- 13 7月, 2019 4 次提交
-
-
由 Roman Gushchin 提交于
The delayed work/rcu deactivation infrastructure of non-root kmem_caches can be also used for asynchronous release of these objects. Let's get rid of the word "deactivation" in corresponding names to make the code look better after generalization. It's easier to make the renaming first, so that the generalized code will look consistent from scratch. Let's rename struct memcg_cache_params fields: deact_fn -> work_fn deact_rcu_head -> rcu_head deact_work -> work And RCU/delayed work callbacks in slab common code: kmemcg_deactivate_rcufn -> kmemcg_rcufn kmemcg_deactivate_workfn -> kmemcg_workfn This patch contains no functional changes, only renamings. Link: http://lkml.kernel.org/r/20190611231813.3148843-3-guro@fb.comSigned-off-by: NRoman Gushchin <guro@fb.com> Acked-by: NVladimir Davydov <vdavydov.dev@gmail.com> Reviewed-by: NShakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Waiman Long <longman@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Andrei Vagin <avagin@gmail.com> Cc: Qian Cai <cai@lca.pw> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Roman Gushchin 提交于
Patch series "mm: reparent slab memory on cgroup removal", v7. # Why do we need this? We've noticed that the number of dying cgroups is steadily growing on most of our hosts in production. The following investigation revealed an issue in the userspace memory reclaim code [1], accounting of kernel stacks [2], and also the main reason: slab objects. The underlying problem is quite simple: any page charged to a cgroup holds a reference to it, so the cgroup can't be reclaimed unless all charged pages are gone. If a slab object is actively used by other cgroups, it won't be reclaimed, and will prevent the origin cgroup from being reclaimed. Slab objects, and first of all vfs cache, is shared between cgroups, which are using the same underlying fs, and what's even more important, it's shared between multiple generations of the same workload. So if something is running periodically every time in a new cgroup (like how systemd works), we do accumulate multiple dying cgroups. Strictly speaking pagecache isn't different here, but there is a key difference: we disable protection and apply some extra pressure on LRUs of dying cgroups, and these LRUs contain all charged pages. My experiments show that with the disabled kernel memory accounting the number of dying cgroups stabilizes at a relatively small number (~100, depends on memory pressure and cgroup creation rate), and with kernel memory accounting it grows pretty steadily up to several thousands. Memory cgroups are quite complex and big objects (mostly due to percpu stats), so it leads to noticeable memory losses. Memory occupied by dying cgroups is measured in hundreds of megabytes. I've even seen a host with more than 100Gb of memory wasted for dying cgroups. It leads to a degradation of performance with the uptime, and generally limits the usage of cgroups. My previous attempt [3] to fix the problem by applying extra pressure on slab shrinker lists caused a regressions with xfs and ext4, and has been reverted [4]. The following attempts to find the right balance [5, 6] were not successful. So instead of trying to find a maybe non-existing balance, let's do reparent accounted slab caches to the parent cgroup on cgroup removal. # Implementation approach There is however a significant problem with reparenting of slab memory: there is no list of charged pages. Some of them are in shrinker lists, but not all. Introducing of a new list is really not an option. But fortunately there is a way forward: every slab page has a stable pointer to the corresponding kmem_cache. So the idea is to reparent kmem_caches instead of slab pages. It's actually simpler and cheaper, but requires some underlying changes: 1) Make kmem_caches to hold a single reference to the memory cgroup, instead of a separate reference per every slab page. 2) Stop setting page->mem_cgroup pointer for memcg slab pages and use page->kmem_cache->memcg indirection instead. It's used only on slab page release, so performance overhead shouldn't be a big issue. 3) Introduce a refcounter for non-root slab caches. It's required to be able to destroy kmem_caches when they become empty and release the associated memory cgroup. There is a bonus: currently we release all memcg kmem_caches all together with the memory cgroup itself. This patchset allows individual kmem_caches to be released as soon as they become inactive and free. Some additional implementation details are provided in corresponding commit messages. # Results Below is the average number of dying cgroups on two groups of our production hosts. They do run some sort of web frontend workload, the memory pressure is moderate. As we can see, with the kernel memory reparenting the number stabilizes in 60s range; however with the original version it grows almost linearly and doesn't show any signs of plateauing. The difference in slab and percpu usage between patched and unpatched versions also grows linearly. In 7 days it exceeded 200Mb. day 0 1 2 3 4 5 6 7 original 56 362 628 752 1070 1250 1490 1560 patched 23 46 51 55 60 57 67 69 mem diff(Mb) 22 74 123 152 164 182 214 241 # Links [1]: commit 68600f62 ("mm: don't miss the last page because of round-off error") [2]: commit 9b6f7e16 ("mm: rework memcg kernel stack accounting") [3]: commit 172b06c3 ("mm: slowly shrink slabs with a relatively small number of objects") [4]: commit a9a238e8 ("Revert "mm: slowly shrink slabs with a relatively small number of objects") [5]: https://lkml.org/lkml/2019/1/28/1865 [6]: https://marc.info/?l=linux-mm&m=155064763626437&w=2 This patch (of 10): Initialize kmem_cache->memcg_params.memcg pointer in memcg_link_cache() rather than in init_memcg_params(). Once kmem_cache will hold a reference to the memory cgroup, it will simplify the refcounting. For non-root kmem_caches memcg_link_cache() is always called before the kmem_cache becomes visible to a user, so it's safe. Link: http://lkml.kernel.org/r/20190611231813.3148843-2-guro@fb.comSigned-off-by: NRoman Gushchin <guro@fb.com> Reviewed-by: NShakeel Butt <shakeelb@google.com> Acked-by: NVladimir Davydov <vdavydov.dev@gmail.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Waiman Long <longman@redhat.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrei Vagin <avagin@gmail.com> Cc: Qian Cai <cai@lca.pw> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Kees Cook 提交于
This avoids any possible type confusion when looking up an object. For example, if a non-slab were to be passed to kfree(), the invalid slab_cache pointer (i.e. overlapped with some other value from the struct page union) would be used for subsequent slab manipulations that could lead to further memory corruption. Since the page is already in cache, adding the PageSlab() check will have nearly zero cost, so add a check and WARN() to virt_to_cache(). Additionally replaces an open-coded virt_to_cache(). To support the failure mode this also updates all callers of virt_to_cache() and cache_from_obj() to handle a NULL cache pointer return value (though note that several already handle this case gracefully). [dan.carpenter@oracle.com: restore IRQs in kfree()] Link: http://lkml.kernel.org/r/20190613065637.GE16334@mwanda Link: http://lkml.kernel.org/r/20190530045017.15252-3-keescook@chromium.orgSigned-off-by: NKees Cook <keescook@chromium.org> Signed-off-by: NDan Carpenter <dan.carpenter@oracle.com> Cc: Alexander Popov <alex.popov@linux.com> Cc: Alexander Potapenko <glider@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Kees Cook 提交于
Patch series "mm/slab: Improved sanity checking". This adds defenses against slab cache confusion (as seen in real-world exploits[1]) and gracefully handles type confusions when trying to look up slab caches from an arbitrary page. (Also is patch 3: new LKDTM tests for these defenses as well as for the existing double-free detection. This patch (of 3): When building under CONFIG_SLAB_FREELIST_HARDENING, it makes sense to perform sanity-checking on the assumed slab cache during kmem_cache_free() to make sure the kernel doesn't mix freelists across slab caches and corrupt memory (as seen in the exploitation of flaws like CVE-2018-9568[1]). Note that the prior code might WARN() but still corrupt memory (i.e. return the assumed cache instead of the owned cache). There is no noticeable performance impact (changes are within noise). Measuring parallel kernel builds, I saw the following with CONFIG_SLAB_FREELIST_HARDENED, before and after this patch: before: Run times: 288.85 286.53 287.09 287.07 287.21 Min: 286.53 Max: 288.85 Mean: 287.35 Std Dev: 0.79 after: Run times: 289.58 287.40 286.97 287.20 287.01 Min: 286.97 Max: 289.58 Mean: 287.63 Std Dev: 0.99 Delta: 0.1% which is well below the standard deviation [1] https://github.com/ThomasKing2014/slides/raw/master/Building%20universal%20Android%20rooting%20with%20a%20type%20confusion%20vulnerability.pdf Link: http://lkml.kernel.org/r/20190530045017.15252-2-keescook@chromium.orgSigned-off-by: NKees Cook <keescook@chromium.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Alexander Popov <alex.popov@linux.com> Cc: Alexander Potapenko <glider@google.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 30 3月, 2019 1 次提交
-
-
由 Nicolas Boichat 提交于
Patch series "iommu/io-pgtable-arm-v7s: Use DMA32 zone for page tables", v6. This is a followup to the discussion in [1], [2]. IOMMUs using ARMv7 short-descriptor format require page tables (level 1 and 2) to be allocated within the first 4GB of RAM, even on 64-bit systems. For L1 tables that are bigger than a page, we can just use __get_free_pages with GFP_DMA32 (on arm64 systems only, arm would still use GFP_DMA). For L2 tables that only take 1KB, it would be a waste to allocate a full page, so we considered 3 approaches: 1. This series, adding support for GFP_DMA32 slab caches. 2. genalloc, which requires pre-allocating the maximum number of L2 page tables (4096, so 4MB of memory). 3. page_frag, which is not very memory-efficient as it is unable to reuse freed fragments until the whole page is freed. [3] This series is the most memory-efficient approach. stable@ note: We confirmed that this is a regression, and IOMMU errors happen on 4.19 and linux-next/master on MT8173 (elm, Acer Chromebook R13). The issue most likely starts from commit ad67f5a6 ("arm64: replace ZONE_DMA with ZONE_DMA32"), i.e. 4.15, and presumably breaks a number of Mediatek platforms (and maybe others?). [1] https://lists.linuxfoundation.org/pipermail/iommu/2018-November/030876.html [2] https://lists.linuxfoundation.org/pipermail/iommu/2018-December/031696.html [3] https://patchwork.codeaurora.org/patch/671639/ This patch (of 3): IOMMUs using ARMv7 short-descriptor format require page tables to be allocated within the first 4GB of RAM, even on 64-bit systems. On arm64, this is done by passing GFP_DMA32 flag to memory allocation functions. For IOMMU L2 tables that only take 1KB, it would be a waste to allocate a full page using get_free_pages, so we considered 3 approaches: 1. This patch, adding support for GFP_DMA32 slab caches. 2. genalloc, which requires pre-allocating the maximum number of L2 page tables (4096, so 4MB of memory). 3. page_frag, which is not very memory-efficient as it is unable to reuse freed fragments until the whole page is freed. This change makes it possible to create a custom cache in DMA32 zone using kmem_cache_create, then allocate memory using kmem_cache_alloc. We do not create a DMA32 kmalloc cache array, as there are currently no users of kmalloc(..., GFP_DMA32). These calls will continue to trigger a warning, as we keep GFP_DMA32 in GFP_SLAB_BUG_MASK. This implies that calls to kmem_cache_*alloc on a SLAB_CACHE_DMA32 kmem_cache must _not_ use GFP_DMA32 (it is anyway redundant and unnecessary). Link: http://lkml.kernel.org/r/20181210011504.122604-2-drinkcat@chromium.orgSigned-off-by: NNicolas Boichat <drinkcat@chromium.org> Acked-by: NVlastimil Babka <vbabka@suse.cz> Acked-by: NWill Deacon <will.deacon@arm.com> Cc: Robin Murphy <robin.murphy@arm.com> Cc: Joerg Roedel <joro@8bytes.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Sasha Levin <Alexander.Levin@microsoft.com> Cc: Huaisheng Ye <yehs1@lenovo.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Yong Wu <yong.wu@mediatek.com> Cc: Matthias Brugger <matthias.bgg@gmail.com> Cc: Tomasz Figa <tfiga@google.com> Cc: Yingjoe Chen <yingjoe.chen@mediatek.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Hsin-Yi Wang <hsinyi@chromium.org> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 06 3月, 2019 1 次提交
-
-
由 Shakeel Butt 提交于
Move the memcg_kmem_enabled() checks into memcg kmem charge/uncharge functions, so, the users don't have to explicitly check that condition. This is purely code cleanup patch without any functional change. Only the order of checks in memcg_charge_slab() can potentially be changed but the functionally it will be same. This should not matter as memcg_charge_slab() is not in the hot path. Link: http://lkml.kernel.org/r/20190103161203.162375-1-shakeelb@google.comSigned-off-by: NShakeel Butt <shakeelb@google.com> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Roman Gushchin <guro@fb.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 22 2月, 2019 2 次提交
-
-
由 Andrey Konovalov 提交于
kmemleak keeps two global variables, min_addr and max_addr, which store the range of valid (encountered by kmemleak) pointer values, which it later uses to speed up pointer lookup when scanning blocks. With tagged pointers this range will get bigger than it needs to be. This patch makes kmemleak untag pointers before saving them to min_addr and max_addr and when performing a lookup. Link: http://lkml.kernel.org/r/16e887d442986ab87fe87a755815ad92fa431a5f.1550066133.git.andreyknvl@google.comSigned-off-by: NAndrey Konovalov <andreyknvl@google.com> Tested-by: NQian Cai <cai@lca.pw> Acked-by: NCatalin Marinas <catalin.marinas@arm.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgeniy Stepanov <eugenis@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kostya Serebryany <kcc@google.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andrey Konovalov 提交于
Right now we call kmemleak hooks before assigning tags to pointers in KASAN hooks. As a result, when an objects gets allocated, kmemleak sees a differently tagged pointer, compared to the one it sees when the object gets freed. Fix it by calling KASAN hooks before kmemleak's ones. Link: http://lkml.kernel.org/r/cd825aa4897b0fc37d3316838993881daccbe9f5.1549921721.git.andreyknvl@google.comSigned-off-by: NAndrey Konovalov <andreyknvl@google.com> Reported-by: NQian Cai <cai@lca.pw> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgeniy Stepanov <eugenis@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kostya Serebryany <kcc@google.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 29 12月, 2018 1 次提交
-
-
由 Andrey Konovalov 提交于
Patch series "kasan: add software tag-based mode for arm64", v13. This patchset adds a new software tag-based mode to KASAN [1]. (Initially this mode was called KHWASAN, but it got renamed, see the naming rationale at the end of this section). The plan is to implement HWASan [2] for the kernel with the incentive, that it's going to have comparable to KASAN performance, but in the same time consume much less memory, trading that off for somewhat imprecise bug detection and being supported only for arm64. The underlying ideas of the approach used by software tag-based KASAN are: 1. By using the Top Byte Ignore (TBI) arm64 CPU feature, we can store pointer tags in the top byte of each kernel pointer. 2. Using shadow memory, we can store memory tags for each chunk of kernel memory. 3. On each memory allocation, we can generate a random tag, embed it into the returned pointer and set the memory tags that correspond to this chunk of memory to the same value. 4. By using compiler instrumentation, before each memory access we can add a check that the pointer tag matches the tag of the memory that is being accessed. 5. On a tag mismatch we report an error. With this patchset the existing KASAN mode gets renamed to generic KASAN, with the word "generic" meaning that the implementation can be supported by any architecture as it is purely software. The new mode this patchset adds is called software tag-based KASAN. The word "tag-based" refers to the fact that this mode uses tags embedded into the top byte of kernel pointers and the TBI arm64 CPU feature that allows to dereference such pointers. The word "software" here means that shadow memory manipulation and tag checking on pointer dereference is done in software. As it is the only tag-based implementation right now, "software tag-based" KASAN is sometimes referred to as simply "tag-based" in this patchset. A potential expansion of this mode is a hardware tag-based mode, which would use hardware memory tagging support (announced by Arm [3]) instead of compiler instrumentation and manual shadow memory manipulation. Same as generic KASAN, software tag-based KASAN is strictly a debugging feature. [1] https://www.kernel.org/doc/html/latest/dev-tools/kasan.html [2] http://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html [3] https://community.arm.com/processors/b/blog/posts/arm-a-profile-architecture-2018-developments-armv85a ====== Rationale On mobile devices generic KASAN's memory usage is significant problem. One of the main reasons to have tag-based KASAN is to be able to perform a similar set of checks as the generic one does, but with lower memory requirements. Comment from Vishwath Mohan <vishwath@google.com>: I don't have data on-hand, but anecdotally both ASAN and KASAN have proven problematic to enable for environments that don't tolerate the increased memory pressure well. This includes (a) Low-memory form factors - Wear, TV, Things, lower-tier phones like Go, (c) Connected components like Pixel's visual core [1]. These are both places I'd love to have a low(er) memory footprint option at my disposal. Comment from Evgenii Stepanov <eugenis@google.com>: Looking at a live Android device under load, slab (according to /proc/meminfo) + kernel stack take 8-10% available RAM (~350MB). KASAN's overhead of 2x - 3x on top of it is not insignificant. Not having this overhead enables near-production use - ex. running KASAN/KHWASAN kernel on a personal, daily-use device to catch bugs that do not reproduce in test configuration. These are the ones that often cost the most engineering time to track down. CPU overhead is bad, but generally tolerable. RAM is critical, in our experience. Once it gets low enough, OOM-killer makes your life miserable. [1] https://www.blog.google/products/pixel/pixel-visual-core-image-processing-and-machine-learning-pixel-2/ ====== Technical details Software tag-based KASAN mode is implemented in a very similar way to the generic one. This patchset essentially does the following: 1. TCR_TBI1 is set to enable Top Byte Ignore. 2. Shadow memory is used (with a different scale, 1:16, so each shadow byte corresponds to 16 bytes of kernel memory) to store memory tags. 3. All slab objects are aligned to shadow scale, which is 16 bytes. 4. All pointers returned from the slab allocator are tagged with a random tag and the corresponding shadow memory is poisoned with the same value. 5. Compiler instrumentation is used to insert tag checks. Either by calling callbacks or by inlining them (CONFIG_KASAN_OUTLINE and CONFIG_KASAN_INLINE flags are reused). 6. When a tag mismatch is detected in callback instrumentation mode KASAN simply prints a bug report. In case of inline instrumentation, clang inserts a brk instruction, and KASAN has it's own brk handler, which reports the bug. 7. The memory in between slab objects is marked with a reserved tag, and acts as a redzone. 8. When a slab object is freed it's marked with a reserved tag. Bug detection is imprecise for two reasons: 1. We won't catch some small out-of-bounds accesses, that fall into the same shadow cell, as the last byte of a slab object. 2. We only have 1 byte to store tags, which means we have a 1/256 probability of a tag match for an incorrect access (actually even slightly less due to reserved tag values). Despite that there's a particular type of bugs that tag-based KASAN can detect compared to generic KASAN: use-after-free after the object has been allocated by someone else. ====== Testing Some kernel developers voiced a concern that changing the top byte of kernel pointers may lead to subtle bugs that are difficult to discover. To address this concern deliberate testing has been performed. It doesn't seem feasible to do some kind of static checking to find potential issues with pointer tagging, so a dynamic approach was taken. All pointer comparisons/subtractions have been instrumented in an LLVM compiler pass and a kernel module that would print a bug report whenever two pointers with different tags are being compared/subtracted (ignoring comparisons with NULL pointers and with pointers obtained by casting an error code to a pointer type) has been used. Then the kernel has been booted in QEMU and on an Odroid C2 board and syzkaller has been run. This yielded the following results. The two places that look interesting are: is_vmalloc_addr in include/linux/mm.h is_kernel_rodata in mm/util.c Here we compare a pointer with some fixed untagged values to make sure that the pointer lies in a particular part of the kernel address space. Since tag-based KASAN doesn't add tags to pointers that belong to rodata or vmalloc regions, this should work as is. To make sure debug checks to those two functions that check that the result doesn't change whether we operate on pointers with or without untagging has been added. A few other cases that don't look that interesting: Comparing pointers to achieve unique sorting order of pointee objects (e.g. sorting locks addresses before performing a double lock): tty_ldisc_lock_pair_timeout in drivers/tty/tty_ldisc.c pipe_double_lock in fs/pipe.c unix_state_double_lock in net/unix/af_unix.c lock_two_nondirectories in fs/inode.c mutex_lock_double in kernel/events/core.c ep_cmp_ffd in fs/eventpoll.c fsnotify_compare_groups fs/notify/mark.c Nothing needs to be done here, since the tags embedded into pointers don't change, so the sorting order would still be unique. Checks that a pointer belongs to some particular allocation: is_sibling_entry in lib/radix-tree.c object_is_on_stack in include/linux/sched/task_stack.h Nothing needs to be done here either, since two pointers can only belong to the same allocation if they have the same tag. Overall, since the kernel boots and works, there are no critical bugs. As for the rest, the traditional kernel testing way (use until fails) is the only one that looks feasible. Another point here is that tag-based KASAN is available under a separate config option that needs to be deliberately enabled. Even though it might be used in a "near-production" environment to find bugs that are not found during fuzzing or running tests, it is still a debug tool. ====== Benchmarks The following numbers were collected on Odroid C2 board. Both generic and tag-based KASAN were used in inline instrumentation mode. Boot time [1]: * ~1.7 sec for clean kernel * ~5.0 sec for generic KASAN * ~5.0 sec for tag-based KASAN Network performance [2]: * 8.33 Gbits/sec for clean kernel * 3.17 Gbits/sec for generic KASAN * 2.85 Gbits/sec for tag-based KASAN Slab memory usage after boot [3]: * ~40 kb for clean kernel * ~105 kb (~260% overhead) for generic KASAN * ~47 kb (~20% overhead) for tag-based KASAN KASAN memory overhead consists of three main parts: 1. Increased slab memory usage due to redzones. 2. Shadow memory (the whole reserved once during boot). 3. Quaratine (grows gradually until some preset limit; the more the limit, the more the chance to detect a use-after-free). Comparing tag-based vs generic KASAN for each of these points: 1. 20% vs 260% overhead. 2. 1/16th vs 1/8th of physical memory. 3. Tag-based KASAN doesn't require quarantine. [1] Time before the ext4 driver is initialized. [2] Measured as `iperf -s & iperf -c 127.0.0.1 -t 30`. [3] Measured as `cat /proc/meminfo | grep Slab`. ====== Some notes A few notes: 1. The patchset can be found here: https://github.com/xairy/kasan-prototype/tree/khwasan 2. Building requires a recent Clang version (7.0.0 or later). 3. Stack instrumentation is not supported yet and will be added later. This patch (of 25): Tag-based KASAN changes the value of the top byte of pointers returned from the kernel allocation functions (such as kmalloc). This patch updates KASAN hooks signatures and their usage in SLAB and SLUB code to reflect that. Link: http://lkml.kernel.org/r/aec2b5e3973781ff8a6bb6760f8543643202c451.1544099024.git.andreyknvl@google.comSigned-off-by: NAndrey Konovalov <andreyknvl@google.com> Reviewed-by: NAndrey Ryabinin <aryabinin@virtuozzo.com> Reviewed-by: NDmitry Vyukov <dvyukov@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 18 8月, 2018 1 次提交
-
-
由 Kirill Tkhai 提交于
Introduce new config option, which is used to replace repeating CONFIG_MEMCG && !CONFIG_SLOB pattern. Next patches add a little more memcg+kmem related code, so let's keep the defines more clearly. Link: http://lkml.kernel.org/r/153063053670.1818.15013136946600481138.stgit@localhost.localdomainSigned-off-by: NKirill Tkhai <ktkhai@virtuozzo.com> Acked-by: NVladimir Davydov <vdavydov.dev@gmail.com> Tested-by: NShakeel Butt <shakeelb@google.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guenter Roeck <linux@roeck-us.net> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Josef Bacik <jbacik@fb.com> Cc: Li RongQing <lirongqing@baidu.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matthias Kaehlcke <mka@chromium.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Roman Gushchin <guro@fb.com> Cc: Sahitya Tummala <stummala@codeaurora.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Waiman Long <longman@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 06 4月, 2018 6 次提交
-
-
由 Shakeel Butt 提交于
The kasan quarantine is designed to delay freeing slab objects to catch use-after-free. The quarantine can be large (several percent of machine memory size). When kmem_caches are deleted related objects are flushed from the quarantine but this requires scanning the entire quarantine which can be very slow. We have seen the kernel busily working on this while holding slab_mutex and badly affecting cache_reaper, slabinfo readers and memcg kmem cache creations. It can easily reproduced by following script: yes . | head -1000000 | xargs stat > /dev/null for i in `seq 1 10`; do seq 500 | (cd /cg/memory && xargs mkdir) seq 500 | xargs -I{} sh -c 'echo $BASHPID > \ /cg/memory/{}/tasks && exec stat .' > /dev/null seq 500 | (cd /cg/memory && xargs rmdir) done The busy stack: kasan_cache_shutdown shutdown_cache memcg_destroy_kmem_caches mem_cgroup_css_free css_free_rwork_fn process_one_work worker_thread kthread ret_from_fork This patch is based on the observation that if the kmem_cache to be destroyed is empty then there should not be any objects of this cache in the quarantine. Without the patch the script got stuck for couple of hours. With the patch the script completed within a second. Link: http://lkml.kernel.org/r/20180327230603.54721-1-shakeelb@google.comSigned-off-by: NShakeel Butt <shakeelb@google.com> Reviewed-by: NAndrew Morton <akpm@linux-foundation.org> Acked-by: NAndrey Ryabinin <aryabinin@virtuozzo.com> Acked-by: NChristoph Lameter <cl@linux.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Alexander Potapenko <glider@google.com> Cc: Greg Thelen <gthelen@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Alexey Dobriyan 提交于
If kmem case sizes are 32-bit, then usecopy region should be too. Link: http://lkml.kernel.org/r/20180305200730.15812-21-adobriyan@gmail.comSigned-off-by: NAlexey Dobriyan <adobriyan@gmail.com> Cc: David Miller <davem@davemloft.net> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Alexey Dobriyan 提交于
Now that all sizes are properly typed, propagate "unsigned int" down the callgraph. Link: http://lkml.kernel.org/r/20180305200730.15812-19-adobriyan@gmail.comSigned-off-by: NAlexey Dobriyan <adobriyan@gmail.com> Acked-by: NChristoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Alexey Dobriyan 提交于
struct kmem_cache::size and ::align were always 32-bit. Out of curiosity I created 4GB kmem_cache, it oopsed with division by 0. kmem_cache_create(1UL<<32+1) created 1-byte cache as expected. size_t doesn't work and never did. Link: http://lkml.kernel.org/r/20180305200730.15812-6-adobriyan@gmail.comSigned-off-by: NAlexey Dobriyan <adobriyan@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Alexey Dobriyan 提交于
struct kmem_cache::size has always been "int", all those "size_t size" are fake. Link: http://lkml.kernel.org/r/20180305200730.15812-5-adobriyan@gmail.comSigned-off-by: NAlexey Dobriyan <adobriyan@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Alexey Dobriyan 提交于
KMALLOC_MAX_CACHE_SIZE is 32-bit so is the largest kmalloc cache size. Christoph said: : : Ok SLABs maximum allocation size is limited to 32M (see : include/linux/slab.h: : : #define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \ : (MAX_ORDER + PAGE_SHIFT - 1) : 25) : : And SLUB/SLOB pass all larger requests to the page allocator anyways. Link: http://lkml.kernel.org/r/20180305200730.15812-4-adobriyan@gmail.comSigned-off-by: NAlexey Dobriyan <adobriyan@gmail.com> Acked-by: NChristoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 01 2月, 2018 1 次提交
-
-
由 Byongho Lee 提交于
calculate_alignment() function is only used inside slab_common.c. So make it static and let the compiler do more optimizations. After this patch there's a small improvement in text and data size. $ gcc --version gcc (GCC) 7.2.1 20171128 Before: text data bss dec hex filename 9890457 3828702 1212364 14931523 e3d643 vmlinux After: text data bss dec hex filename 9890437 3828670 1212364 14931471 e3d60f vmlinux Also I fixed a style problem reported by checkpatch. WARNING: Missing a blank line after declarations #53: FILE: mm/slab_common.c:286: + unsigned long ralign = cache_line_size(); + while (size <= ralign / 2) Link: http://lkml.kernel.org/r/20171210080132.406-1-bhlee.kernel@gmail.comSigned-off-by: NByongho Lee <bhlee.kernel@gmail.com> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 16 1月, 2018 2 次提交
-
-
由 David Windsor 提交于
Mark the kmalloc slab caches as entirely whitelisted. These caches are frequently used to fulfill kernel allocations that contain data to be copied to/from userspace. Internal-only uses are also common, but are scattered in the kernel. For now, mark all the kmalloc caches as whitelisted. This patch is modified from Brad Spengler/PaX Team's PAX_USERCOPY whitelisting code in the last public patch of grsecurity/PaX based on my understanding of the code. Changes or omissions from the original code are mine and don't reflect the original grsecurity/PaX code. Signed-off-by: NDavid Windsor <dave@nullcore.net> [kees: merged in moved kmalloc hunks, adjust commit log] Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: linux-mm@kvack.org Cc: linux-xfs@vger.kernel.org Signed-off-by: NKees Cook <keescook@chromium.org> Acked-by: NChristoph Lameter <cl@linux.com>
-
由 David Windsor 提交于
This patch prepares the slab allocator to handle caches having annotations (useroffset and usersize) defining usercopy regions. This patch is modified from Brad Spengler/PaX Team's PAX_USERCOPY whitelisting code in the last public patch of grsecurity/PaX based on my understanding of the code. Changes or omissions from the original code are mine and don't reflect the original grsecurity/PaX code. Currently, hardened usercopy performs dynamic bounds checking on slab cache objects. This is good, but still leaves a lot of kernel memory available to be copied to/from userspace in the face of bugs. To further restrict what memory is available for copying, this creates a way to whitelist specific areas of a given slab cache object for copying to/from userspace, allowing much finer granularity of access control. Slab caches that are never exposed to userspace can declare no whitelist for their objects, thereby keeping them unavailable to userspace via dynamic copy operations. (Note, an implicit form of whitelisting is the use of constant sizes in usercopy operations and get_user()/put_user(); these bypass hardened usercopy checks since these sizes cannot change at runtime.) To support this whitelist annotation, usercopy region offset and size members are added to struct kmem_cache. The slab allocator receives a new function, kmem_cache_create_usercopy(), that creates a new cache with a usercopy region defined, suitable for declaring spans of fields within the objects that get copied to/from userspace. In this patch, the default kmem_cache_create() marks the entire allocation as whitelisted, leaving it semantically unchanged. Once all fine-grained whitelists have been added (in subsequent patches), this will be changed to a usersize of 0, making caches created with kmem_cache_create() not copyable to/from userspace. After the entire usercopy whitelist series is applied, less than 15% of the slab cache memory remains exposed to potential usercopy bugs after a fresh boot: Total Slab Memory: 48074720 Usercopyable Memory: 6367532 13.2% task_struct 0.2% 4480/1630720 RAW 0.3% 300/96000 RAWv6 2.1% 1408/64768 ext4_inode_cache 3.0% 269760/8740224 dentry 11.1% 585984/5273856 mm_struct 29.1% 54912/188448 kmalloc-8 100.0% 24576/24576 kmalloc-16 100.0% 28672/28672 kmalloc-32 100.0% 81920/81920 kmalloc-192 100.0% 96768/96768 kmalloc-128 100.0% 143360/143360 names_cache 100.0% 163840/163840 kmalloc-64 100.0% 167936/167936 kmalloc-256 100.0% 339968/339968 kmalloc-512 100.0% 350720/350720 kmalloc-96 100.0% 455616/455616 kmalloc-8192 100.0% 655360/655360 kmalloc-1024 100.0% 812032/812032 kmalloc-4096 100.0% 819200/819200 kmalloc-2048 100.0% 1310720/1310720 After some kernel build workloads, the percentage (mainly driven by dentry and inode caches expanding) drops under 10%: Total Slab Memory: 95516184 Usercopyable Memory: 8497452 8.8% task_struct 0.2% 4000/1456000 RAW 0.3% 300/96000 RAWv6 2.1% 1408/64768 ext4_inode_cache 3.0% 1217280/39439872 dentry 11.1% 1623200/14608800 mm_struct 29.1% 73216/251264 kmalloc-8 100.0% 24576/24576 kmalloc-16 100.0% 28672/28672 kmalloc-32 100.0% 94208/94208 kmalloc-192 100.0% 96768/96768 kmalloc-128 100.0% 143360/143360 names_cache 100.0% 163840/163840 kmalloc-64 100.0% 245760/245760 kmalloc-256 100.0% 339968/339968 kmalloc-512 100.0% 350720/350720 kmalloc-96 100.0% 563520/563520 kmalloc-8192 100.0% 655360/655360 kmalloc-1024 100.0% 794624/794624 kmalloc-4096 100.0% 819200/819200 kmalloc-2048 100.0% 1257472/1257472 Signed-off-by: NDavid Windsor <dave@nullcore.net> [kees: adjust commit log, split out a few extra kmalloc hunks] [kees: add field names to function declarations] [kees: convert BUGs to WARNs and fail closed] [kees: add attack surface reduction analysis to commit log] Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: linux-mm@kvack.org Cc: linux-xfs@vger.kernel.org Signed-off-by: NKees Cook <keescook@chromium.org> Acked-by: NChristoph Lameter <cl@linux.com>
-
- 17 12月, 2017 1 次提交
-
-
由 Will Deacon 提交于
[ Note, this is a Git cherry-pick of the following commit: 506458ef ("locking/barriers: Convert users of lockless_dereference() to READ_ONCE()") ... for easier x86 PTI code testing and back-porting. ] READ_ONCE() now has an implicit smp_read_barrier_depends() call, so it can be used instead of lockless_dereference() without any change in semantics. Signed-off-by: NWill Deacon <will.deacon@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1508840570-22169-4-git-send-email-will.deacon@arm.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 16 11月, 2017 4 次提交
-
-
Convert all allocations that used a NOTRACK flag to stop using it. Link: http://lkml.kernel.org/r/20171007030159.22241-3-alexander.levin@verizon.comSigned-off-by: NSasha Levin <alexander.levin@verizon.com> Cc: Alexander Potapenko <glider@google.com> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Tim Hansen <devtimhansen@gmail.com> Cc: Vegard Nossum <vegardno@ifi.uio.no> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
Patch series "kmemcheck: kill kmemcheck", v2. As discussed at LSF/MM, kill kmemcheck. KASan is a replacement that is able to work without the limitation of kmemcheck (single CPU, slow). KASan is already upstream. We are also not aware of any users of kmemcheck (or users who don't consider KASan as a suitable replacement). The only objection was that since KASAN wasn't supported by all GCC versions provided by distros at that time we should hold off for 2 years, and try again. Now that 2 years have passed, and all distros provide gcc that supports KASAN, kill kmemcheck again for the very same reasons. This patch (of 4): Remove kmemcheck annotations, and calls to kmemcheck from the kernel. [alexander.levin@verizon.com: correctly remove kmemcheck call from dma_map_sg_attrs] Link: http://lkml.kernel.org/r/20171012192151.26531-1-alexander.levin@verizon.com Link: http://lkml.kernel.org/r/20171007030159.22241-2-alexander.levin@verizon.comSigned-off-by: NSasha Levin <alexander.levin@verizon.com> Cc: Alexander Potapenko <glider@google.com> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Tim Hansen <devtimhansen@gmail.com> Cc: Vegard Nossum <vegardno@ifi.uio.no> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Alexey Dobriyan 提交于
Add sparse-checked slab_flags_t for struct kmem_cache::flags (SLAB_POISON, etc). SLAB is bloated temporarily by switching to "unsigned long", but only temporarily. Link: http://lkml.kernel.org/r/20171021100225.GA22428@avx2Signed-off-by: NAlexey Dobriyan <adobriyan@gmail.com> Acked-by: NPekka Enberg <penberg@kernel.org> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Yang Shi 提交于
The kernel may panic when an oom happens without killable process sometimes it is caused by huge unreclaimable slabs used by kernel. Although kdump could help debug such problem, however, kdump is not available on all architectures and it might be malfunction sometime. And, since kernel already panic it is worthy capturing such information in dmesg to aid touble shooting. Print out unreclaimable slab info (used size and total size) which actual memory usage is not zero (num_objs * size != 0) when unreclaimable slabs amount is greater than total user memory (LRU pages). The output looks like: Unreclaimable slab info: Name Used Total rpc_buffers 31KB 31KB rpc_tasks 7KB 7KB ebitmap_node 1964KB 1964KB avtab_node 5024KB 5024KB xfs_buf 1402KB 1402KB xfs_ili 134KB 134KB xfs_efi_item 115KB 115KB xfs_efd_item 115KB 115KB xfs_buf_item 134KB 134KB xfs_log_item_desc 342KB 342KB xfs_trans 1412KB 1412KB xfs_ifork 212KB 212KB [yang.s@alibaba-inc.com: v11] Link: http://lkml.kernel.org/r/1507656303-103845-4-git-send-email-yang.s@alibaba-inc.com Link: http://lkml.kernel.org/r/1507152550-46205-4-git-send-email-yang.s@alibaba-inc.comSigned-off-by: NYang Shi <yang.s@alibaba-inc.com> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 02 11月, 2017 1 次提交
-
-
由 Greg Kroah-Hartman 提交于
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: NKate Stewart <kstewart@linuxfoundation.org> Reviewed-by: NPhilippe Ombredanne <pombredanne@nexb.com> Reviewed-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 24 10月, 2017 1 次提交
-
-
由 Will Deacon 提交于
READ_ONCE() now has an implicit smp_read_barrier_depends() call, so it can be used instead of lockless_dereference() without any change in semantics. Signed-off-by: NWill Deacon <will.deacon@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1508840570-22169-4-git-send-email-will.deacon@arm.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 10 8月, 2017 1 次提交
-
-
由 Peter Zijlstra 提交于
A while ago someone, and I cannot find the email just now, asked if we could not implement the RECLAIM_FS inversion stuff with a 'fake' lock like we use for other things like workqueues etc. I think this should be possible which allows reducing the 'irq' states and will reduce the amount of __bfs() lookups we do. Removing the 1 IRQ state results in 4 less __bfs() walks per dependency, improving lockdep performance. And by moving this annotation out of the lockdep code it becomes easier for the mm people to extend. Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Byungchul Park <byungchul.park@lge.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@kernel.org> Cc: Nikolay Borisov <nborisov@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: akpm@linux-foundation.org Cc: boqun.feng@gmail.com Cc: iamjoonsoo.kim@lge.com Cc: kernel-team@lge.com Cc: kirill@shutemov.name Cc: npiggin@gmail.com Cc: walken@google.com Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
- 07 7月, 2017 3 次提交
-
-
由 Johannes Weiner 提交于
Josef's redesign of the balancing between slab caches and the page cache requires slab cache statistics at the lruvec level. Link: http://lkml.kernel.org/r/20170530181724.27197-7-hannes@cmpxchg.orgSigned-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NVladimir Davydov <vdavydov.dev@gmail.com> Cc: Josef Bacik <josef@toxicpanda.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
The kmem-specific functions do the same thing. Switch and drop. Link: http://lkml.kernel.org/r/20170530181724.27197-5-hannes@cmpxchg.orgSigned-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NVladimir Davydov <vdavydov.dev@gmail.com> Cc: Josef Bacik <josef@toxicpanda.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
Now that the slab counters are moved from the zone to the node level we can drop the private memcg node stats and use the official ones. Link: http://lkml.kernel.org/r/20170530181724.27197-4-hannes@cmpxchg.orgSigned-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NVladimir Davydov <vdavydov.dev@gmail.com> Cc: Josef Bacik <josef@toxicpanda.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 19 4月, 2017 1 次提交
-
-
由 Paul E. McKenney 提交于
A group of Linux kernel hackers reported chasing a bug that resulted from their assumption that SLAB_DESTROY_BY_RCU provided an existence guarantee, that is, that no block from such a slab would be reallocated during an RCU read-side critical section. Of course, that is not the case. Instead, SLAB_DESTROY_BY_RCU only prevents freeing of an entire slab of blocks. However, there is a phrase for this, namely "type safety". This commit therefore renames SLAB_DESTROY_BY_RCU to SLAB_TYPESAFE_BY_RCU in order to avoid future instances of this sort of confusion. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: <linux-mm@kvack.org> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NVlastimil Babka <vbabka@suse.cz> [ paulmck: Add comments mentioning the old name, as requested by Eric Dumazet, in order to help people familiar with the old name find the new one. ] Acked-by: NDavid Rientjes <rientjes@google.com>
-
- 23 2月, 2017 7 次提交
-
-
由 Tejun Heo 提交于
With kmem cgroup support enabled, kmem_caches can be created and destroyed frequently and a great number of near empty kmem_caches can accumulate if there are a lot of transient cgroups and the system is not under memory pressure. When memory reclaim starts under such conditions, it can lead to consecutive deactivation and destruction of many kmem_caches, easily hundreds of thousands on moderately large systems, exposing scalability issues in the current slab management code. This is one of the patches to address the issue. slub uses synchronize_sched() to deactivate a memcg cache. synchronize_sched() is an expensive and slow operation and doesn't scale when a huge number of caches are destroyed back-to-back. While there used to be a simple batching mechanism, the batching was too restricted to be helpful. This patch implements slab_deactivate_memcg_cache_rcu_sched() which slub can use to schedule sched RCU callback instead of performing synchronize_sched() synchronously while holding cgroup_mutex. While this adds online cpus, mems and slab_mutex operations, operating on these locks back-to-back from the same kworker, which is what's gonna happen when there are many to deactivate, isn't expensive at all and this gets rid of the scalability problem completely. Link: http://lkml.kernel.org/r/20170117235411.9408-9-tj@kernel.orgSigned-off-by: NTejun Heo <tj@kernel.org> Reported-by: NJay Vana <jsvana@fb.com> Acked-by: NVladimir Davydov <vdavydov.dev@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Tejun Heo 提交于
__kmem_cache_shrink() is called with %true @deactivate only for memcg caches. Remove @deactivate from __kmem_cache_shrink() and introduce __kmemcg_cache_deactivate() instead. Each memcg-supporting allocator should implement it and it should deactivate and drain the cache. This is to allow memcg cache deactivation behavior to further deviate from simple shrinking without messing up __kmem_cache_shrink(). This is pure reorganization and doesn't introduce any observable behavior changes. v2: Dropped unnecessary ifdef in mm/slab.h as suggested by Vladimir. Link: http://lkml.kernel.org/r/20170117235411.9408-8-tj@kernel.orgSigned-off-by: NTejun Heo <tj@kernel.org> Acked-by: NVladimir Davydov <vdavydov.dev@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Tejun Heo 提交于
With kmem cgroup support enabled, kmem_caches can be created and destroyed frequently and a great number of near empty kmem_caches can accumulate if there are a lot of transient cgroups and the system is not under memory pressure. When memory reclaim starts under such conditions, it can lead to consecutive deactivation and destruction of many kmem_caches, easily hundreds of thousands on moderately large systems, exposing scalability issues in the current slab management code. This is one of the patches to address the issue. slab_caches currently lists all caches including root and memcg ones. This is the only data structure which lists the root caches and iterating root caches can only be done by walking the list while skipping over memcg caches. As there can be a huge number of memcg caches, this can become very expensive. This also can make /proc/slabinfo behave very badly. seq_file processes reads in 4k chunks and seeks to the previous Nth position on slab_caches list to resume after each chunk. With a lot of memcg cache churns on the list, reading /proc/slabinfo can become very slow and its content often ends up with duplicate and/or missing entries. This patch adds a new list slab_root_caches which lists only the root caches. When memcg is not enabled, it becomes just an alias of slab_caches. memcg specific list operations are collected into memcg_[un]link_cache(). Link: http://lkml.kernel.org/r/20170117235411.9408-7-tj@kernel.orgSigned-off-by: NTejun Heo <tj@kernel.org> Reported-by: NJay Vana <jsvana@fb.com> Acked-by: NVladimir Davydov <vdavydov@tarantool.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Tejun Heo 提交于
With kmem cgroup support enabled, kmem_caches can be created and destroyed frequently and a great number of near empty kmem_caches can accumulate if there are a lot of transient cgroups and the system is not under memory pressure. When memory reclaim starts under such conditions, it can lead to consecutive deactivation and destruction of many kmem_caches, easily hundreds of thousands on moderately large systems, exposing scalability issues in the current slab management code. This is one of the patches to address the issue. While a memcg kmem_cache is listed on its root cache's ->children list, there is no direct way to iterate all kmem_caches which are assocaited with a memory cgroup. The only way to iterate them is walking all caches while filtering out caches which don't match, which would be most of them. This makes memcg destruction operations O(N^2) where N is the total number of slab caches which can be huge. This combined with the synchronous RCU operations can tie up a CPU and affect the whole machine for many hours when memory reclaim triggers offlining and destruction of the stale memcgs. This patch adds mem_cgroup->kmem_caches list which goes through memcg_cache_params->kmem_caches_node of all kmem_caches which are associated with the memcg. All memcg specific iterations, including stat file access, are updated to use the new list instead. Link: http://lkml.kernel.org/r/20170117235411.9408-6-tj@kernel.orgSigned-off-by: NTejun Heo <tj@kernel.org> Reported-by: NJay Vana <jsvana@fb.com> Acked-by: NVladimir Davydov <vdavydov.dev@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Tejun Heo 提交于
We're going to change how memcg caches are iterated. In preparation, clean up and reorganize memcg_cache_params. * The shared ->list is replaced by ->children in root and ->children_node in children. * ->is_root_cache is removed. Instead ->root_cache is moved out of the child union and now used by both root and children. NULL indicates root cache. Non-NULL a memcg one. This patch doesn't cause any observable behavior changes. Link: http://lkml.kernel.org/r/20170117235411.9408-5-tj@kernel.orgSigned-off-by: NTejun Heo <tj@kernel.org> Acked-by: NVladimir Davydov <vdavydov.dev@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Tejun Heo 提交于
Patch series "slab: make memcg slab destruction scalable", v3. With kmem cgroup support enabled, kmem_caches can be created and destroyed frequently and a great number of near empty kmem_caches can accumulate if there are a lot of transient cgroups and the system is not under memory pressure. When memory reclaim starts under such conditions, it can lead to consecutive deactivation and destruction of many kmem_caches, easily hundreds of thousands on moderately large systems, exposing scalability issues in the current slab management code. I've seen machines which end up with hundred thousands of caches and many millions of kernfs_nodes. The current code is O(N^2) on the total number of caches and has synchronous rcu_barrier() and synchronize_sched() in cgroup offline / release path which is executed while holding cgroup_mutex. Combined, this leads to very expensive and slow cache destruction operations which can easily keep running for half a day. This also messes up /proc/slabinfo along with other cache iterating operations. seq_file operates on 4k chunks and on each 4k boundary tries to seek to the last position in the list. With a huge number of caches on the list, this becomes very slow and very prone to the list content changing underneath it leading to a lot of missing and/or duplicate entries. This patchset addresses the scalability problem. * Add root and per-memcg lists. Update each user to use the appropriate list. * Make rcu_barrier() for SLAB_DESTROY_BY_RCU caches globally batched and asynchronous. * For dying empty slub caches, remove the sysfs files after deactivation so that we don't end up with millions of sysfs files without any useful information on them. This patchset contains the following nine patches. 0001-Revert-slub-move-synchronize_sched-out-of-slab_mutex.patch 0002-slub-separate-out-sysfs_slab_release-from-sysfs_slab.patch 0003-slab-remove-synchronous-rcu_barrier-call-in-memcg-ca.patch 0004-slab-reorganize-memcg_cache_params.patch 0005-slab-link-memcg-kmem_caches-on-their-associated-memo.patch 0006-slab-implement-slab_root_caches-list.patch 0007-slab-introduce-__kmemcg_cache_deactivate.patch 0008-slab-remove-synchronous-synchronize_sched-from-memcg.patch 0009-slab-remove-slub-sysfs-interface-files-early-for-emp.patch 0010-slab-use-memcg_kmem_cache_wq-for-slab-destruction-op.patch 0001 reverts an existing optimization to prepare for the following changes. 0002 is a prep patch. 0003 makes rcu_barrier() in release path batched and asynchronous. 0004-0006 separate out the lists. 0007-0008 replace synchronize_sched() in slub destruction path with call_rcu_sched(). 0009 removes sysfs files early for empty dying caches. 0010 makes destruction work items use a workqueue with limited concurrency. This patch (of 10): Revert 89e364db ("slub: move synchronize_sched out of slab_mutex on shrink"). With kmem cgroup support enabled, kmem_caches can be created and destroyed frequently and a great number of near empty kmem_caches can accumulate if there are a lot of transient cgroups and the system is not under memory pressure. When memory reclaim starts under such conditions, it can lead to consecutive deactivation and destruction of many kmem_caches, easily hundreds of thousands on moderately large systems, exposing scalability issues in the current slab management code. This is one of the patches to address the issue. Moving synchronize_sched() out of slab_mutex isn't enough as it's still inside cgroup_mutex. The whole deactivation / release path will be updated to avoid all synchronous RCU operations. Revert this insufficient optimization in preparation to ease future changes. Link: http://lkml.kernel.org/r/20170117235411.9408-2-tj@kernel.orgSigned-off-by: NTejun Heo <tj@kernel.org> Reported-by: NJay Vana <jsvana@fb.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vlastimil Babka 提交于
SLAB as part of its bootstrap pre-creates one kmalloc cache that can fit the kmem_cache_node management structure, and puts it into the generic kmalloc cache array (e.g. for 128b objects). The name of this cache is "kmalloc-node", which is confusing for readers of /proc/slabinfo as the cache is used for generic allocations (and not just the kmem_cache_node struct) and it appears as the kmalloc-128 cache is missing. An easy solution is to use the kmalloc-<size> name when pre-creating the cache, which we can get from the kmalloc_info array. Example /proc/slabinfo before the patch: ... kmalloc-256 1647 1984 256 16 1 : tunables 120 60 8 : slabdata 124 124 828 kmalloc-192 1974 1974 192 21 1 : tunables 120 60 8 : slabdata 94 94 133 kmalloc-96 1332 1344 128 32 1 : tunables 120 60 8 : slabdata 42 42 219 kmalloc-64 2505 5952 64 64 1 : tunables 120 60 8 : slabdata 93 93 715 kmalloc-32 4278 4464 32 124 1 : tunables 120 60 8 : slabdata 36 36 346 kmalloc-node 1352 1376 128 32 1 : tunables 120 60 8 : slabdata 43 43 53 kmem_cache 132 147 192 21 1 : tunables 120 60 8 : slabdata 7 7 0 After the patch: ... kmalloc-256 1672 2160 256 16 1 : tunables 120 60 8 : slabdata 135 135 807 kmalloc-192 1992 2016 192 21 1 : tunables 120 60 8 : slabdata 96 96 203 kmalloc-96 1159 1184 128 32 1 : tunables 120 60 8 : slabdata 37 37 116 kmalloc-64 2561 4864 64 64 1 : tunables 120 60 8 : slabdata 76 76 785 kmalloc-32 4253 4340 32 124 1 : tunables 120 60 8 : slabdata 35 35 270 kmalloc-128 1256 1280 128 32 1 : tunables 120 60 8 : slabdata 40 40 39 kmem_cache 125 147 192 21 1 : tunables 120 60 8 : slabdata 7 7 0 [vbabka@suse.cz: export the whole kmalloc_info structure instead of just a name accessor, per Christoph Lameter] Link: http://lkml.kernel.org/r/54e80303-b814-4232-66d4-95b34d3eb9d0@suse.cz Link: http://lkml.kernel.org/r/20170203181008.24898-1-vbabka@suse.czSigned-off-by: NVlastimil Babka <vbabka@suse.cz> Reviewed-by: NMatthew Wilcox <mawilcox@microsoft.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 13 12月, 2016 2 次提交
-
-
由 David Rientjes 提交于
Rather than tracking the number of active slabs for each node, track the total number of slabs. This is a minor improvement that avoids active slab tracking when a slab goes from free to partial or partial to free. For slab debugging, this also removes an explicit free count since it can easily be inferred by the difference in number of total objects and number of active objects. Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1612042020110.115755@chino.kir.corp.google.comSigned-off-by: NDavid Rientjes <rientjes@google.com> Suggested-by: NJoonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Greg Thelen <gthelen@google.com> Cc: Aruna Ramakrishna <aruna.ramakrishna@oracle.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Greg Thelen 提交于
Reading /proc/slabinfo or monitoring slabtop(1) can become very expensive if there are many slab caches and if there are very lengthy per-node partial and/or free lists. Commit 07a63c41 ("mm/slab: improve performance of gathering slabinfo stats") addressed the per-node full lists which showed a significant improvement when no objects were freed. This patch has the same motivation and optimizes the remainder of the usecases where there are very lengthy partial and free lists. This patch maintains per-node active_slabs (full and partial) and free_slabs rather than iterating the lists at runtime when reading /proc/slabinfo. When allocating 100GB of slab from a test cache where every slab page is on the partial list, reading /proc/slabinfo (includes all other slab caches on the system) takes ~247ms on average with 48 samples. As a result of this patch, the same read takes ~0.856ms on average. [rientjes@google.com: changelog] Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1611081505240.13403@chino.kir.corp.google.comSigned-off-by: NGreg Thelen <gthelen@google.com> Signed-off-by: NDavid Rientjes <rientjes@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-