloc_file_extent_cluster() · dcb40c19
      Wang Xiaoguang 提交于
      In prealloc_file_extent_cluster(), btrfs_check_data_free_space() uses
      wrong file offset for reloc_inode, it uses cluster->start and cluster->end,
      which indeed are extent's bytenr. The correct value should be
      cluster->[start|end] minus block group's start bytenr.
      
      start bytenr   cluster->start
      |              |     extent      |   extent   | ...| extent |
      |----------------------------------------------------------------|
      |                block group reloc_inode                         |
      Signed-off-by: NWang Xiaoguang <wangxg.fnst@cn.fujitsu.com>
      Reviewed-by: NJosef Bacik <jbacik@fb.com>
      Signed-off-by: NDavid Sterba <dsterba@suse.com>
      Signed-off-by: NChris Mason <clm@fb.com>
      dcb40c19
    • Q
      btrfs: qgroup: Fix qgroup incorrectness caused by log replay · df2c95f3
      Qu Wenruo 提交于
      When doing log replay at mount time(after power loss), qgroup will leak
      numbers of replayed data extents.
      
      The cause is almost the same of balance.
      So fix it by manually informing qgroup for owner changed extents.
      
      The bug can be detected by btrfs/119 test case.
      
      Cc: Mark Fasheh <mfasheh@suse.de>
      Signed-off-by: NQu Wenruo <quwenruo@cn.fujitsu.com>
      Reviewed-and-Tested-by: NGoldwyn Rodrigues <rgoldwyn@suse.com>
      Signed-off-by: NDavid Sterba <dsterba@suse.com>
      Signed-off-by: NChris Mason <clm@fb.com>
      df2c95f3
    • Q
      btrfs: relocation: Fix leaking qgroups numbers on data extents · 62b99540
      Qu Wenruo 提交于
      This patch fixes a REGRESSION introduced in 4.2, caused by the big quota
      rework.
      
      When balancing data extents, qgroup will leak all its numbers for
      relocated data extents.
      
      The relocation is done in the following steps for data extents:
      1) Create data reloc tree and inode
      2) Copy all data extents to data reloc tree
         And commit transaction
      3) Create tree reloc tree(special snapshot) for any related subvolumes
      4) Replace file extent in tree reloc tree with new extents in data reloc
         tree
         And commit transaction
      5) Merge tree reloc tree with original fs, by swapping tree blocks
      
      For 1)~4), since tree reloc tree and data reloc tree doesn't count to
      qgroup, everything is OK.
      
      But for 5), the swapping of tree blocks will only info qgroup to track
      metadata extents.
      
      If metadata extents contain file extents, qgroup number for file extents
      will get lost, leading to corrupted qgroup accounting.
      
      The fix is, before commit transaction of step 5), manually info qgroup to
      track all file extents in data reloc tree.
      Since at commit transaction time, the tree swapping is done, and qgroup
      will account these data extents correctly.
      
      Cc: Mark Fasheh <mfasheh@suse.de>
      Reported-by: NMark Fasheh <mfasheh@suse.de>
      Reported-by: NFilipe Manana <fdmanana@gmail.com>
      Signed-off-by: NQu Wenruo <quwenruo@cn.fujitsu.com>
      Tested-by: NGoldwyn Rodrigues <rgoldwyn@suse.com>
      Signed-off-by: NDavid Sterba <dsterba@suse.com>
      Signed-off-by: NChris Mason <clm@fb.com>
      62b99540
    • Q
      btrfs: qgroup: Refactor btrfs_qgroup_insert_dirty_extent() · cb93b52c
      Qu Wenruo 提交于
      Refactor btrfs_qgroup_insert_dirty_extent() function, to two functions:
      1. btrfs_qgroup_insert_dirty_extent_nolock()
         Almost the same with original code.
         For delayed_ref usage, which has delayed refs locked.
      
         Change the return value type to int, since caller never needs the
         pointer, but only needs to know if they need to free the allocated
         memory.
      
      2. btrfs_qgroup_insert_dirty_extent()
         The more encapsulated version.
      
         Will do the delayed_refs lock, memory allocation, quota enabled check
         and other things.
      
      The original design is to keep exported functions to minimal, but since
      more btrfs hacks exposed, like replacing path in balance, we need to
      record dirty extents manually, so we have to add such functions.
      
      Also, add comment for both functions, to info developers how to keep
      qgroup correct when doing hacks.
      
      Cc: Mark Fasheh <mfasheh@suse.de>
      Signed-off-by: NQu Wenruo <quwenruo@cn.fujitsu.com>
      Reviewed-and-Tested-by: NGoldwyn Rodrigues <rgoldwyn@suse.com>
      Signed-off-by: NDavid Sterba <dsterba@suse.com>
      Signed-off-by: NChris Mason <clm@fb.com>
      cb93b52c
    • J
      btrfs: waiting on qgroup rescan should not always be interruptible · d06f23d6
      Jeff Mahoney 提交于
      We wait on qgroup rescan completion in three places: file system
      shutdown, the quota disable ioctl, and the rescan wait ioctl.  If the
      user sends a signal while we're waiting, we continue happily along.  This
      is expected behavior for the rescan wait ioctl.  It's racy in the shutdown
      path but mostly works due to other unrelated synchronization points.
      In the quota disable path, it Oopses the kernel pretty much immediately.
      
      Cc: <stable@vger.kernel.org> # v4.4+
      Signed-off-by: NJeff Mahoney <jeffm@suse.com>
      Reviewed-by: NDavid Sterba <dsterba@suse.com>
      Signed-off-by: NDavid Sterba <dsterba@suse.com>
      Signed-off-by: NChris Mason <clm@fb.com>
      d06f23d6
    • J
      btrfs: properly track when rescan worker is running · d2c609b8
      Jeff Mahoney 提交于
      The qgroup_flags field is overloaded such that it reflects the on-disk
      status of qgroups and the runtime state.  The BTRFS_QGROUP_STATUS_FLAG_RESCAN
      flag is used to indicate that a rescan operation is in progress, but if
      the file system is unmounted while a rescan is running, the rescan
      operation is paused.  If the file system is then mounted read-only,
      the flag will still be present but the rescan operation will not have
      been resumed.  When we go to umount, btrfs_qgroup_wait_for_completion
      will see the flag and interpret it to mean that the rescan worker is
      still running and will wait for a completion that will never come.
      
      This patch uses a separate flag to indicate when the worker is
      running.  The locking and state surrounding the qgroup rescan worker
      needs a lot of attention beyond this patch but this is enough to
      avoid a hung umount.
      
      Cc: <stable@vger.kernel.org> # v4.4+
      Signed-off-by; Jeff Mahoney <jeffm@suse.com>
      Reviewed-by: NQu Wenruo <quwenruo@cn.fujitsu.com>
      Signed-off-by: NDavid Sterba <dsterba@suse.com>
      Signed-off-by: NChris Mason <clm@fb.com>
      d2c609b8
    • A
      btrfs: flush_space: treat return value of do_chunk_alloc properly · eecba891
      Alex Lyakas 提交于
      do_chunk_alloc returns 1 when it succeeds to allocate a new chunk.
      But flush_space will not convert this to 0, and will also return 1.
      As a result, reserve_metadata_bytes will think that flush_space failed,
      and may potentially return this value "1" to the caller (depends how
      reserve_metadata_bytes was called). The caller will also treat this as an error.
      For example, btrfs_block_rsv_refill does:
      
      int ret = -ENOSPC;
      ...
      ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
      if (!ret) {
              block_rsv_add_bytes(block_rsv, num_bytes, 0);
              return 0;
      }
      
      return ret;
      
      So it will return -ENOSPC.
      Signed-off-by: NAlex Lyakas <alex@zadarastorage.com>
      Reviewed-by: NJosef Bacik <jbacik@fb.com>
      Reviewed-by: NLiu Bo <bo.li.liu@oracle.com>
      Signed-off-by: NDavid Sterba <dsterba@suse.com>
      Signed-off-by: NChris Mason <clm@fb.com>
      eecba891
    • L
      Btrfs: add ASSERT for block group's memory leak · f3bca802
      Liu Bo 提交于
      This adds several ASSERT()' s to report memory leak of block group cache.
      Signed-off-by: NLiu Bo <bo.li.liu@oracle.com>
      Reviewed-by: NDavid Sterba <dsterba@suse.com>
      Signed-off-by: NDavid Sterba <dsterba@suse.com>
      Signed-off-by: NChris Mason <clm@fb.com>
      f3bca802
    • Q
      btrfs: backref: Fix soft lockup in __merge_refs function · d8422ba3
      Qu Wenruo 提交于
      When over 1000 file extents refers to one extent, find_parent_nodes()
      will be obviously slow, due to the O(n^2)~O(n^3) loops inside
      __merge_refs().
      
      The following ftrace shows the cubic growth of execution time:
      
      256 refs
       5) + 91.768 us   |  __add_keyed_refs.isra.12 [btrfs]();
       5)   1.447 us    |  __add_missing_keys.isra.13 [btrfs]();
       5) ! 114.544 us  |  __merge_refs [btrfs]();
       5) ! 136.399 us  |  __merge_refs [btrfs]();
      
      512 refs
       6) ! 279.859 us  |  __add_keyed_refs.isra.12 [btrfs]();
       6)   3.164 us    |  __add_missing_keys.isra.13 [btrfs]();
       6) ! 442.498 us  |  __merge_refs [btrfs]();
       6) # 2091.073 us |  __merge_refs [btrfs]();
      
      and 1024 refs
       7) ! 368.683 us  |  __add_keyed_refs.isra.12 [btrfs]();
       7)   4.810 us    |  __add_missing_keys.isra.13 [btrfs]();
       7) # 2043.428 us |  __merge_refs [btrfs]();
       7) * 18964.23 us |  __merge_refs [btrfs]();
      
      And sort them into the following char:
      (Unit: us)
      ------------------------------------------------------------------------
       Trace function        | 256 ref        | 512 refs      | 1024 refs    |
      ------------------------------------------------------------------------
       __add_keyed_refs      | 91             | 249           | 368          |
       __add_missing_keys    | 1              | 3             | 4            |
       __merge_refs 1st call | 114            | 442           | 2043         |
       __merge_refs 2nd call | 136            | 2091          | 18964        |
      ------------------------------------------------------------------------
      
      We can see the that __add_keyed_refs() grows almost in linear behavior.
      And __add_missing_keys() in this case doesn't change much or takes much
      time.
      
      While for the 1st __merge_refs() it's square growth
      for the 2nd __merge_refs() call it's cubic growth.
      
      It's no doubt that merge_refs() will take a long long time to execute if
      the number of refs continues its grows.
      
      So add a cond_resced() into the loop of __merge_refs().
      
      Although this will solve the problem of soft lockup, we need to use the
      new rb_tree based structure introduced by Lu Fengqi to really solve the
      long execution time.
      Signed-off-by: NQu Wenruo <quwenruo@cn.fujitsu.com>
      Reviewed-by: NDavid Sterba <dsterba@suse.com>
      Signed-off-by: NDavid Sterba <dsterba@suse.com>
      Signed-off-by: NChris Mason <clm@fb.com>
      d8422ba3
    • L
      Btrfs: fix memory leak of reloc_root · 1c1ea4f7
      Liu Bo 提交于
      When some critical errors occur and FS would be flipped into RO,
      if we have an on-going balance, we can end up with a memory leak
      of root->reloc_root since btrfs_drop_snapshots() bails out
      without freeing reloc_root at the very early start.
      
      However, we're not able to free reloc_root in btrfs_drop_snapshots()
      because its caller, merge_reloc_roots(), still needs to access it to
      cleanup reloc_root's rbtree.
      
      This makes us free reloc_root when we're going to free fs/file roots.
      Signed-off-by: NLiu Bo <bo.li.liu@oracle.com>
      Reviewed-by: NDavid Sterba <dsterba@suse.com>
      Signed-off-by: NDavid Sterba <dsterba@suse.com>
      Signed-off-by: NChris Mason <clm@fb.com>
      1c1ea4f7
  6. 24 8月, 2016 2 次提交
  7. 22 8月, 2016 1 次提交
    • V
      bdev: fix NULL pointer dereference · e9e5e3fa
      Vegard Nossum 提交于
      I got this:
      
          kasan: GPF could be caused by NULL-ptr deref or user memory access
          general protection fault: 0000 [#1] PREEMPT SMP KASAN
          Dumping ftrace buffer:
             (ftrace buffer empty)
          CPU: 0 PID: 5505 Comm: syz-executor Not tainted 4.8.0-rc2+ #161
          Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.9.3-0-ge2fc41e-prebuilt.qemu-project.org 04/01/2014
          task: ffff880113415940 task.stack: ffff880118350000
          RIP: 0010:[<ffffffff8172cb32>]  [<ffffffff8172cb32>] bd_mount+0x52/0xa0
          RSP: 0018:ffff880118357ca0  EFLAGS: 00010207
          RAX: dffffc0000000000 RBX: ffffffffffffffff RCX: ffffc90000bb6000
          RDX: 0000000000000018 RSI: ffffffff846d6b20 RDI: 00000000000000c7
          RBP: ffff880118357cb0 R08: ffff880115967c68 R09: 0000000000000000
          R10: 0000000000000000 R11: 0000000000000000 R12: ffff8801188211e8
          R13: ffffffff847baa20 R14: ffff8801139cb000 R15: 0000000000000080
          FS:  00007fa3ff6c0700(0000) GS:ffff88011aa00000(0000) knlGS:0000000000000000
          CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
          CR2: 00007fc1d8cc7e78 CR3: 0000000109f20000 CR4: 00000000000006f0
          DR0: 000000000000001e DR1: 000000000000001e DR2: 0000000000000000
          DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000600
          Stack:
           ffff880112cfd6c0 ffff8801188211e8 ffff880118357cf0 ffffffff8167f207
           ffffffff816d7a1e ffff880112a413c0 ffffffff847baa20 ffff8801188211e8
           0000000000000080 ffff880112cfd6c0 ffff880118357d38 ffffffff816dce0a
          Call Trace:
           [<ffffffff8167f207>] mount_fs+0x97/0x2e0
           [<ffffffff816d7a1e>] ? alloc_vfsmnt+0x55e/0x760
           [<ffffffff816dce0a>] vfs_kern_mount+0x7a/0x300
           [<ffffffff83c3247c>] ? _raw_read_unlock+0x2c/0x50
           [<ffffffff816dfc87>] do_mount+0x3d7/0x2730
           [<ffffffff81235fd4>] ? trace_do_page_fault+0x1f4/0x3a0
           [<ffffffff816df8b0>] ? copy_mount_string+0x40/0x40
           [<ffffffff8161ea81>] ? memset+0x31/0x40
           [<ffffffff816df73e>] ? copy_mount_options+0x1ee/0x320
           [<ffffffff816e2a02>] SyS_mount+0xb2/0x120
           [<ffffffff816e2950>] ? copy_mnt_ns+0x970/0x970
           [<ffffffff81005524>] do_syscall_64+0x1c4/0x4e0
           [<ffffffff83c3282a>] entry_SYSCALL64_slow_path+0x25/0x25
          Code: 83 e8 63 1b fc ff 48 85 c0 48 89 c3 74 4c e8 56 35 d1 ff 48 8d bb c8 00 00 00 48 b8 00 00 00 00 00 fc ff df 48 89 fa 48 c1 ea 03 <80> 3c 02 00 75 36 4c 8b a3 c8 00 00 00 48 b8 00 00 00 00 00 fc
          RIP  [<ffffffff8172cb32>] bd_mount+0x52/0xa0
           RSP <ffff880118357ca0>
          ---[ end trace 13690ad962168b98 ]---
      
      mount_pseudo() returns ERR_PTR(), not NULL, on error.
      
      Fixes: 3684aa70 ("block-dev: enable writeback cgroup support")
      Cc: Shaohua Li <shli@fb.com>
      Cc: Tejun Heo <tj@kernel.org>
      Cc: Jens Axboe <axboe@fb.com>
      Cc: stable@vger.kernel.org
      Signed-off-by: NVegard Nossum <vegard.nossum@oracle.com>
      Signed-off-by: NJens Axboe <axboe@fb.com>
      e9e5e3fa
  8. 19 8月, 2016 2 次提交