1. 31 8月, 2017 7 次提交
    • M
      IB/core: Add DEVICE object and root tree structure · 09e3ebf8
      Matan Barak 提交于
      This adds the DEVICE object. This object supports creating the context
      that all objects are created from. Moreover, it supports executing
      methods which are related to the device itself, such as QUERY_DEVICE.
      This is a singleton object (per file instance).
      
      All standard objects are put in the root structure. This root will later
      on be used in drivers as the source for their whole parsing tree.
      Later on, when new features are added, these drivers could mix this root
      with other customized objects.
      Signed-off-by: NMatan Barak <matanb@mellanox.com>
      Reviewed-by: NYishai Hadas <yishaih@mellanox.com>
      Signed-off-by: NDoug Ledford <dledford@redhat.com>
      09e3ebf8
    • M
      IB/core: Declare an object instead of declaring only type attributes · 5009010f
      Matan Barak 提交于
      Switch all uverbs_type_attrs_xxxx with DECLARE_UVERBS_OBJECT
      macros. This will be later used in order to embed the object
      specific methods in the objects as well.
      Signed-off-by: NMatan Barak <matanb@mellanox.com>
      Reviewed-by: NYishai Hadas <yishaih@mellanox.com>
      Signed-off-by: NDoug Ledford <dledford@redhat.com>
      5009010f
    • M
      IB/core: Add new ioctl interface · fac9658c
      Matan Barak 提交于
      In this ioctl interface, processing the command starts from
      properties of the command and fetching the appropriate user objects
      before calling the handler.
      
      Parsing and validation is done according to a specifier declared by
      the driver's code. In the driver, all supported objects are declared.
      These objects are separated to different object namepsaces. Dividing
      objects to namespaces is done at initialization by using the higher
      bits of the object ids. This initialization can mix objects declared
      in different places to one parsing tree using in this ioctl interface.
      
      For each object we list all supported methods. Similarly to objects,
      methods are separated to method namespaces too. Namespacing is done
      similarly to the objects case. This could be used in order to add
      methods to an existing object.
      
      Each method has a specific handler, which could be either a default
      handler or a driver specific handler.
      Along with the handler, a bunch of attributes are specified as well.
      Similarly to objects and method, attributes are namespaced and hashed
      by their ids at initialization too. All supported attributes are
      subject to automatic fetching and validation. These attributes include
      the command, response and the method's related objects' ids.
      
      When these entities (objects, methods and attributes) are used, the
      high bits of the entities ids are used in order to calculate the hash
      bucket index. Then, these high bits are masked out in order to have a
      zero based index. Since we use these high bits for both bucketing and
      namespacing, we get a compact representation and O(1) array access.
      This is mandatory for efficient dispatching.
      
      Each attribute has a type (PTR_IN, PTR_OUT, IDR and FD) and a length.
      Attributes could be validated through some attributes, like:
      (*) Minimum size / Exact size
      (*) Fops for FD
      (*) Object type for IDR
      
      If an IDR/fd attribute is specified, the kernel also states the object
      type and the required access (NEW, WRITE, READ or DESTROY).
      All uobject/fd management is done automatically by the infrastructure,
      meaning - the infrastructure will fail concurrent commands that at
      least one of them requires concurrent access (WRITE/DESTROY),
      synchronize actions with device removals (dissociate context events)
      and take care of reference counting (increase/decrease) for concurrent
      actions invocation. The reference counts on the actual kernel objects
      shall be handled by the handlers.
      
       objects
      +--------+
      |        |
      |        |   methods                                                                +--------+
      |        |   ns         method      method_spec                           +-----+   |len     |
      +--------+  +------+[d]+-------+   +----------------+[d]+------------+    |attr1+-> |type    |
      | object +> |method+-> | spec  +-> +  attr_buckets  +-> |default_chain+--> +-----+   |idr_type|
      +--------+  +------+   |handler|   |                |   +------------+    |attr2|   |access  |
      |        |  |      |   +-------+   +----------------+   |driver chain|    +-----+   +--------+
      |        |  |      |                                    +------------+
      |        |  +------+
      |        |
      |        |
      |        |
      |        |
      |        |
      |        |
      |        |
      |        |
      |        |
      |        |
      +--------+
      
      [d] = Hash ids to groups using the high order bits
      
      The right types table is also chosen by using the high bits from
      the ids. Currently we have either default or driver specific groups.
      
      Once validation and object fetching (or creation) completed, we call
      the handler:
      int (*handler)(struct ib_device *ib_dev, struct ib_uverbs_file *ufile,
                     struct uverbs_attr_bundle *ctx);
      
      ctx bundles attributes of different namespaces. Each element there
      is an array of attributes which corresponds to one namespaces of
      attributes. For example, in the usually used case:
      
       ctx                               core
      +----------------------------+     +------------+
      | core:                      +---> | valid      |
      +----------------------------+     | cmd_attr   |
      | driver:                    |     +------------+
      |----------------------------+--+  | valid      |
                                      |  | cmd_attr   |
                                      |  +------------+
                                      |  | valid      |
                                      |  | obj_attr   |
                                      |  +------------+
                                      |
                                      |  drivers
                                      |  +------------+
                                      +> | valid      |
                                         | cmd_attr   |
                                         +------------+
                                         | valid      |
                                         | cmd_attr   |
                                         +------------+
                                         | valid      |
                                         | obj_attr   |
                                         +------------+
      Signed-off-by: NMatan Barak <matanb@mellanox.com>
      Reviewed-by: NYishai Hadas <yishaih@mellanox.com>
      Signed-off-by: NDoug Ledford <dledford@redhat.com>
      fac9658c
    • A
      RDMA/vmw_pvrdma: Fix a signedness · 14d6c3a8
      Adit Ranadive 提交于
      Fixes: 29c8d9eb ("IB: Add vmw_pvrdma driver")
      Signed-off-by: NAdit Ranadive <aditr@vmware.com>
      Reviewed-by: NYuval Shaia <yuval.shaia@oracle.com>
      Signed-off-by: NDoug Ledford <dledford@redhat.com>
      14d6c3a8
    • A
      RDMA/vmw_pvrdma: Report network header type in WC · 72f9b089
      Aditya Sarwade 提交于
      We should report the network header type in the work completion so that
      the kernel can infer the right RoCE type headers.
      Reviewed-by: NBryan Tan <bryantan@vmware.com>
      Signed-off-by: NAditya Sarwade <asarwade@vmware.com>
      Signed-off-by: NAdit Ranadive <aditr@vmware.com>
      Reviewed-by: NYuval Shaia <yuval.shaia@oracle.com>
      Signed-off-by: NDoug Ledford <dledford@redhat.com>
      72f9b089
    • R
      IB/core: Add might_sleep() annotation to ib_init_ah_from_wc() · 79364227
      Roland Dreier 提交于
      For RoCE, ib_init_ah_from_wc() can follow the path
      
          ib_init_ah_from_wc() ->
            rdma_addr_find_l2_eth_by_grh() ->
              rdma_resolve_ip()
      
      and rdma_resolve_ip() will sleep in kzalloc() and wait_for_completion().
      
      However, developers will not see any warnings if they use ib_init_ah_from_wc()
      in an atomic context and test only on IB, because the function doesn't
      sleep in that case.
      
      Add a might_sleep() so that lockdep will catch bugs no matter what hardware is
      used to test.
      Signed-off-by: NRoland Dreier <roland@purestorage.com>
      Signed-off-by: NDoug Ledford <dledford@redhat.com>
      79364227
    • R
      IB/cm: Fix sleeping in atomic when RoCE is used · c7616118
      Roland Dreier 提交于
      A couple of places in the CM do
      
          spin_lock_irq(&cm_id_priv->lock);
          ...
          if (cm_alloc_response_msg(work->port, work->mad_recv_wc, &msg))
      
      However when the underlying transport is RoCE, this leads to a sleeping function
      being called with the lock held - the callchain is
      
          cm_alloc_response_msg() ->
            ib_create_ah_from_wc() ->
              ib_init_ah_from_wc() ->
                rdma_addr_find_l2_eth_by_grh() ->
                  rdma_resolve_ip()
      
      and rdma_resolve_ip() starts out by doing
      
          req = kzalloc(sizeof *req, GFP_KERNEL);
      
      not to mention rdma_addr_find_l2_eth_by_grh() doing
      
          wait_for_completion(&ctx.comp);
      
      to wait for the task that rdma_resolve_ip() queues up.
      
      Fix this by moving the AH creation out of the lock.
      Signed-off-by: NRoland Dreier <roland@purestorage.com>
      Reviewed-by: NSean Hefty <sean.hefty@intel.com>
      Signed-off-by: NDoug Ledford <dledford@redhat.com>
      c7616118
  2. 30 8月, 2017 2 次提交
    • M
      IB/core: Add support to finalize objects in one transaction · f43dbebf
      Matan Barak 提交于
      The new ioctl based infrastructure either commits or rollbacks
      all objects of the method as one transaction. In order to do
      that, we introduce a notion of dealing with a collection of
      objects that are related to a specific method.
      
      This also requires adding a notion of a method and attribute.
      A method contains a hash of attributes, where each bucket
      contains several attributes. The attributes are hashed according
      to their namespace which resides in the four upper bits of the id.
      
      For example, an object could be a CQ, which has an action of CREATE_CQ.
      This action has multiple attributes. For example, the CQ's new handle
      and the comp_channel. Each layer in this hierarchy - objects, methods
      and attributes is split into namespaces. The basic example for that is
      one namespace representing the default entities and another one
      representing the driver specific entities.
      
      When declaring these methods and attributes, we actually declare
      their specifications. When a method is executed, we actually
      allocates some space to hold auxiliary information. This auxiliary
      information contains meta-data about the required objects, such
      as pointers to their type information, pointers to the uobjects
      themselves (if exist), etc.
      The specification, along with the auxiliary information we allocated
      and filled is given to the finalize_objects function.
      Signed-off-by: NMatan Barak <matanb@mellanox.com>
      Reviewed-by: NYishai Hadas <yishaih@mellanox.com>
      Signed-off-by: NDoug Ledford <dledford@redhat.com>
      f43dbebf
    • M
      IB/core: Add a generic way to execute an operation on a uobject · a0aa309c
      Matan Barak 提交于
      The ioctl infrastructure treats all user-objects in the same manner.
      It gets objects ids from the user-space and by using the object type
      and type attributes mentioned in the object specification, it executes
      this required method. Passing an object id from the user-space as
      an attribute is carried out in three stages. The first is carried out
      before the actual handler and the last is carried out afterwards.
      
      The different supported operations are read, write, destroy and create.
      In the first stage, the former three actions just fetches the object
      from the repository (by using its id) and locks it. The last action
      allocates a new uobject. Afterwards, the second stage is carried out
      when the handler itself carries out the required modification of the
      object. The last stage is carried out after the handler finishes and
      commits the result. The former two operations just unlock the object.
      Destroy calls the "free object" operation, taking into account the
      object's type and releases the uobject as well. Creation just adds the
      new uobject to the repository, making the object visible to the
      application.
      
      In order to abstract these details from the ioctl infrastructure
      layer, we add uverbs_get_uobject_from_context and
      uverbs_finalize_object functions which corresponds to the first
      and last stages respectively.
      Signed-off-by: NMatan Barak <matanb@mellanox.com>
      Reviewed-by: NYishai Hadas <yishaih@mellanox.com>
      Signed-off-by: NDoug Ledford <dledford@redhat.com>
      a0aa309c
  3. 29 8月, 2017 31 次提交