- 21 9月, 2022 1 次提交
-
-
由 Kuniyuki Iwashima 提交于
This patch adds no functional change and cleans up some functions that the following patches touch around so that we make them tidy and easy to review/revert. The changes are - Keep reverse christmas tree order - Remove unnecessary init of port in inet_csk_find_open_port() - Use req_to_sk() once in reqsk_queue_unlink() - Use sock_net(sk) once in tcp_time_wait() and tcp_v[46]_connect() Signed-off-by: NKuniyuki Iwashima <kuniyu@amazon.com> Reviewed-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NJakub Kicinski <kuba@kernel.org>
-
- 02 9月, 2022 1 次提交
-
-
由 Eric Dumazet 提交于
This is a followup of commit c67b8555 ("ipv6: tcp: send consistent autoflowlabel in TIME_WAIT state"), but for SYN_RECV state. In some cases, TCP sends a challenge ACK on behalf of a SYN_RECV request. WHen this happens, we want to use the flow label that was used when the prior SYNACK packet was sent, instead of another one. After his patch, following packetdrill passes: 0 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 +0 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 +0 bind(3, ..., ...) = 0 +0 listen(3, 1) = 0 +.2 < S 0:0(0) win 32792 <mss 1000,sackOK,nop,nop,nop,wscale 7> +0 > (flowlabel 0x11) S. 0:0(0) ack 1 <...> // Test if a challenge ack is properly sent (same flowlabel than prior SYNACK) +.01 < . 4000000000:4000000000(0) ack 1 win 320 +0 > (flowlabel 0x11) . 1:1(0) ack 1 Signed-off-by: NEric Dumazet <edumazet@google.com> Link: https://lore.kernel.org/r/20220831203729.458000-1-eric.dumazet@gmail.comSigned-off-by: NJakub Kicinski <kuba@kernel.org>
-
- 25 8月, 2022 1 次提交
-
-
由 Joanne Koong 提交于
The current bind hashtable (bhash) is hashed by port only. In the socket bind path, we have to check for bind conflicts by traversing the specified port's inet_bind_bucket while holding the hashbucket's spinlock (see inet_csk_get_port() and inet_csk_bind_conflict()). In instances where there are tons of sockets hashed to the same port at different addresses, the bind conflict check is time-intensive and can cause softirq cpu lockups, as well as stops new tcp connections since __inet_inherit_port() also contests for the spinlock. This patch adds a second bind table, bhash2, that hashes by port and sk->sk_rcv_saddr (ipv4) and sk->sk_v6_rcv_saddr (ipv6). Searching the bhash2 table leads to significantly faster conflict resolution and less time holding the hashbucket spinlock. Please note a few things: * There can be the case where the a socket's address changes after it has been bound. There are two cases where this happens: 1) The case where there is a bind() call on INADDR_ANY (ipv4) or IPV6_ADDR_ANY (ipv6) and then a connect() call. The kernel will assign the socket an address when it handles the connect() 2) In inet_sk_reselect_saddr(), which is called when rebuilding the sk header and a few pre-conditions are met (eg rerouting fails). In these two cases, we need to update the bhash2 table by removing the entry for the old address, and add a new entry reflecting the updated address. * The bhash2 table must have its own lock, even though concurrent accesses on the same port are protected by the bhash lock. Bhash2 must have its own lock to protect against cases where sockets on different ports hash to different bhash hashbuckets but to the same bhash2 hashbucket. This brings up a few stipulations: 1) When acquiring both the bhash and the bhash2 lock, the bhash2 lock will always be acquired after the bhash lock and released before the bhash lock is released. 2) There are no nested bhash2 hashbucket locks. A bhash2 lock is always acquired+released before another bhash2 lock is acquired+released. * The bhash table cannot be superseded by the bhash2 table because for bind requests on INADDR_ANY (ipv4) or IPV6_ADDR_ANY (ipv6), every socket bound to that port must be checked for a potential conflict. The bhash table is the only source of port->socket associations. Signed-off-by: NJoanne Koong <joannelkoong@gmail.com> Signed-off-by: NJakub Kicinski <kuba@kernel.org>
-
- 25 7月, 2022 1 次提交
-
-
由 Kuniyuki Iwashima 提交于
While reading sysctl_tcp_reflect_tos, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers. Fixes: ac8f1710 ("tcp: reflect tos value received in SYN to the socket") Signed-off-by: NKuniyuki Iwashima <kuniyu@amazon.com> Acked-by: NWei Wang <weiwan@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 16 7月, 2022 1 次提交
-
-
由 Kuniyuki Iwashima 提交于
Commit e21145a9 ("ipv4: namespacify ip_early_demux sysctl knob") made it possible to enable/disable early_demux on a per-netns basis. Then, we introduced two knobs, tcp_early_demux and udp_early_demux, to switch it for TCP/UDP in commit dddb64bc ("net: Add sysctl to toggle early demux for tcp and udp"). However, the .proc_handler() was wrong and actually disabled us from changing the behaviour in each netns. We can execute early_demux if net.ipv4.ip_early_demux is on and each proto .early_demux() handler is not NULL. When we toggle (tcp|udp)_early_demux, the change itself is saved in each netns variable, but the .early_demux() handler is a global variable, so the handler is switched based on the init_net's sysctl variable. Thus, netns (tcp|udp)_early_demux knobs have nothing to do with the logic. Whether we CAN execute proto .early_demux() is always decided by init_net's sysctl knob, and whether we DO it or not is by each netns ip_early_demux knob. This patch namespacifies (tcp|udp)_early_demux again. For now, the users of the .early_demux() handler are TCP and UDP only, and they are called directly to avoid retpoline. So, we can remove the .early_demux() handler from inet6?_protos and need not dereference them in ip6?_rcv_finish_core(). If another proto needs .early_demux(), we can restore it at that time. Fixes: dddb64bc ("net: Add sysctl to toggle early demux for tcp and udp") Signed-off-by: NKuniyuki Iwashima <kuniyu@amazon.com> Link: https://lore.kernel.org/r/20220713175207.7727-1-kuniyu@amazon.comSigned-off-by: NJakub Kicinski <kuba@kernel.org>
-
- 11 7月, 2022 1 次提交
-
-
由 sewookseo 提交于
If we set XFRM security policy by calling setsockopt with option IPV6_XFRM_POLICY, the policy will be stored in 'sock_policy' in 'sock' struct. However tcp_v6_send_response doesn't look up dst_entry with the actual socket but looks up with tcp control socket. This may cause a problem that a RST packet is sent without ESP encryption & peer's TCP socket can't receive it. This patch will make the function look up dest_entry with actual socket, if the socket has XFRM policy(sock_policy), so that the TCP response packet via this function can be encrypted, & aligned on the encrypted TCP socket. Tested: We encountered this problem when a TCP socket which is encrypted in ESP transport mode encryption, receives challenge ACK at SYN_SENT state. After receiving challenge ACK, TCP needs to send RST to establish the socket at next SYN try. But the RST was not encrypted & peer TCP socket still remains on ESTABLISHED state. So we verified this with test step as below. [Test step] 1. Making a TCP state mismatch between client(IDLE) & server(ESTABLISHED). 2. Client tries a new connection on the same TCP ports(src & dst). 3. Server will return challenge ACK instead of SYN,ACK. 4. Client will send RST to server to clear the SOCKET. 5. Client will retransmit SYN to server on the same TCP ports. [Expected result] The TCP connection should be established. Cc: Maciej Żenczykowski <maze@google.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Steffen Klassert <steffen.klassert@secunet.com> Cc: Sehee Lee <seheele@google.com> Signed-off-by: NSewook Seo <sewookseo@google.com> Reviewed-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 11 6月, 2022 1 次提交
-
-
由 Eric Dumazet 提交于
Each protocol having a ->memory_allocated pointer gets a corresponding per-cpu reserve, that following patches will use. Instead of having reserved bytes per socket, we want to have per-cpu reserves. Signed-off-by: NEric Dumazet <edumazet@google.com> Reviewed-by: NShakeel Butt <shakeelb@google.com> Acked-by: NSoheil Hassas Yeganeh <soheil@google.com> Signed-off-by: NJakub Kicinski <kuba@kernel.org>
-
- 21 5月, 2022 1 次提交
-
-
由 Jakub Kicinski 提交于
Looks like the IPv6 version of the patch under Fixes was a copy/paste of the IPv4 but hit the wrong spot. It is tcp_v6_rcv() which uses drop_reason as a boolean, and needs to be protected against reason == 0 before calling free. tcp_v6_do_rcv() has a pretty straightforward flow. The resulting warning looks like this: WARNING: CPU: 1 PID: 0 at net/core/skbuff.c:775 Call Trace: tcp_v6_rcv (net/ipv6/tcp_ipv6.c:1767) ip6_protocol_deliver_rcu (net/ipv6/ip6_input.c:438) ip6_input_finish (include/linux/rcupdate.h:726) ip6_input (include/linux/netfilter.h:307) Fixes: f8319dfd ("net: tcp: reset 'drop_reason' to NOT_SPCIFIED in tcp_v{4,6}_rcv()") Tested-by: NMatthieu Baerts <matthieu.baerts@tessares.net> Link: https://lore.kernel.org/r/20220520021347.2270207-1-kuba@kernel.orgSigned-off-by: NJakub Kicinski <kuba@kernel.org>
-
- 16 5月, 2022 1 次提交
-
-
由 Menglong Dong 提交于
The 'drop_reason' that passed to kfree_skb_reason() in tcp_v4_rcv() and tcp_v6_rcv() can be SKB_NOT_DROPPED_YET(0), as it is used as the return value of tcp_inbound_md5_hash(). And it can panic the kernel with NULL pointer in net_dm_packet_report_size() if the reason is 0, as drop_reasons[0] is NULL. Fixes: 1330b6ef ("skb: make drop reason booleanable") Reviewed-by: NJiang Biao <benbjiang@tencent.com> Reviewed-by: NHao Peng <flyingpeng@tencent.com> Signed-off-by: NMenglong Dong <imagedong@tencent.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 13 5月, 2022 1 次提交
-
-
由 Eric Dumazet 提交于
This reverts commits: 0dad4087 ("tcp/dccp: get rid of inet_twsk_purge()") d507204d ("tcp/dccp: add tw->tw_bslot") As Leonard pointed out, a newly allocated netns can happen to reuse a freed 'struct net'. While TCP TW timers were covered by my patches, other things were not: 1) Lookups in rx path (INET_MATCH() and INET6_MATCH()), as they look at 4-tuple plus the 'struct net' pointer. 2) /proc/net/tcp[6] and inet_diag, same reason. 3) hashinfo->bhash[], same reason. Fixing all this seems risky, lets instead revert. In the future, we might have a per netns tcp hash table, or a per netns list of timewait sockets... Fixes: 0dad4087 ("tcp/dccp: get rid of inet_twsk_purge()") Signed-off-by: NEric Dumazet <edumazet@google.com> Reported-by: NLeonard Crestez <cdleonard@gmail.com> Tested-by: NLeonard Crestez <cdleonard@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 27 4月, 2022 1 次提交
-
-
由 Eric Dumazet 提交于
Logic added in commit f35f8219 ("tcp: defer skb freeing after socket lock is released") helped bulk TCP flows to move the cost of skbs frees outside of critical section where socket lock was held. But for RPC traffic, or hosts with RFS enabled, the solution is far from being ideal. For RPC traffic, recvmsg() has to return to user space right after skb payload has been consumed, meaning that BH handler has no chance to pick the skb before recvmsg() thread. This issue is more visible with BIG TCP, as more RPC fit one skb. For RFS, even if BH handler picks the skbs, they are still picked from the cpu on which user thread is running. Ideally, it is better to free the skbs (and associated page frags) on the cpu that originally allocated them. This patch removes the per socket anchor (sk->defer_list) and instead uses a per-cpu list, which will hold more skbs per round. This new per-cpu list is drained at the end of net_action_rx(), after incoming packets have been processed, to lower latencies. In normal conditions, skbs are added to the per-cpu list with no further action. In the (unlikely) cases where the cpu does not run net_action_rx() handler fast enough, we use an IPI to raise NET_RX_SOFTIRQ on the remote cpu. Also, we do not bother draining the per-cpu list from dev_cpu_dead() This is because skbs in this list have no requirement on how fast they should be freed. Note that we can add in the future a small per-cpu cache if we see any contention on sd->defer_lock. Tested on a pair of hosts with 100Gbit NIC, RFS enabled, and /proc/sys/net/ipv4/tcp_rmem[2] tuned to 16MB to work around page recycling strategy used by NIC driver (its page pool capacity being too small compared to number of skbs/pages held in sockets receive queues) Note that this tuning was only done to demonstrate worse conditions for skb freeing for this particular test. These conditions can happen in more general production workload. 10 runs of one TCP_STREAM flow Before: Average throughput: 49685 Mbit. Kernel profiles on cpu running user thread recvmsg() show high cost for skb freeing related functions (*) 57.81% [kernel] [k] copy_user_enhanced_fast_string (*) 12.87% [kernel] [k] skb_release_data (*) 4.25% [kernel] [k] __free_one_page (*) 3.57% [kernel] [k] __list_del_entry_valid 1.85% [kernel] [k] __netif_receive_skb_core 1.60% [kernel] [k] __skb_datagram_iter (*) 1.59% [kernel] [k] free_unref_page_commit (*) 1.16% [kernel] [k] __slab_free 1.16% [kernel] [k] _copy_to_iter (*) 1.01% [kernel] [k] kfree (*) 0.88% [kernel] [k] free_unref_page 0.57% [kernel] [k] ip6_rcv_core 0.55% [kernel] [k] ip6t_do_table 0.54% [kernel] [k] flush_smp_call_function_queue (*) 0.54% [kernel] [k] free_pcppages_bulk 0.51% [kernel] [k] llist_reverse_order 0.38% [kernel] [k] process_backlog (*) 0.38% [kernel] [k] free_pcp_prepare 0.37% [kernel] [k] tcp_recvmsg_locked (*) 0.37% [kernel] [k] __list_add_valid 0.34% [kernel] [k] sock_rfree 0.34% [kernel] [k] _raw_spin_lock_irq (*) 0.33% [kernel] [k] __page_cache_release 0.33% [kernel] [k] tcp_v6_rcv (*) 0.33% [kernel] [k] __put_page (*) 0.29% [kernel] [k] __mod_zone_page_state 0.27% [kernel] [k] _raw_spin_lock After patch: Average throughput: 73076 Mbit. Kernel profiles on cpu running user thread recvmsg() looks better: 81.35% [kernel] [k] copy_user_enhanced_fast_string 1.95% [kernel] [k] _copy_to_iter 1.95% [kernel] [k] __skb_datagram_iter 1.27% [kernel] [k] __netif_receive_skb_core 1.03% [kernel] [k] ip6t_do_table 0.60% [kernel] [k] sock_rfree 0.50% [kernel] [k] tcp_v6_rcv 0.47% [kernel] [k] ip6_rcv_core 0.45% [kernel] [k] read_tsc 0.44% [kernel] [k] _raw_spin_lock_irqsave 0.37% [kernel] [k] _raw_spin_lock 0.37% [kernel] [k] native_irq_return_iret 0.33% [kernel] [k] __inet6_lookup_established 0.31% [kernel] [k] ip6_protocol_deliver_rcu 0.29% [kernel] [k] tcp_rcv_established 0.29% [kernel] [k] llist_reverse_order v2: kdoc issue (kernel bots) do not defer if (alloc_cpu == smp_processor_id()) (Paolo) replace the sk_buff_head with a single-linked list (Jakub) add a READ_ONCE()/WRITE_ONCE() for the lockless read of sd->defer_list Signed-off-by: NEric Dumazet <edumazet@google.com> Acked-by: NPaolo Abeni <pabeni@redhat.com> Link: https://lore.kernel.org/r/20220422201237.416238-1-eric.dumazet@gmail.comSigned-off-by: NJakub Kicinski <kuba@kernel.org>
-
- 22 4月, 2022 1 次提交
-
-
由 Kuniyuki Iwashima 提交于
Since commit 9fe516ba ("inet: move ipv6only in sock_common"), ipv6_only_sock() and __ipv6_only_sock() are the same macro. Let's remove the one. Signed-off-by: NKuniyuki Iwashima <kuniyu@amazon.co.jp> Reviewed-by: NDavid Ahern <dsahern@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 07 4月, 2022 1 次提交
-
-
由 Eric Dumazet 提交于
We had various bugs over the years with code breaking the assumption that tp->snd_cwnd is greater than zero. Lately, syzbot reported the WARN_ON_ONCE(!tp->prior_cwnd) added in commit 8b8a321f ("tcp: fix zero cwnd in tcp_cwnd_reduction") can trigger, and without a repro we would have to spend considerable time finding the bug. Instead of complaining too late, we want to catch where and when tp->snd_cwnd is set to an illegal value. Signed-off-by: NEric Dumazet <edumazet@google.com> Suggested-by: NYuchung Cheng <ycheng@google.com> Cc: Neal Cardwell <ncardwell@google.com> Acked-by: NYuchung Cheng <ycheng@google.com> Link: https://lore.kernel.org/r/20220405233538.947344-1-eric.dumazet@gmail.comSigned-off-by: NJakub Kicinski <kuba@kernel.org>
-
- 09 3月, 2022 1 次提交
-
-
由 Jakub Kicinski 提交于
We have a number of cases where function returns drop/no drop decision as a boolean. Now that we want to report the reason code as well we have to pass extra output arguments. We can make the reason code evaluate correctly as bool. I believe we're good to reorder the reasons as they are reported to user space as strings. Signed-off-by: NJakub Kicinski <kuba@kernel.org> Reviewed-by: NDavid Ahern <dsahern@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 03 3月, 2022 1 次提交
-
-
由 Martin KaFai Lau 提交于
skb->tstamp was first used as the (rcv) timestamp. The major usage is to report it to the user (e.g. SO_TIMESTAMP). Later, skb->tstamp is also set as the (future) delivery_time (e.g. EDT in TCP) during egress and used by the qdisc (e.g. sch_fq) to make decision on when the skb can be passed to the dev. Currently, there is no way to tell skb->tstamp having the (rcv) timestamp or the delivery_time, so it is always reset to 0 whenever forwarded between egress and ingress. While it makes sense to always clear the (rcv) timestamp in skb->tstamp to avoid confusing sch_fq that expects the delivery_time, it is a performance issue [0] to clear the delivery_time if the skb finally egress to a fq@phy-dev. For example, when forwarding from egress to ingress and then finally back to egress: tcp-sender => veth@netns => veth@hostns => fq@eth0@hostns ^ ^ reset rest This patch adds one bit skb->mono_delivery_time to flag the skb->tstamp is storing the mono delivery_time (EDT) instead of the (rcv) timestamp. The current use case is to keep the TCP mono delivery_time (EDT) and to be used with sch_fq. A latter patch will also allow tc-bpf@ingress to read and change the mono delivery_time. In the future, another bit (e.g. skb->user_delivery_time) can be added for the SCM_TXTIME where the clock base is tracked by sk->sk_clockid. [ This patch is a prep work. The following patches will get the other parts of the stack ready first. Then another patch after that will finally set the skb->mono_delivery_time. ] skb_set_delivery_time() function is added. It is used by the tcp_output.c and during ip[6] fragmentation to assign the delivery_time to the skb->tstamp and also set the skb->mono_delivery_time. A note on the change in ip_send_unicast_reply() in ip_output.c. It is only used by TCP to send reset/ack out of a ctl_sk. Like the new skb_set_delivery_time(), this patch sets the skb->mono_delivery_time to 0 for now as a place holder. It will be enabled in a latter patch. A similar case in tcp_ipv6 can be done with skb_set_delivery_time() in tcp_v6_send_response(). [0] (slide 22): https://linuxplumbersconf.org/event/11/contributions/953/attachments/867/1658/LPC_2021_BPF_Datapath_Extensions.pdfSigned-off-by: NMartin KaFai Lau <kafai@fb.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 25 2月, 2022 1 次提交
-
-
由 Dmitry Safonov 提交于
The functions do essentially the same work to verify TCP-MD5 sign. Code can be merged into one family-independent function in order to reduce copy'n'paste and generated code. Later with TCP-AO option added, this will allow to create one function that's responsible for segment verification, that will have all the different checks for MD5/AO/non-signed packets, which in turn will help to see checks for all corner-cases in one function, rather than spread around different families and functions. Cc: Eric Dumazet <edumazet@google.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Signed-off-by: NDmitry Safonov <dima@arista.com> Reviewed-by: NDavid Ahern <dsahern@kernel.org> Link: https://lore.kernel.org/r/20220223175740.452397-1-dima@arista.comSigned-off-by: NJakub Kicinski <kuba@kernel.org>
-
- 23 2月, 2022 1 次提交
-
-
由 Eric Dumazet 提交于
All other skbs allocated for TCP tx are using MAX_TCP_HEADER already. MAX_HEADER can be too small for some cases (like eBPF based encapsulation), so this can avoid extra pskb_expand_head() in lower stacks. Signed-off-by: NEric Dumazet <edumazet@google.com> Reviewed-by: NDavid Ahern <dsahern@kernel.org> Link: https://lore.kernel.org/r/20220222031115.4005060-1-eric.dumazet@gmail.comSigned-off-by: NJakub Kicinski <kuba@kernel.org>
-
- 20 2月, 2022 4 次提交
-
-
由 Menglong Dong 提交于
Replace kfree_skb() used in tcp_v4_do_rcv() and tcp_v6_do_rcv() with kfree_skb_reason(). Reviewed-by: NMengen Sun <mengensun@tencent.com> Reviewed-by: NHao Peng <flyingpeng@tencent.com> Signed-off-by: NMenglong Dong <imagedong@tencent.com> Reviewed-by: NEric Dumazet <edumazet@google.com> Reviewed-by: NDavid Ahern <dsahern@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Menglong Dong 提交于
Pass the address of drop_reason to tcp_add_backlog() to store the reasons for skb drops when fails. Following drop reasons are introduced: SKB_DROP_REASON_SOCKET_BACKLOG Reviewed-by: NMengen Sun <mengensun@tencent.com> Reviewed-by: NHao Peng <flyingpeng@tencent.com> Signed-off-by: NMenglong Dong <imagedong@tencent.com> Reviewed-by: NEric Dumazet <edumazet@google.com> Reviewed-by: NDavid Ahern <dsahern@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Menglong Dong 提交于
Pass the address of drop reason to tcp_v4_inbound_md5_hash() and tcp_v6_inbound_md5_hash() to store the reasons for skb drops when this function fails. Therefore, the drop reason can be passed to kfree_skb_reason() when the skb needs to be freed. Following drop reasons are added: SKB_DROP_REASON_TCP_MD5NOTFOUND SKB_DROP_REASON_TCP_MD5UNEXPECTED SKB_DROP_REASON_TCP_MD5FAILURE SKB_DROP_REASON_TCP_MD5* above correspond to LINUX_MIB_TCPMD5* Reviewed-by: NMengen Sun <mengensun@tencent.com> Reviewed-by: NHao Peng <flyingpeng@tencent.com> Signed-off-by: NMenglong Dong <imagedong@tencent.com> Reviewed-by: NEric Dumazet <edumazet@google.com> Reviewed-by: NDavid Ahern <dsahern@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Menglong Dong 提交于
Replace kfree_skb() used in tcp_v6_rcv() with kfree_skb_reason(). Reviewed-by: NMengen Sun <mengensun@tencent.com> Reviewed-by: NHao Peng <flyingpeng@tencent.com> Signed-off-by: NMenglong Dong <imagedong@tencent.com> Reviewed-by: NEric Dumazet <edumazet@google.com> Reviewed-by: NDavid Ahern <dsahern@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 27 1月, 2022 1 次提交
-
-
由 Eric Dumazet 提交于
I forgot tcp had per netns tracking of timewait sockets, and their sysctl to change the limit. After 0dad4087 ("tcp/dccp: get rid of inet_twsk_purge()"), whole struct net can be freed before last tw socket is freed. We need to allocate a separate struct inet_timewait_death_row object per netns. tw_count becomes a refcount and gains associated debugging infrastructure. BUG: KASAN: use-after-free in inet_twsk_kill+0x358/0x3c0 net/ipv4/inet_timewait_sock.c:46 Read of size 8 at addr ffff88807d5f9f40 by task kworker/1:7/3690 CPU: 1 PID: 3690 Comm: kworker/1:7 Not tainted 5.16.0-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Workqueue: events pwq_unbound_release_workfn Call Trace: <IRQ> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106 print_address_description.constprop.0.cold+0x8d/0x336 mm/kasan/report.c:255 __kasan_report mm/kasan/report.c:442 [inline] kasan_report.cold+0x83/0xdf mm/kasan/report.c:459 inet_twsk_kill+0x358/0x3c0 net/ipv4/inet_timewait_sock.c:46 call_timer_fn+0x1a5/0x6b0 kernel/time/timer.c:1421 expire_timers kernel/time/timer.c:1466 [inline] __run_timers.part.0+0x67c/0xa30 kernel/time/timer.c:1734 __run_timers kernel/time/timer.c:1715 [inline] run_timer_softirq+0xb3/0x1d0 kernel/time/timer.c:1747 __do_softirq+0x29b/0x9c2 kernel/softirq.c:558 invoke_softirq kernel/softirq.c:432 [inline] __irq_exit_rcu+0x123/0x180 kernel/softirq.c:637 irq_exit_rcu+0x5/0x20 kernel/softirq.c:649 sysvec_apic_timer_interrupt+0x93/0xc0 arch/x86/kernel/apic/apic.c:1097 </IRQ> <TASK> asm_sysvec_apic_timer_interrupt+0x12/0x20 arch/x86/include/asm/idtentry.h:638 RIP: 0010:lockdep_unregister_key+0x1c9/0x250 kernel/locking/lockdep.c:6328 Code: 00 00 00 48 89 ee e8 46 fd ff ff 4c 89 f7 e8 5e c9 ff ff e8 09 cc ff ff 9c 58 f6 c4 02 75 26 41 f7 c4 00 02 00 00 74 01 fb 5b <5d> 41 5c 41 5d 41 5e 41 5f e9 19 4a 08 00 0f 0b 5b 5d 41 5c 41 5d RSP: 0018:ffffc90004077cb8 EFLAGS: 00000206 RAX: 0000000000000046 RBX: ffff88807b61b498 RCX: 0000000000000001 RDX: dffffc0000000000 RSI: 0000000000000000 RDI: 0000000000000000 RBP: ffff888077027128 R08: 0000000000000001 R09: ffffffff8f1ea4fc R10: fffffbfff1ff93ee R11: 000000000000af1e R12: 0000000000000246 R13: 0000000000000000 R14: ffffffff8ffc89b8 R15: ffffffff90157fb0 wq_unregister_lockdep kernel/workqueue.c:3508 [inline] pwq_unbound_release_workfn+0x254/0x340 kernel/workqueue.c:3746 process_one_work+0x9ac/0x1650 kernel/workqueue.c:2307 worker_thread+0x657/0x1110 kernel/workqueue.c:2454 kthread+0x2e9/0x3a0 kernel/kthread.c:377 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295 </TASK> Allocated by task 3635: kasan_save_stack+0x1e/0x50 mm/kasan/common.c:38 kasan_set_track mm/kasan/common.c:46 [inline] set_alloc_info mm/kasan/common.c:437 [inline] __kasan_slab_alloc+0x90/0xc0 mm/kasan/common.c:470 kasan_slab_alloc include/linux/kasan.h:260 [inline] slab_post_alloc_hook mm/slab.h:732 [inline] slab_alloc_node mm/slub.c:3230 [inline] slab_alloc mm/slub.c:3238 [inline] kmem_cache_alloc+0x202/0x3a0 mm/slub.c:3243 kmem_cache_zalloc include/linux/slab.h:705 [inline] net_alloc net/core/net_namespace.c:407 [inline] copy_net_ns+0x125/0x760 net/core/net_namespace.c:462 create_new_namespaces+0x3f6/0xb20 kernel/nsproxy.c:110 unshare_nsproxy_namespaces+0xc1/0x1f0 kernel/nsproxy.c:226 ksys_unshare+0x445/0x920 kernel/fork.c:3048 __do_sys_unshare kernel/fork.c:3119 [inline] __se_sys_unshare kernel/fork.c:3117 [inline] __x64_sys_unshare+0x2d/0x40 kernel/fork.c:3117 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae The buggy address belongs to the object at ffff88807d5f9a80 which belongs to the cache net_namespace of size 6528 The buggy address is located 1216 bytes inside of 6528-byte region [ffff88807d5f9a80, ffff88807d5fb400) The buggy address belongs to the page: page:ffffea0001f57e00 refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff88807d5f9a80 pfn:0x7d5f8 head:ffffea0001f57e00 order:3 compound_mapcount:0 compound_pincount:0 memcg:ffff888070023001 flags: 0xfff00000010200(slab|head|node=0|zone=1|lastcpupid=0x7ff) raw: 00fff00000010200 ffff888010dd4f48 ffffea0001404e08 ffff8880118fd000 raw: ffff88807d5f9a80 0000000000040002 00000001ffffffff ffff888070023001 page dumped because: kasan: bad access detected page_owner tracks the page as allocated page last allocated via order 3, migratetype Unmovable, gfp_mask 0xd20c0(__GFP_IO|__GFP_FS|__GFP_NOWARN|__GFP_NORETRY|__GFP_COMP|__GFP_NOMEMALLOC), pid 3634, ts 119694798460, free_ts 119693556950 prep_new_page mm/page_alloc.c:2434 [inline] get_page_from_freelist+0xa72/0x2f50 mm/page_alloc.c:4165 __alloc_pages+0x1b2/0x500 mm/page_alloc.c:5389 alloc_pages+0x1aa/0x310 mm/mempolicy.c:2271 alloc_slab_page mm/slub.c:1799 [inline] allocate_slab mm/slub.c:1944 [inline] new_slab+0x28a/0x3b0 mm/slub.c:2004 ___slab_alloc+0x87c/0xe90 mm/slub.c:3018 __slab_alloc.constprop.0+0x4d/0xa0 mm/slub.c:3105 slab_alloc_node mm/slub.c:3196 [inline] slab_alloc mm/slub.c:3238 [inline] kmem_cache_alloc+0x35c/0x3a0 mm/slub.c:3243 kmem_cache_zalloc include/linux/slab.h:705 [inline] net_alloc net/core/net_namespace.c:407 [inline] copy_net_ns+0x125/0x760 net/core/net_namespace.c:462 create_new_namespaces+0x3f6/0xb20 kernel/nsproxy.c:110 unshare_nsproxy_namespaces+0xc1/0x1f0 kernel/nsproxy.c:226 ksys_unshare+0x445/0x920 kernel/fork.c:3048 __do_sys_unshare kernel/fork.c:3119 [inline] __se_sys_unshare kernel/fork.c:3117 [inline] __x64_sys_unshare+0x2d/0x40 kernel/fork.c:3117 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae page last free stack trace: reset_page_owner include/linux/page_owner.h:24 [inline] free_pages_prepare mm/page_alloc.c:1352 [inline] free_pcp_prepare+0x374/0x870 mm/page_alloc.c:1404 free_unref_page_prepare mm/page_alloc.c:3325 [inline] free_unref_page+0x19/0x690 mm/page_alloc.c:3404 skb_free_head net/core/skbuff.c:655 [inline] skb_release_data+0x65d/0x790 net/core/skbuff.c:677 skb_release_all net/core/skbuff.c:742 [inline] __kfree_skb net/core/skbuff.c:756 [inline] consume_skb net/core/skbuff.c:914 [inline] consume_skb+0xc2/0x160 net/core/skbuff.c:908 skb_free_datagram+0x1b/0x1f0 net/core/datagram.c:325 netlink_recvmsg+0x636/0xea0 net/netlink/af_netlink.c:1998 sock_recvmsg_nosec net/socket.c:948 [inline] sock_recvmsg net/socket.c:966 [inline] sock_recvmsg net/socket.c:962 [inline] ____sys_recvmsg+0x2c4/0x600 net/socket.c:2632 ___sys_recvmsg+0x127/0x200 net/socket.c:2674 __sys_recvmsg+0xe2/0x1a0 net/socket.c:2704 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae Memory state around the buggy address: ffff88807d5f9e00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff88807d5f9e80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb >ffff88807d5f9f00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff88807d5f9f80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff88807d5fa000: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb Fixes: 0dad4087 ("tcp/dccp: get rid of inet_twsk_purge()") Signed-off-by: NEric Dumazet <edumazet@google.com> Reported-by: Nsyzbot <syzkaller@googlegroups.com> Reported-by: NPaolo Abeni <pabeni@redhat.com> Tested-by: NPaolo Abeni <pabeni@redhat.com> Link: https://lore.kernel.org/r/20220126180714.845362-1-eric.dumazet@gmail.comSigned-off-by: NJakub Kicinski <kuba@kernel.org>
-
- 25 1月, 2022 1 次提交
-
-
由 Eric Dumazet 提交于
Prior patches in the series made sure tw_timer_handler() can be fired after netns has been dismantled/freed. We no longer have to scan a potentially big TCP ehash table at netns dismantle. Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 07 1月, 2022 1 次提交
-
-
由 Menglong Dong 提交于
The return value of BPF_CGROUP_RUN_PROG_INET{4,6}_POST_BIND() in __inet_bind() is not handled properly. While the return value is non-zero, it will set inet_saddr and inet_rcv_saddr to 0 and exit: err = BPF_CGROUP_RUN_PROG_INET4_POST_BIND(sk); if (err) { inet->inet_saddr = inet->inet_rcv_saddr = 0; goto out_release_sock; } Let's take UDP for example and see what will happen. For UDP socket, it will be added to 'udp_prot.h.udp_table->hash' and 'udp_prot.h.udp_table->hash2' after the sk->sk_prot->get_port() called success. If 'inet->inet_rcv_saddr' is specified here, then 'sk' will be in the 'hslot2' of 'hash2' that it don't belong to (because inet_saddr is changed to 0), and UDP packet received will not be passed to this sock. If 'inet->inet_rcv_saddr' is not specified here, the sock will work fine, as it can receive packet properly, which is wired, as the 'bind()' is already failed. To undo the get_port() operation, introduce the 'put_port' field for 'struct proto'. For TCP proto, it is inet_put_port(); For UDP proto, it is udp_lib_unhash(); For icmp proto, it is ping_unhash(). Therefore, after sys_bind() fail caused by BPF_CGROUP_RUN_PROG_INET4_POST_BIND(), it will be unbinded, which means that it can try to be binded to another port. Signed-off-by: NMenglong Dong <imagedong@tencent.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20220106132022.3470772-2-imagedong@tencent.com
-
- 21 12月, 2021 1 次提交
-
-
由 Eric Dumazet 提交于
syzbot reported various issues around early demux, one being included in this changelog [1] sk->sk_rx_dst is using RCU protection without clearly documenting it. And following sequences in tcp_v4_do_rcv()/tcp_v6_do_rcv() are not following standard RCU rules. [a] dst_release(dst); [b] sk->sk_rx_dst = NULL; They look wrong because a delete operation of RCU protected pointer is supposed to clear the pointer before the call_rcu()/synchronize_rcu() guarding actual memory freeing. In some cases indeed, dst could be freed before [b] is done. We could cheat by clearing sk_rx_dst before calling dst_release(), but this seems the right time to stick to standard RCU annotations and debugging facilities. [1] BUG: KASAN: use-after-free in dst_check include/net/dst.h:470 [inline] BUG: KASAN: use-after-free in tcp_v4_early_demux+0x95b/0x960 net/ipv4/tcp_ipv4.c:1792 Read of size 2 at addr ffff88807f1cb73a by task syz-executor.5/9204 CPU: 0 PID: 9204 Comm: syz-executor.5 Not tainted 5.16.0-rc5-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106 print_address_description.constprop.0.cold+0x8d/0x320 mm/kasan/report.c:247 __kasan_report mm/kasan/report.c:433 [inline] kasan_report.cold+0x83/0xdf mm/kasan/report.c:450 dst_check include/net/dst.h:470 [inline] tcp_v4_early_demux+0x95b/0x960 net/ipv4/tcp_ipv4.c:1792 ip_rcv_finish_core.constprop.0+0x15de/0x1e80 net/ipv4/ip_input.c:340 ip_list_rcv_finish.constprop.0+0x1b2/0x6e0 net/ipv4/ip_input.c:583 ip_sublist_rcv net/ipv4/ip_input.c:609 [inline] ip_list_rcv+0x34e/0x490 net/ipv4/ip_input.c:644 __netif_receive_skb_list_ptype net/core/dev.c:5508 [inline] __netif_receive_skb_list_core+0x549/0x8e0 net/core/dev.c:5556 __netif_receive_skb_list net/core/dev.c:5608 [inline] netif_receive_skb_list_internal+0x75e/0xd80 net/core/dev.c:5699 gro_normal_list net/core/dev.c:5853 [inline] gro_normal_list net/core/dev.c:5849 [inline] napi_complete_done+0x1f1/0x880 net/core/dev.c:6590 virtqueue_napi_complete drivers/net/virtio_net.c:339 [inline] virtnet_poll+0xca2/0x11b0 drivers/net/virtio_net.c:1557 __napi_poll+0xaf/0x440 net/core/dev.c:7023 napi_poll net/core/dev.c:7090 [inline] net_rx_action+0x801/0xb40 net/core/dev.c:7177 __do_softirq+0x29b/0x9c2 kernel/softirq.c:558 invoke_softirq kernel/softirq.c:432 [inline] __irq_exit_rcu+0x123/0x180 kernel/softirq.c:637 irq_exit_rcu+0x5/0x20 kernel/softirq.c:649 common_interrupt+0x52/0xc0 arch/x86/kernel/irq.c:240 asm_common_interrupt+0x1e/0x40 arch/x86/include/asm/idtentry.h:629 RIP: 0033:0x7f5e972bfd57 Code: 39 d1 73 14 0f 1f 80 00 00 00 00 48 8b 50 f8 48 83 e8 08 48 39 ca 77 f3 48 39 c3 73 3e 48 89 13 48 8b 50 f8 48 89 38 49 8b 0e <48> 8b 3e 48 83 c3 08 48 83 c6 08 eb bc 48 39 d1 72 9e 48 39 d0 73 RSP: 002b:00007fff8a413210 EFLAGS: 00000283 RAX: 00007f5e97108990 RBX: 00007f5e97108338 RCX: ffffffff81d3aa45 RDX: ffffffff81d3aa45 RSI: 00007f5e97108340 RDI: ffffffff81d3aa45 RBP: 00007f5e97107eb8 R08: 00007f5e97108d88 R09: 0000000093c2e8d9 R10: 0000000000000000 R11: 0000000000000000 R12: 00007f5e97107eb0 R13: 00007f5e97108338 R14: 00007f5e97107ea8 R15: 0000000000000019 </TASK> Allocated by task 13: kasan_save_stack+0x1e/0x50 mm/kasan/common.c:38 kasan_set_track mm/kasan/common.c:46 [inline] set_alloc_info mm/kasan/common.c:434 [inline] __kasan_slab_alloc+0x90/0xc0 mm/kasan/common.c:467 kasan_slab_alloc include/linux/kasan.h:259 [inline] slab_post_alloc_hook mm/slab.h:519 [inline] slab_alloc_node mm/slub.c:3234 [inline] slab_alloc mm/slub.c:3242 [inline] kmem_cache_alloc+0x202/0x3a0 mm/slub.c:3247 dst_alloc+0x146/0x1f0 net/core/dst.c:92 rt_dst_alloc+0x73/0x430 net/ipv4/route.c:1613 ip_route_input_slow+0x1817/0x3a20 net/ipv4/route.c:2340 ip_route_input_rcu net/ipv4/route.c:2470 [inline] ip_route_input_noref+0x116/0x2a0 net/ipv4/route.c:2415 ip_rcv_finish_core.constprop.0+0x288/0x1e80 net/ipv4/ip_input.c:354 ip_list_rcv_finish.constprop.0+0x1b2/0x6e0 net/ipv4/ip_input.c:583 ip_sublist_rcv net/ipv4/ip_input.c:609 [inline] ip_list_rcv+0x34e/0x490 net/ipv4/ip_input.c:644 __netif_receive_skb_list_ptype net/core/dev.c:5508 [inline] __netif_receive_skb_list_core+0x549/0x8e0 net/core/dev.c:5556 __netif_receive_skb_list net/core/dev.c:5608 [inline] netif_receive_skb_list_internal+0x75e/0xd80 net/core/dev.c:5699 gro_normal_list net/core/dev.c:5853 [inline] gro_normal_list net/core/dev.c:5849 [inline] napi_complete_done+0x1f1/0x880 net/core/dev.c:6590 virtqueue_napi_complete drivers/net/virtio_net.c:339 [inline] virtnet_poll+0xca2/0x11b0 drivers/net/virtio_net.c:1557 __napi_poll+0xaf/0x440 net/core/dev.c:7023 napi_poll net/core/dev.c:7090 [inline] net_rx_action+0x801/0xb40 net/core/dev.c:7177 __do_softirq+0x29b/0x9c2 kernel/softirq.c:558 Freed by task 13: kasan_save_stack+0x1e/0x50 mm/kasan/common.c:38 kasan_set_track+0x21/0x30 mm/kasan/common.c:46 kasan_set_free_info+0x20/0x30 mm/kasan/generic.c:370 ____kasan_slab_free mm/kasan/common.c:366 [inline] ____kasan_slab_free mm/kasan/common.c:328 [inline] __kasan_slab_free+0xff/0x130 mm/kasan/common.c:374 kasan_slab_free include/linux/kasan.h:235 [inline] slab_free_hook mm/slub.c:1723 [inline] slab_free_freelist_hook+0x8b/0x1c0 mm/slub.c:1749 slab_free mm/slub.c:3513 [inline] kmem_cache_free+0xbd/0x5d0 mm/slub.c:3530 dst_destroy+0x2d6/0x3f0 net/core/dst.c:127 rcu_do_batch kernel/rcu/tree.c:2506 [inline] rcu_core+0x7ab/0x1470 kernel/rcu/tree.c:2741 __do_softirq+0x29b/0x9c2 kernel/softirq.c:558 Last potentially related work creation: kasan_save_stack+0x1e/0x50 mm/kasan/common.c:38 __kasan_record_aux_stack+0xf5/0x120 mm/kasan/generic.c:348 __call_rcu kernel/rcu/tree.c:2985 [inline] call_rcu+0xb1/0x740 kernel/rcu/tree.c:3065 dst_release net/core/dst.c:177 [inline] dst_release+0x79/0xe0 net/core/dst.c:167 tcp_v4_do_rcv+0x612/0x8d0 net/ipv4/tcp_ipv4.c:1712 sk_backlog_rcv include/net/sock.h:1030 [inline] __release_sock+0x134/0x3b0 net/core/sock.c:2768 release_sock+0x54/0x1b0 net/core/sock.c:3300 tcp_sendmsg+0x36/0x40 net/ipv4/tcp.c:1441 inet_sendmsg+0x99/0xe0 net/ipv4/af_inet.c:819 sock_sendmsg_nosec net/socket.c:704 [inline] sock_sendmsg+0xcf/0x120 net/socket.c:724 sock_write_iter+0x289/0x3c0 net/socket.c:1057 call_write_iter include/linux/fs.h:2162 [inline] new_sync_write+0x429/0x660 fs/read_write.c:503 vfs_write+0x7cd/0xae0 fs/read_write.c:590 ksys_write+0x1ee/0x250 fs/read_write.c:643 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae The buggy address belongs to the object at ffff88807f1cb700 which belongs to the cache ip_dst_cache of size 176 The buggy address is located 58 bytes inside of 176-byte region [ffff88807f1cb700, ffff88807f1cb7b0) The buggy address belongs to the page: page:ffffea0001fc72c0 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x7f1cb flags: 0xfff00000000200(slab|node=0|zone=1|lastcpupid=0x7ff) raw: 00fff00000000200 dead000000000100 dead000000000122 ffff8881413bb780 raw: 0000000000000000 0000000000100010 00000001ffffffff 0000000000000000 page dumped because: kasan: bad access detected page_owner tracks the page as allocated page last allocated via order 0, migratetype Unmovable, gfp_mask 0x112a20(GFP_ATOMIC|__GFP_NOWARN|__GFP_NORETRY|__GFP_HARDWALL), pid 5, ts 108466983062, free_ts 108048976062 prep_new_page mm/page_alloc.c:2418 [inline] get_page_from_freelist+0xa72/0x2f50 mm/page_alloc.c:4149 __alloc_pages+0x1b2/0x500 mm/page_alloc.c:5369 alloc_pages+0x1a7/0x300 mm/mempolicy.c:2191 alloc_slab_page mm/slub.c:1793 [inline] allocate_slab mm/slub.c:1930 [inline] new_slab+0x32d/0x4a0 mm/slub.c:1993 ___slab_alloc+0x918/0xfe0 mm/slub.c:3022 __slab_alloc.constprop.0+0x4d/0xa0 mm/slub.c:3109 slab_alloc_node mm/slub.c:3200 [inline] slab_alloc mm/slub.c:3242 [inline] kmem_cache_alloc+0x35c/0x3a0 mm/slub.c:3247 dst_alloc+0x146/0x1f0 net/core/dst.c:92 rt_dst_alloc+0x73/0x430 net/ipv4/route.c:1613 __mkroute_output net/ipv4/route.c:2564 [inline] ip_route_output_key_hash_rcu+0x921/0x2d00 net/ipv4/route.c:2791 ip_route_output_key_hash+0x18b/0x300 net/ipv4/route.c:2619 __ip_route_output_key include/net/route.h:126 [inline] ip_route_output_flow+0x23/0x150 net/ipv4/route.c:2850 ip_route_output_key include/net/route.h:142 [inline] geneve_get_v4_rt+0x3a6/0x830 drivers/net/geneve.c:809 geneve_xmit_skb drivers/net/geneve.c:899 [inline] geneve_xmit+0xc4a/0x3540 drivers/net/geneve.c:1082 __netdev_start_xmit include/linux/netdevice.h:4994 [inline] netdev_start_xmit include/linux/netdevice.h:5008 [inline] xmit_one net/core/dev.c:3590 [inline] dev_hard_start_xmit+0x1eb/0x920 net/core/dev.c:3606 __dev_queue_xmit+0x299a/0x3650 net/core/dev.c:4229 page last free stack trace: reset_page_owner include/linux/page_owner.h:24 [inline] free_pages_prepare mm/page_alloc.c:1338 [inline] free_pcp_prepare+0x374/0x870 mm/page_alloc.c:1389 free_unref_page_prepare mm/page_alloc.c:3309 [inline] free_unref_page+0x19/0x690 mm/page_alloc.c:3388 qlink_free mm/kasan/quarantine.c:146 [inline] qlist_free_all+0x5a/0xc0 mm/kasan/quarantine.c:165 kasan_quarantine_reduce+0x180/0x200 mm/kasan/quarantine.c:272 __kasan_slab_alloc+0xa2/0xc0 mm/kasan/common.c:444 kasan_slab_alloc include/linux/kasan.h:259 [inline] slab_post_alloc_hook mm/slab.h:519 [inline] slab_alloc_node mm/slub.c:3234 [inline] kmem_cache_alloc_node+0x255/0x3f0 mm/slub.c:3270 __alloc_skb+0x215/0x340 net/core/skbuff.c:414 alloc_skb include/linux/skbuff.h:1126 [inline] alloc_skb_with_frags+0x93/0x620 net/core/skbuff.c:6078 sock_alloc_send_pskb+0x783/0x910 net/core/sock.c:2575 mld_newpack+0x1df/0x770 net/ipv6/mcast.c:1754 add_grhead+0x265/0x330 net/ipv6/mcast.c:1857 add_grec+0x1053/0x14e0 net/ipv6/mcast.c:1995 mld_send_initial_cr.part.0+0xf6/0x230 net/ipv6/mcast.c:2242 mld_send_initial_cr net/ipv6/mcast.c:1232 [inline] mld_dad_work+0x1d3/0x690 net/ipv6/mcast.c:2268 process_one_work+0x9b2/0x1690 kernel/workqueue.c:2298 worker_thread+0x658/0x11f0 kernel/workqueue.c:2445 Memory state around the buggy address: ffff88807f1cb600: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff88807f1cb680: fb fb fb fb fb fb fc fc fc fc fc fc fc fc fc fc >ffff88807f1cb700: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff88807f1cb780: fb fb fb fb fb fb fc fc fc fc fc fc fc fc fc fc ffff88807f1cb800: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb Fixes: 41063e9d ("ipv4: Early TCP socket demux.") Signed-off-by: NEric Dumazet <edumazet@google.com> Link: https://lore.kernel.org/r/20211220143330.680945-1-eric.dumazet@gmail.comSigned-off-by: NJakub Kicinski <kuba@kernel.org>
-
- 16 11月, 2021 3 次提交
-
-
由 Eric Dumazet 提交于
tcp recvmsg() (or rx zerocopy) spends a fair amount of time freeing skbs after their payload has been consumed. A typical ~64KB GRO packet has to release ~45 page references, eventually going to page allocator for each of them. Currently, this freeing is performed while socket lock is held, meaning that there is a high chance that BH handler has to queue incoming packets to tcp socket backlog. This can cause additional latencies, because the user thread has to process the backlog at release_sock() time, and while doing so, additional frames can be added by BH handler. This patch adds logic to defer these frees after socket lock is released, or directly from BH handler if possible. Being able to free these skbs from BH handler helps a lot, because this avoids the usual alloc/free assymetry, when BH handler and user thread do not run on same cpu or NUMA node. One cpu can now be fully utilized for the kernel->user copy, and another cpu is handling BH processing and skb/page allocs/frees (assuming RFS is not forcing use of a single CPU) Tested: 100Gbit NIC Max throughput for one TCP_STREAM flow, over 10 runs MTU : 1500 Before: 55 Gbit After: 66 Gbit MTU : 4096+(headers) Before: 82 Gbit After: 95 Gbit Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Eric Dumazet 提交于
Use INDIRECT_CALL_INET() to avoid an indirect call when/if CONFIG_RETPOLINE=y Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Eric Dumazet 提交于
For TCP flows, inet6_sk(sk)->saddr has the same value than sk->sk_v6_rcv_saddr. Using sk->sk_v6_rcv_saddr increases data locality. Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 06 11月, 2021 1 次提交
-
-
由 Nghia Le 提交于
The newinet value is initialized with inet_sk() in a block code to handle sockets for the ETH_P_IP protocol. Along this code path, newinet is never read. Thus, assignment to newinet is needless and can be removed. Signed-off-by: NNghia Le <nghialm78@gmail.com> Reviewed-by: NEric Dumazet <edumazet@google.com> Link: https://lore.kernel.org/r/20211104143740.32446-1-nghialm78@gmail.comSigned-off-by: NJakub Kicinski <kuba@kernel.org>
-
- 28 10月, 2021 1 次提交
-
-
由 Eric Dumazet 提交于
Freshly allocated skbs have their csum field cleared already. Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 26 10月, 2021 5 次提交
-
-
由 Eric Dumazet 提交于
Two kfree_skb() calls must be replaced by consume_skb() for skbs that are not technically dropped. Signed-off-by: NEric Dumazet <edumazet@google.com> Acked-by: NSoheil Hassas Yeganeh <soheil@google.com> Signed-off-by: NJakub Kicinski <kuba@kernel.org>
-
由 Eric Dumazet 提交于
RFC 5082 IPV6_MINHOPCOUNT is rarely used on hosts. Add a static key to remove from TCP fast path useless code, and potential cache line miss to fetch tcp_inet6_sk(sk)->min_hopcount Note that once ip6_min_hopcount static key has been enabled, it stays enabled until next boot. Signed-off-by: NEric Dumazet <edumazet@google.com> Acked-by: NSoheil Hassas Yeganeh <soheil@google.com> Signed-off-by: NJakub Kicinski <kuba@kernel.org>
-
由 Eric Dumazet 提交于
No report yet from KCSAN, yet worth documenting the races. Signed-off-by: NEric Dumazet <edumazet@google.com> Acked-by: NSoheil Hassas Yeganeh <soheil@google.com> Signed-off-by: NJakub Kicinski <kuba@kernel.org>
-
由 Eric Dumazet 提交于
Increase cache locality by moving rx_dst_coookie next to sk->sk_rx_dst This removes one or two cache line misses in IPv6 early demux (TCP/UDP) Signed-off-by: NEric Dumazet <edumazet@google.com> Acked-by: NSoheil Hassas Yeganeh <soheil@google.com> Signed-off-by: NJakub Kicinski <kuba@kernel.org>
-
由 Eric Dumazet 提交于
Increase cache locality by moving rx_dst_ifindex next to sk->sk_rx_dst This is part of an effort to reduce cache line misses in TCP fast path. This removes one cache line miss in early demux. Signed-off-by: NEric Dumazet <edumazet@google.com> Acked-by: NSoheil Hassas Yeganeh <soheil@google.com> Signed-off-by: NJakub Kicinski <kuba@kernel.org>
-
- 15 10月, 2021 1 次提交
-
-
由 Leonard Crestez 提交于
Multiple VRFs are generally meant to be "separate" but right now md5 keys for the default VRF also affect connections inside VRFs if the IP addresses happen to overlap. So far the combination of TCP_MD5SIG_FLAG_IFINDEX with tcpm_ifindex == 0 was an error, accept this to mean "key only applies to default VRF". This is what applications using VRFs for traffic separation want. Signed-off-by: NLeonard Crestez <cdleonard@gmail.com> Reviewed-by: NDavid Ahern <dsahern@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 23 9月, 2021 1 次提交
-
-
由 Eric Dumazet 提交于
This reverts the following patches : - commit 2e05fcae ("tcp: fix compile error if !CONFIG_SYSCTL") - commit 4f661542 ("tcp: fix zerocopy and notsent_lowat issues") - commit 472c2e07 ("tcp: add one skb cache for tx") - commit 8b27dae5 ("tcp: add one skb cache for rx") Having a cache of one skb (in each direction) per TCP socket is fragile, since it can cause a significant increase of memory needs, and not good enough for high speed flows anyway where more than one skb is needed. We want instead to add a generic infrastructure, with more flexible per-cpu caches, for alien NUMA nodes. Acked-by: NPaolo Abeni <pabeni@redhat.com> Acked-by: NMat Martineau <mathew.j.martineau@linux.intel.com> Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 10 7月, 2021 1 次提交
-
-
由 Alexander Ovechkin 提交于
commit e05a90ec ("net: reflect mark on tcp syn ack packets") fixed IPv4 only. This part is for the IPv6 side. Fixes: e05a90ec ("net: reflect mark on tcp syn ack packets") Signed-off-by: NAlexander Ovechkin <ovov@yandex-team.ru> Acked-by: NDmitry Yakunin <zeil@yandex-team.ru> Reviewed-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 09 7月, 2021 1 次提交
-
-
由 Eric Dumazet 提交于
While TCP stack scales reasonably well, there is still one part that can be used to DDOS it. IPv6 Packet too big messages have to lookup/insert a new route, and if abused by attackers, can easily put hosts under high stress, with many cpus contending on a spinlock while one is stuck in fib6_run_gc() ip6_protocol_deliver_rcu() icmpv6_rcv() icmpv6_notify() tcp_v6_err() tcp_v6_mtu_reduced() inet6_csk_update_pmtu() ip6_rt_update_pmtu() __ip6_rt_update_pmtu() ip6_rt_cache_alloc() ip6_dst_alloc() dst_alloc() ip6_dst_gc() fib6_run_gc() spin_lock_bh() ... Some of our servers have been hit by malicious ICMPv6 packets trying to _increase_ the MTU/MSS of TCP flows. We believe these ICMPv6 packets are a result of a bug in one ISP stack, since they were blindly sent back for _every_ (small) packet sent to them. These packets are for one TCP flow: 09:24:36.266491 IP6 Addr1 > Victim ICMP6, packet too big, mtu 1460, length 1240 09:24:36.266509 IP6 Addr1 > Victim ICMP6, packet too big, mtu 1460, length 1240 09:24:36.316688 IP6 Addr1 > Victim ICMP6, packet too big, mtu 1460, length 1240 09:24:36.316704 IP6 Addr1 > Victim ICMP6, packet too big, mtu 1460, length 1240 09:24:36.608151 IP6 Addr1 > Victim ICMP6, packet too big, mtu 1460, length 1240 TCP stack can filter some silly requests : 1) MTU below IPV6_MIN_MTU can be filtered early in tcp_v6_err() 2) tcp_v6_mtu_reduced() can drop requests trying to increase current MSS. This tests happen before the IPv6 routing stack is entered, thus removing the potential contention and route exhaustion. Note that IPv6 stack was performing these checks, but too late (ie : after the route has been added, and after the potential garbage collect war) v2: fix typo caught by Martin, thanks ! v3: exports tcp_mtu_to_mss(), caught by David, thanks ! Fixes: 1da177e4 ("Linux-2.6.12-rc2") Signed-off-by: NEric Dumazet <edumazet@google.com> Reviewed-by: NMaciej Żenczykowski <maze@google.com> Cc: Martin KaFai Lau <kafai@fb.com> Acked-by: NMartin KaFai Lau <kafai@fb.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 03 7月, 2021 1 次提交
-
-
由 Eric Dumazet 提交于
While tp->mtu_info is read while socket is owned, the write sides happen from err handlers (tcp_v[46]_mtu_reduced) which only own the socket spinlock. Fixes: 563d34d0 ("tcp: dont drop MTU reduction indications") Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-