1. 07 5月, 2014 2 次提交
  2. 09 8月, 2013 1 次提交
    • J
      reiserfs: locking, handle nested locks properly · 278f6679
      Jeff Mahoney 提交于
      The reiserfs write lock replaced the BKL and uses similar semantics.
      
      Frederic's locking code makes a distinction between when the lock is nested
      and when it's being acquired/released, but I don't think that's the right
      distinction to make.
      
      The right distinction is between the lock being released at end-of-use and
      the lock being released for a schedule. The unlock should return the depth
      and the lock should restore it, rather than the other way around as it is now.
      
      This patch implements that and adds a number of places where the lock
      should be dropped.
      Signed-off-by: NJeff Mahoney <jeffm@suse.com>
      278f6679
  3. 21 3月, 2012 1 次提交
  4. 30 3月, 2010 1 次提交
    • T
      include cleanup: Update gfp.h and slab.h includes to prepare for breaking... · 5a0e3ad6
      Tejun Heo 提交于
      include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
      
      percpu.h is included by sched.h and module.h and thus ends up being
      included when building most .c files.  percpu.h includes slab.h which
      in turn includes gfp.h making everything defined by the two files
      universally available and complicating inclusion dependencies.
      
      percpu.h -> slab.h dependency is about to be removed.  Prepare for
      this change by updating users of gfp and slab facilities include those
      headers directly instead of assuming availability.  As this conversion
      needs to touch large number of source files, the following script is
      used as the basis of conversion.
      
        http://userweb.kernel.org/~tj/misc/slabh-sweep.py
      
      The script does the followings.
      
      * Scan files for gfp and slab usages and update includes such that
        only the necessary includes are there.  ie. if only gfp is used,
        gfp.h, if slab is used, slab.h.
      
      * When the script inserts a new include, it looks at the include
        blocks and try to put the new include such that its order conforms
        to its surrounding.  It's put in the include block which contains
        core kernel includes, in the same order that the rest are ordered -
        alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
        doesn't seem to be any matching order.
      
      * If the script can't find a place to put a new include (mostly
        because the file doesn't have fitting include block), it prints out
        an error message indicating which .h file needs to be added to the
        file.
      
      The conversion was done in the following steps.
      
      1. The initial automatic conversion of all .c files updated slightly
         over 4000 files, deleting around 700 includes and adding ~480 gfp.h
         and ~3000 slab.h inclusions.  The script emitted errors for ~400
         files.
      
      2. Each error was manually checked.  Some didn't need the inclusion,
         some needed manual addition while adding it to implementation .h or
         embedding .c file was more appropriate for others.  This step added
         inclusions to around 150 files.
      
      3. The script was run again and the output was compared to the edits
         from #2 to make sure no file was left behind.
      
      4. Several build tests were done and a couple of problems were fixed.
         e.g. lib/decompress_*.c used malloc/free() wrappers around slab
         APIs requiring slab.h to be added manually.
      
      5. The script was run on all .h files but without automatically
         editing them as sprinkling gfp.h and slab.h inclusions around .h
         files could easily lead to inclusion dependency hell.  Most gfp.h
         inclusion directives were ignored as stuff from gfp.h was usually
         wildly available and often used in preprocessor macros.  Each
         slab.h inclusion directive was examined and added manually as
         necessary.
      
      6. percpu.h was updated not to include slab.h.
      
      7. Build test were done on the following configurations and failures
         were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
         distributed build env didn't work with gcov compiles) and a few
         more options had to be turned off depending on archs to make things
         build (like ipr on powerpc/64 which failed due to missing writeq).
      
         * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
         * powerpc and powerpc64 SMP allmodconfig
         * sparc and sparc64 SMP allmodconfig
         * ia64 SMP allmodconfig
         * s390 SMP allmodconfig
         * alpha SMP allmodconfig
         * um on x86_64 SMP allmodconfig
      
      8. percpu.h modifications were reverted so that it could be applied as
         a separate patch and serve as bisection point.
      
      Given the fact that I had only a couple of failures from tests on step
      6, I'm fairly confident about the coverage of this conversion patch.
      If there is a breakage, it's likely to be something in one of the arch
      headers which should be easily discoverable easily on most builds of
      the specific arch.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Guess-its-ok-by: NChristoph Lameter <cl@linux-foundation.org>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
      5a0e3ad6
  5. 05 12月, 2009 1 次提交
  6. 14 9月, 2009 3 次提交
    • F
      kill-the-bkl/reiserfs: move the concurrent tree accesses checks per superblock · 08f14fc8
      Frederic Weisbecker 提交于
      When do_balance() balances the tree, a trick is performed to
      provide the ability for other tree writers/readers to check whether
      do_balance() is executing concurrently (requires CONFIG_REISERFS_CHECK).
      
      This is done to protect concurrent accesses to the tree. The trick
      is the following:
      
      When do_balance is called, a unique global variable called cur_tb
      takes a pointer to the current tree to be rebalanced.
      Once do_balance finishes its work, cur_tb takes the NULL value.
      
      Then, concurrent tree readers/writers just have to check the value
      of cur_tb to ensure do_balance isn't executing concurrently.
      If it is, then it proves that schedule() occured on do_balance(),
      which then relaxed the bkl that protected the tree.
      
      Now that the bkl has be turned into a mutex, this check is still
      fine even though do_balance() becomes preemptible: the write lock
      will not be automatically released on schedule(), so the tree is
      still protected.
      
      But this is only fine if we have a single reiserfs mountpoint.
      Indeed, because the bkl is a global lock, it didn't allowed
      concurrent executions between a tree reader/writer in a mount point
      and a do_balance() on another tree from another mountpoint.
      
      So assuming all these readers/writers weren't supposed to be
      reentrant, the current check now sometimes detect false positives with
      the current per-superblock mutex which allows this reentrancy.
      
      This patch keeps the concurrent tree accesses check but moves it
      per superblock, so that only trees from a same mount point are
      checked to be not accessed concurrently.
      
      [ Impact: fix spurious panic while running several reiserfs mount-points ]
      
      Cc: Jeff Mahoney <jeffm@suse.com>
      Cc: Chris Mason <chris.mason@oracle.com>
      Cc: Ingo Molnar <mingo@elte.hu>
      Cc: Alexander Beregalov <a.beregalov@gmail.com>
      Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com>
      08f14fc8
    • F
      kill-the-BKL/reiserfs: release the write lock inside get_neighbors() · 148d3504
      Frederic Weisbecker 提交于
      get_neighbors() is used to get the left and/or right blocks
      against a given one in order to balance a tree.
      
      sb_bread() is used to read the buffer of these neighors blocks and
      while it waits for this operation, it might sleep.
      
      The bkl was released at this point, and then we can also release
      the write lock before calling sb_bread().
      
      This is safe because if the filesystem is changed after this
      lock release, the function returns REPEAT_SEARCH (aka SCHEDULE_OCCURRED
      in the function header comments) in order to repeat the neighbhor
      research.
      
      [ Impact: release the reiserfs write lock when it is not needed ]
      
      Cc: Jeff Mahoney <jeffm@suse.com>
      Cc: Chris Mason <chris.mason@oracle.com>
      Cc: Alexander Beregalov <a.beregalov@gmail.com>
      Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com>
      148d3504
    • F
      reiserfs: kill-the-BKL · 8ebc4232
      Frederic Weisbecker 提交于
      This patch is an attempt to remove the Bkl based locking scheme from
      reiserfs and is intended.
      
      It is a bit inspired from an old attempt by Peter Zijlstra:
      
         http://lkml.indiana.edu/hypermail/linux/kernel/0704.2/2174.html
      
      The bkl is heavily used in this filesystem to prevent from
      concurrent write accesses on the filesystem.
      
      Reiserfs makes a deep use of the specific properties of the Bkl:
      
      - It can be acqquired recursively by a same task
      - It is released on the schedule() calls and reacquired when schedule() returns
      
      The two properties above are a roadmap for the reiserfs write locking so it's
      very hard to simply replace it with a common mutex.
      
      - We need a recursive-able locking unless we want to restructure several blocks
        of the code.
      - We need to identify the sites where the bkl was implictly relaxed
        (schedule, wait, sync, etc...) so that we can in turn release and
        reacquire our new lock explicitly.
        Such implicit releases of the lock are often required to let other
        resources producer/consumer do their job or we can suffer unexpected
        starvations or deadlocks.
      
      So the new lock that replaces the bkl here is a per superblock mutex with a
      specific property: it can be acquired recursively by a same task, like the
      bkl.
      
      For such purpose, we integrate a lock owner and a lock depth field on the
      superblock information structure.
      
      The first axis on this patch is to turn reiserfs_write_(un)lock() function
      into a wrapper to manage this mutex. Also some explicit calls to
      lock_kernel() have been converted to reiserfs_write_lock() helpers.
      
      The second axis is to find the important blocking sites (schedule...(),
      wait_on_buffer(), sync_dirty_buffer(), etc...) and then apply an explicit
      release of the write lock on these locations before blocking. Then we can
      safely wait for those who can give us resources or those who need some.
      Typically this is a fight between the current writer, the reiserfs workqueue
      (aka the async commiter) and the pdflush threads.
      
      The third axis is a consequence of the second. The write lock is usually
      on top of a lock dependency chain which can include the journal lock, the
      flush lock or the commit lock. So it's dangerous to release and trying to
      reacquire the write lock while we still hold other locks.
      
      This is fine with the bkl:
      
            T1                       T2
      
      lock_kernel()
          mutex_lock(A)
          unlock_kernel()
          // do something
                                  lock_kernel()
                                      mutex_lock(A) -> already locked by T1
                                      schedule() (and then unlock_kernel())
          lock_kernel()
          mutex_unlock(A)
          ....
      
      This is not fine with a mutex:
      
            T1                       T2
      
      mutex_lock(write)
          mutex_lock(A)
          mutex_unlock(write)
          // do something
                                 mutex_lock(write)
                                    mutex_lock(A) -> already locked by T1
                                    schedule()
      
          mutex_lock(write) -> already locked by T2
          deadlock
      
      The solution in this patch is to provide a helper which releases the write
      lock and sleep a bit if we can't lock a mutex that depend on it. It's another
      simulation of the bkl behaviour.
      
      The last axis is to locate the fs callbacks that are called with the bkl held,
      according to Documentation/filesystem/Locking.
      
      Those are:
      
      - reiserfs_remount
      - reiserfs_fill_super
      - reiserfs_put_super
      
      Reiserfs didn't need to explicitly lock because of the context of these callbacks.
      But now we must take care of that with the new locking.
      
      After this patch, reiserfs suffers from a slight performance regression (for now).
      On UP, a high volume write with dd reports an average of 27 MB/s instead
      of 30 MB/s without the patch applied.
      Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com>
      Reviewed-by: NIngo Molnar <mingo@elte.hu>
      Cc: Jeff Mahoney <jeffm@suse.com>
      Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
      Cc: Bron Gondwana <brong@fastmail.fm>
      Cc: Andrew Morton <akpm@linux-foundation.org>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Alexander Viro <viro@zeniv.linux.org.uk>
      LKML-Reference: <1239070789-13354-1-git-send-email-fweisbec@gmail.com>
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      8ebc4232
  7. 31 3月, 2009 9 次提交
  8. 31 3月, 2008 1 次提交
  9. 09 12月, 2006 1 次提交
  10. 01 7月, 2006 1 次提交
  11. 26 3月, 2006 1 次提交
  12. 02 2月, 2006 1 次提交
  13. 28 10月, 2005 1 次提交
    • A
      [PATCH] gfp_t: fs/* · 27496a8c
      Al Viro 提交于
       - ->releasepage() annotated (s/int/gfp_t), instances updated
       - missing gfp_t in fs/* added
       - fixed misannotation from the original sweep caught by bitwise checks:
         XFS used __nocast both for gfp_t and for flags used by XFS allocator.
         The latter left with unsigned int __nocast; we might want to add a
         different type for those but for now let's leave them alone.  That,
         BTW, is a case when __nocast use had been actively confusing - it had
         been used in the same code for two different and similar types, with
         no way to catch misuses.  Switch of gfp_t to bitwise had caught that
         immediately...
      
      One tricky bit is left alone to be dealt with later - mapping->flags is
      a mix of gfp_t and error indications.  Left alone for now.
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
      27496a8c
  14. 13 7月, 2005 1 次提交
    • L
      reiserfs: run scripts/Lindent on reiserfs code · bd4c625c
      Linus Torvalds 提交于
      This was a pure indentation change, using:
      
      	scripts/Lindent fs/reiserfs/*.c include/linux/reiserfs_*.h
      
      to make reiserfs match the regular Linux indentation style.  As Jeff
      Mahoney <jeffm@suse.com> writes:
      
       The ReiserFS code is a mix of a number of different coding styles, sometimes
       different even from line-to-line. Since the code has been relatively stable
       for quite some time and there are few outstanding patches to be applied, it
       is time to reformat the code to conform to the Linux style standard outlined
       in Documentation/CodingStyle.
      
       This patch contains the result of running scripts/Lindent against
       fs/reiserfs/*.c and include/linux/reiserfs_*.h. There are places where the
       code can be made to look better, but I'd rather keep those patches separate
       so that there isn't a subtle by-hand hand accident in the middle of a huge
       patch. To be clear: This patch is reformatting *only*.
      
       A number of patches may follow that continue to make the code more consistent
       with the Linux coding style.
      
       Hans wasn't particularly enthusiastic about these patches, but said he
       wouldn't really oppose them either.
      Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
      bd4c625c
  15. 17 4月, 2005 1 次提交
    • L
      Linux-2.6.12-rc2 · 1da177e4
      Linus Torvalds 提交于
      Initial git repository build. I'm not bothering with the full history,
      even though we have it. We can create a separate "historical" git
      archive of that later if we want to, and in the meantime it's about
      3.2GB when imported into git - space that would just make the early
      git days unnecessarily complicated, when we don't have a lot of good
      infrastructure for it.
      
      Let it rip!
      1da177e4