- 23 3月, 2018 6 次提交
-
-
由 Chris Chiu 提交于
The Acer Acer Veriton X4110G has a TPM device detected as: tpm_tis 00:0b: 1.2 TPM (device-id 0xFE, rev-id 71) After the first S3 suspend, the following error appears during resume: tpm tpm0: A TPM error(38) occurred continue selftest Any following S3 suspend attempts will now fail with this error: tpm tpm0: Error (38) sending savestate before suspend PM: Device 00:0b failed to suspend: error 38 Error 38 is TPM_ERR_INVALID_POSTINIT which means the TPM is not in the correct state. This indicates that the platform BIOS is not sending the usual TPM_Startup command during S3 resume. >From this point onwards, all TPM commands will fail. The same issue was previously reported on Foxconn 6150BK8MC and Sony Vaio TX3. The platform behaviour seems broken here, but we should not break suspend/resume because of this. When the unexpected TPM state is encountered, set a flag to skip the affected TPM_SaveState command on later suspends. Cc: stable@vger.kernel.org Signed-off-by: NChris Chiu <chiu@endlessm.com> Signed-off-by: NDaniel Drake <drake@endlessm.com> Link: http://lkml.kernel.org/r/CAB4CAwfSCvj1cudi+MWaB5g2Z67d9DwY1o475YOZD64ma23UiQ@mail.gmail.com Link: https://lkml.org/lkml/2011/3/28/192 Link: https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=591031Reviewed-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
-
由 Tomas Winkler 提交于
TPM2_CC_Create(0x153) and TPM2_CC_CreatePrimary (0x131) involve generation of crypto keys which can be a computationally intensive task. The timeout is set to 3min. Rather than increasing default timeout a new constant is added, to not stall for too long on regular commands failures. Signed-off-by: NTomas Winkler <tomas.winkler@intel.com> Reviewed-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Tested-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
-
由 Tomas Winkler 提交于
use __le64 annotated variable for response buffer address as this is read in little endian format form the register. This suppresses sparse warning drivers/char/tpm/tpm_crb.c:558:18: warning: cast to restricted __le64 Signed-off-by: NTomas Winkler <tomas.winkler@intel.com> Reviewed-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Tested-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
-
由 Winkler, Tomas 提交于
1. The buffer cannot be const as it is used both for send and receive. 2. Drop useless casting to u8 *, as this is already a type of 'buf' parameter, it has just masked the 'const' issue. Signed-off-by: NTomas Winkler <tomas.winkler@intel.com> Reviewed-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Tested-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
-
由 Winkler, Tomas 提交于
Fix tmp_ -> tpm_ typo and add reference to 'space' parameter in kdoc for tpm_transmit and tpm_transmit_cmd functions. Signed-off-by: NTomas Winkler <tomas.winkler@intel.com> Reviewed-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
-
由 Tomas Winkler 提交于
The correct sequence is to first request locality and only after that perform cmd_ready handshake, otherwise the hardware will drop the subsequent message as from the device point of view the cmd_ready handshake wasn't performed. Symmetrically locality has to be relinquished only after going idle handshake has completed, this requires that go_idle has to poll for the completion and as well locality relinquish has to poll for completion so it is not overridden in back to back commands flow. Two wrapper functions are added (request_locality relinquish_locality) to simplify the error handling. The issue is only visible on devices that support multiple localities. Fixes: 877c57d0 ("tpm_crb: request and relinquish locality 0") Signed-off-by: NTomas Winkler <tomas.winkler@intel.com> Reviewed-by: NJarkko Sakkinen <jarkko.sakkine@linux.intel.com> Tested-by: NJarkko Sakkinen <jarkko.sakkine@linux.intel.com> Signed-off-by: NJarkko Sakkinen <jarkko.sakkine@linux.intel.com>
-
- 27 2月, 2018 5 次提交
-
-
由 Jeremy Boone 提交于
Discrete TPMs are often connected over slow serial buses which, on some platforms, can have glitches causing bit flips. If a bit does flip it could cause an overrun if it's in one of the size parameters, so sanity check that we're not overrunning the provided buffer when doing a memcpy(). Signed-off-by: NJeremy Boone <jeremy.boone@nccgroup.trust> Cc: stable@vger.kernel.org Signed-off-by: NJames Bottomley <James.Bottomley@HansenPartnership.com> Reviewed-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Tested-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: NJames Morris <james.morris@microsoft.com>
-
由 Jeremy Boone 提交于
Discrete TPMs are often connected over slow serial buses which, on some platforms, can have glitches causing bit flips. In all the driver _recv() functions, we need to use a u32 to unmarshal the response size, otherwise a bit flip of the 31st bit would cause the expected variable to go negative, which would then try to read a huge amount of data. Also sanity check that the expected amount of data is large enough for the TPM header. Signed-off-by: NJeremy Boone <jeremy.boone@nccgroup.trust> Cc: stable@vger.kernel.org Signed-off-by: NJames Bottomley <James.Bottomley@HansenPartnership.com> Reviewed-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: NJames Morris <james.morris@microsoft.com>
-
由 Jeremy Boone 提交于
Discrete TPMs are often connected over slow serial buses which, on some platforms, can have glitches causing bit flips. In all the driver _recv() functions, we need to use a u32 to unmarshal the response size, otherwise a bit flip of the 31st bit would cause the expected variable to go negative, which would then try to read a huge amount of data. Also sanity check that the expected amount of data is large enough for the TPM header. Signed-off-by: NJeremy Boone <jeremy.boone@nccgroup.trust> Cc: stable@vger.kernel.org Signed-off-by: NJames Bottomley <James.Bottomley@HansenPartnership.com> Reviewed-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: NJames Morris <james.morris@microsoft.com>
-
由 Jeremy Boone 提交于
Discrete TPMs are often connected over slow serial buses which, on some platforms, can have glitches causing bit flips. In all the driver _recv() functions, we need to use a u32 to unmarshal the response size, otherwise a bit flip of the 31st bit would cause the expected variable to go negative, which would then try to read a huge amount of data. Also sanity check that the expected amount of data is large enough for the TPM header. Signed-off-by: NJeremy Boone <jeremy.boone@nccgroup.trust> Cc: stable@vger.kernel.org Signed-off-by: NJames Bottomley <James.Bottomley@HansenPartnership.com> Reviewed-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: NJames Morris <james.morris@microsoft.com>
-
由 Jeremy Boone 提交于
Discrete TPMs are often connected over slow serial buses which, on some platforms, can have glitches causing bit flips. In all the driver _recv() functions, we need to use a u32 to unmarshal the response size, otherwise a bit flip of the 31st bit would cause the expected variable to go negative, which would then try to read a huge amount of data. Also sanity check that the expected amount of data is large enough for the TPM header. Signed-off-by: NJeremy Boone <jeremy.boone@nccgroup.trust> Cc: stable@vger.kernel.org Signed-off-by: NJames Bottomley <James.Bottomley@HansenPartnership.com> Tested-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Reviewed-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: NJames Morris <james.morris@microsoft.com>
-
- 12 2月, 2018 1 次提交
-
-
由 Linus Torvalds 提交于
This is the mindless scripted replacement of kernel use of POLL* variables as described by Al, done by this script: for V in IN OUT PRI ERR RDNORM RDBAND WRNORM WRBAND HUP RDHUP NVAL MSG; do L=`git grep -l -w POLL$V | grep -v '^t' | grep -v /um/ | grep -v '^sa' | grep -v '/poll.h$'|grep -v '^D'` for f in $L; do sed -i "-es/^\([^\"]*\)\(\<POLL$V\>\)/\\1E\\2/" $f; done done with de-mangling cleanups yet to come. NOTE! On almost all architectures, the EPOLL* constants have the same values as the POLL* constants do. But they keyword here is "almost". For various bad reasons they aren't the same, and epoll() doesn't actually work quite correctly in some cases due to this on Sparc et al. The next patch from Al will sort out the final differences, and we should be all done. Scripted-by: NAl Viro <viro@zeniv.linux.org.uk> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 08 1月, 2018 16 次提交
-
-
由 Arnd Bergmann 提交于
The CLKRUN fix caused a few harmless compile-time warnings: drivers/char/tpm/tpm_tis.c: In function 'tpm_tis_pnp_remove': drivers/char/tpm/tpm_tis.c:274:23: error: unused variable 'priv' [-Werror=unused-variable] drivers/char/tpm/tpm_tis.c: In function 'tpm_tis_plat_remove': drivers/char/tpm/tpm_tis.c:324:23: error: unused variable 'priv' [-Werror=unused-variable] This removes the variables that have now become unused. Fixes: 6d0866cbc2d3 ("tpm: Keep CLKRUN enabled throughout the duration of transmit_cmd()") Signed-off-by: NArnd Bergmann <arnd@arndb.de> Reviewed-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Reviewed-by: NJames Morris <jmorris@namei.org> Signed-off-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
-
由 Javier Martinez Canillas 提交于
The data field for the entries in the device tables are set but not used. Signed-off-by: NJavier Martinez Canillas <javierm@redhat.com> Reviewed-by: NJason Gunthorpe <jgg@ziepe.ca> Reviewed-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
-
由 Javier Martinez Canillas 提交于
Commit 5e572cab ("tpm: Enable CLKRUN protocol for Braswell systems") added logic in the TPM TIS driver to disable the Low Pin Count CLKRUN signal during TPM transactions. Unfortunately this breaks other devices that are attached to the LPC bus like for example PS/2 mouse and keyboards. One flaw with the logic is that it assumes that the CLKRUN is always enabled, and so it unconditionally enables it after a TPM transaction. But it could be that the CLKRUN# signal was already disabled in the LPC bus and so after the driver probes, CLKRUN_EN will remain enabled which may break other devices that are attached to the LPC bus but don't have support for the CLKRUN protocol. Fixes: 5e572cab ("tpm: Enable CLKRUN protocol for Braswell systems") Signed-off-by: NJavier Martinez Canillas <javierm@redhat.com> Tested-by: NJames Ettle <james@ettle.org.uk> Tested-by: NJeffery Miller <jmiller@neverware.com> Reviewed-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Tested-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
-
由 Javier Martinez Canillas 提交于
The coding style says "use just one data declaration per line (no commas for multiple data declarations)" so follow this convention. Suggested-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: NJavier Martinez Canillas <javierm@redhat.com> Reviewed-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Tested-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
-
由 Javier Martinez Canillas 提交于
This flag is only used to warn if CLKRUN_EN wasn't disabled on Braswell systems, but the only way this can happen is if the code is not correct. So it's an unnecessary check that just makes the code harder to read. Suggested-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: NJavier Martinez Canillas <javierm@redhat.com> Reviewed-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Tested-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
-
由 Azhar Shaikh 提交于
Commit 5e572cab ("tpm: Enable CLKRUN protocol for Braswell systems") disabled CLKRUN protocol during TPM transactions and re-enabled once the transaction is completed. But there were still some corner cases observed where, reading of TPM header failed for savestate command while going to suspend, which resulted in suspend failure. To fix this issue keep the CLKRUN protocol disabled for the entire duration of a single TPM command and not disabling and re-enabling again for every TPM transaction. For the other TPM accesses outside TPM command flow, add a higher level of disabling and re-enabling the CLKRUN protocol, instead of doing for every TPM transaction. Fixes: 5e572cab ("tpm: Enable CLKRUN protocol for Braswell systems") Signed-off-by: NAzhar Shaikh <azhar.shaikh@intel.com> Reviewed-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Tested-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
-
由 Azhar Shaikh 提交于
Move static variable ilb_base_addr to tpm_tis_data. Cc: stable@vger.kernel.org Signed-off-by: NAzhar Shaikh <azhar.shaikh@intel.com> Reviewed-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Tested-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
-
Previously, if the last attempt to execute the selftest command failed with RC_TESTING, there was still a call to tpm_msleep, even though no further attempt would be made. This causes an unnecessary delay, therefore ensure that if the last attempt fails the function is left immediately. Also, instead of ensuring that the cumulated runtime of all attempts is larger than the command duration for TPM2_SelfTest, ensure that there is at least one attempt for which the delay is larger than the expected command duration. This allows slow TPMs to execute all their tests in the background, without slowing down faster TPMs that have finished their tests earlier. If tests are still not finished even with this long delay, then something is broken and the TPM is not used. Fixes: 125a2210 ("tpm: React correctly to RC_TESTING from TPM 2.0 self tests") Signed-off-by: NAlexander Steffen <Alexander.Steffen@infineon.com> Reviewed-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Tested-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
-
由 Javier Martinez Canillas 提交于
According to the TPM Library Specification, a TPM device must do a command header validation before processing and return a TPM_RC_COMMAND_CODE code if the command is not implemented. So user-space will expect to handle that response as an error. But if the in-kernel resource manager is used (/dev/tpmrm?), an -EINVAL errno code is returned instead if the command isn't implemented. This confuses userspace since it doesn't expect that error value. This also isn't consistent with the behavior when not using TPM spaces and accessing the TPM directly (/dev/tpm?). In this case, the command is sent to the TPM even when not implemented and the TPM responds with an error. Instead of returning an -EINVAL errno code when the tpm_validate_command() function fails, synthesize a TPM command response so user-space can get a TPM_RC_COMMAND_CODE as expected when a chip doesn't implement the command. The TPM only sets 12 of the 32 bits in the TPM_RC response, so the TSS and TAB specifications define that higher layers in the stack should use some of the unused 20 bits to specify from which level of the stack the error is coming from. Since the TPM_RC_COMMAND_CODE response code is sent by the kernel resource manager, set the error level to the TAB/RM layer so user-space is aware of this. Suggested-by: NJason Gunthorpe <jgg@ziepe.ca> Signed-off-by: NJavier Martinez Canillas <javierm@redhat.com> Reviewed-by: NWilliam Roberts <william.c.roberts@intel.com> Reviewed-by: NPhilip Tricca <philip.b.tricca@intel.com> Reviewed-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Tested-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
-
由 Jason Gunthorpe 提交于
The tpm-rng.c approach is completely inconsistent with how the kernel handles hotplug. Instead manage a hwrng device for each TPM. This will cause the kernel to read entropy from the TPM when it is plugged in, and allow access to the TPM rng via /dev/hwrng. Signed-off-by: NJason Gunthorpe <jgg@ziepe.ca> Tested-by: NPrasannaKumar Muralidharan <prasannatsmkumar@gmail.com> Tested-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Reviewed-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
-
由 Jarkko Sakkinen 提交于
Device number (the character device index) is not a stable identifier for a TPM chip. That is the reason why every call site passes TPM_ANY_NUM to tpm_chip_find_get(). This commit changes the API in a way that instead a struct tpm_chip instance is given and NULL means the default chip. In addition, this commit refines the documentation to be up to date with the implementation. Suggested-by: Jason Gunthorpe <jgunthorpe@obsidianresearch.com> (@chip_num -> @chip part) Signed-off-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Reviewed-by: NJason Gunthorpe <jgg@ziepe.ca> Tested-by: NPrasannaKumar Muralidharan <prasannatsmkumar@gmail.com>
-
由 Thiebaud Weksteen 提交于
If we are not able to retrieve the TPM event logs from the ACPI table, check the EFI configuration table (Linux-specific GUID). The format version of the log is now returned by the provider function. Signed-off-by: NThiebaud Weksteen <tweek@google.com> Reviewed-by: NJason Gunthorpe <jgunthorpe@obsidianresearch.com> Reviewed-by: NJavier Martinez Canillas <javierm@redhat.com> Tested-by: NJavier Martinez Canillas <javierm@redhat.com> Tested-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Reviewed-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
-
由 Thiebaud Weksteen 提交于
Rename the current TPM Event Log provider files (ACPI and OF) for clarity. Signed-off-by: NThiebaud Weksteen <tweek@google.com> Reviewed-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Reviewed-by: NJavier Martinez Canillas <javierm@redhat.com> Tested-by: NJavier Martinez Canillas <javierm@redhat.com> Tested-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Reviewed-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
-
由 Thiebaud Weksteen 提交于
The generic definitions of data structures in tpm_eventlog.h are required by other part of the kernel (namely, the EFI stub). Signed-off-by: NThiebaud Weksteen <tweek@google.com> Reviewed-by: NJavier Martinez Canillas <javierm@redhat.com> Tested-by: NJavier Martinez Canillas <javierm@redhat.com> Tested-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Reviewed-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
-
由 Nayna Jain 提交于
Currently, tpm_msleep() uses delay_msec as the minimum value in usleep_range. However, that is the maximum time we want to wait. The function is modified to use the delay_msec as the maximum value, not the minimum value. After this change, performance on a TPM 1.2 with an 8 byte burstcount for 1000 extends improved from ~9sec to ~8sec. Fixes: 3b9af007869("tpm: replace msleep() with usleep_range() in TPM 1.2/ 2.0 generic drivers") Signed-off-by: NNayna Jain <nayna@linux.vnet.ibm.com> Acked-by: NMimi Zohar <zohar@linux.vnet.ibm.com> Tested-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Reviewed-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
-
由 Nayna Jain 提交于
The existing wait_for_tpm_stat() polls for the chip status after 5msec sleep. As per TCG ddwg input, it is expected that tpm might return status in few usec. So, reducing the delay in polling to 1msec. Similarly, get_burstcount() function sleeps for 5msec before retrying for next query to burstcount in a loop. If it takes lesser time for TPM to return, this 5msec delay is longer than necessary. After this change, performance on a TPM 1.2 with an 8 byte burstcount for 1000 extends improved from ~14sec to ~9sec. Signed-off-by: NNayna Jain <nayna@linux.vnet.ibm.com> Reviewed-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Tested-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
-
- 17 12月, 2017 1 次提交
-
-
由 Nayna Jain 提交于
The function wait_for_tpm_stat() is currently defined in tpm-interface file. It is a hardware specific function used only by tpm_tis and xen-tpmfront, so it is removed from tpm-interface.c and defined in respective driver files. Suggested-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: NNayna Jain <nayna@linux.vnet.ibm.com> Reviewed-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Tested-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
-
- 29 11月, 2017 1 次提交
-
-
由 Al Viro 提交于
Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 22 11月, 2017 1 次提交
-
-
由 Kees Cook 提交于
This converts all remaining cases of the old setup_timer() API into using timer_setup(), where the callback argument is the structure already holding the struct timer_list. These should have no behavioral changes, since they just change which pointer is passed into the callback with the same available pointers after conversion. It handles the following examples, in addition to some other variations. Casting from unsigned long: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... setup_timer(&ptr->my_timer, my_callback, ptr); and forced object casts: void my_callback(struct something *ptr) { ... } ... setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr); become: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... timer_setup(&ptr->my_timer, my_callback, 0); Direct function assignments: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... ptr->my_timer.function = my_callback; have a temporary cast added, along with converting the args: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback; And finally, callbacks without a data assignment: void my_callback(unsigned long data) { ... } ... setup_timer(&ptr->my_timer, my_callback, 0); have their argument renamed to verify they're unused during conversion: void my_callback(struct timer_list *unused) { ... } ... timer_setup(&ptr->my_timer, my_callback, 0); The conversion is done with the following Coccinelle script: spatch --very-quiet --all-includes --include-headers \ -I ./arch/x86/include -I ./arch/x86/include/generated \ -I ./include -I ./arch/x86/include/uapi \ -I ./arch/x86/include/generated/uapi -I ./include/uapi \ -I ./include/generated/uapi --include ./include/linux/kconfig.h \ --dir . \ --cocci-file ~/src/data/timer_setup.cocci @fix_address_of@ expression e; @@ setup_timer( -&(e) +&e , ...) // Update any raw setup_timer() usages that have a NULL callback, but // would otherwise match change_timer_function_usage, since the latter // will update all function assignments done in the face of a NULL // function initialization in setup_timer(). @change_timer_function_usage_NULL@ expression _E; identifier _timer; type _cast_data; @@ ( -setup_timer(&_E->_timer, NULL, _E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E->_timer, NULL, (_cast_data)_E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E._timer, NULL, &_E); +timer_setup(&_E._timer, NULL, 0); | -setup_timer(&_E._timer, NULL, (_cast_data)&_E); +timer_setup(&_E._timer, NULL, 0); ) @change_timer_function_usage@ expression _E; identifier _timer; struct timer_list _stl; identifier _callback; type _cast_func, _cast_data; @@ ( -setup_timer(&_E->_timer, _callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | _E->_timer@_stl.function = _callback; | _E->_timer@_stl.function = &_callback; | _E->_timer@_stl.function = (_cast_func)_callback; | _E->_timer@_stl.function = (_cast_func)&_callback; | _E._timer@_stl.function = _callback; | _E._timer@_stl.function = &_callback; | _E._timer@_stl.function = (_cast_func)_callback; | _E._timer@_stl.function = (_cast_func)&_callback; ) // callback(unsigned long arg) @change_callback_handle_cast depends on change_timer_function_usage@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; identifier _handle; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { ( ... when != _origarg _handletype *_handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg ) } // callback(unsigned long arg) without existing variable @change_callback_handle_cast_no_arg depends on change_timer_function_usage && !change_callback_handle_cast@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { + _handletype *_origarg = from_timer(_origarg, t, _timer); + ... when != _origarg - (_handletype *)_origarg + _origarg ... when != _origarg } // Avoid already converted callbacks. @match_callback_converted depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier t; @@ void _callback(struct timer_list *t) { ... } // callback(struct something *handle) @change_callback_handle_arg depends on change_timer_function_usage && !match_callback_converted && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; @@ void _callback( -_handletype *_handle +struct timer_list *t ) { + _handletype *_handle = from_timer(_handle, t, _timer); ... } // If change_callback_handle_arg ran on an empty function, remove // the added handler. @unchange_callback_handle_arg depends on change_timer_function_usage && change_callback_handle_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; identifier t; @@ void _callback(struct timer_list *t) { - _handletype *_handle = from_timer(_handle, t, _timer); } // We only want to refactor the setup_timer() data argument if we've found // the matching callback. This undoes changes in change_timer_function_usage. @unchange_timer_function_usage depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg && !change_callback_handle_arg@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type change_timer_function_usage._cast_data; @@ ( -timer_setup(&_E->_timer, _callback, 0); +setup_timer(&_E->_timer, _callback, (_cast_data)_E); | -timer_setup(&_E._timer, _callback, 0); +setup_timer(&_E._timer, _callback, (_cast_data)&_E); ) // If we fixed a callback from a .function assignment, fix the // assignment cast now. @change_timer_function_assignment depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_func; typedef TIMER_FUNC_TYPE; @@ ( _E->_timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -&_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)_callback; +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -&_callback; +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; ) // Sometimes timer functions are called directly. Replace matched args. @change_timer_function_calls depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression _E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_data; @@ _callback( ( -(_cast_data)_E +&_E->_timer | -(_cast_data)&_E +&_E._timer | -_E +&_E->_timer ) ) // If a timer has been configured without a data argument, it can be // converted without regard to the callback argument, since it is unused. @match_timer_function_unused_data@ expression _E; identifier _timer; identifier _callback; @@ ( -setup_timer(&_E->_timer, _callback, 0); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0L); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0UL); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0L); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0UL); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_timer, _callback, 0); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0L); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0UL); +timer_setup(&_timer, _callback, 0); | -setup_timer(_timer, _callback, 0); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0L); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0UL); +timer_setup(_timer, _callback, 0); ) @change_callback_unused_data depends on match_timer_function_unused_data@ identifier match_timer_function_unused_data._callback; type _origtype; identifier _origarg; @@ void _callback( -_origtype _origarg +struct timer_list *unused ) { ... when != _origarg } Signed-off-by: NKees Cook <keescook@chromium.org>
-
- 02 11月, 2017 1 次提交
-
-
由 Greg Kroah-Hartman 提交于
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: NKate Stewart <kstewart@linuxfoundation.org> Reviewed-by: NPhilippe Ombredanne <pombredanne@nexb.com> Reviewed-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 18 10月, 2017 8 次提交
-
-
由 Jérémy Lefaure 提交于
Signed-off-by: NJérémy Lefaure <jeremy.lefaure@lse.epita.fr> Reviewed-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
-
由 Ruben Roy 提交于
This commit fixes the duplicate inline declaration specifier in tpm2_rc_value which caused a warning Signed-off-by: NRuben Roy <rubenroy2005@gmail.com> Reviewed-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
-
由 Jarkko Sakkinen 提交于
Use __le32 type for data in that format. Fixes: 0edbfea5 ("tpm/tpm_tis_spi: Add support for spi phy") Signed-off-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Reviewed-by: NJason Gunthorpe <jgunthorpe@obsidianresearch.com>
-
由 Jarkko Sakkinen 提交于
The local variable 'handle' should have the type __be32 instead of u32. Fixes: 745b361e ("tpm: infrastructure for TPM spaces") Signed-off-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Reviewed-by: NJason Gunthorpe <jgunthorpe@obsidianresearch.com>
-
由 Jarkko Sakkinen 提交于
The local variable 'attrs' should have the type __be32 instead of u32. Fixes: 58472f5c ("tpm: validate TPM 2.0 commands") Signed-off-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Reviewed-by: NJason Gunthorpe <jgunthorpe@obsidianresearch.com>
-
由 Alexander Steffen 提交于
tpm_transmit() does not offer an explicit interface to indicate the number of valid bytes in the communication buffer. Instead, it relies on the commandSize field in the TPM header that is encoded within the buffer. Therefore, ensure that a) enough data has been written to the buffer, so that the commandSize field is present and b) the commandSize field does not announce more data than has been written to the buffer. This should have been fixed with CVE-2011-1161 long ago, but apparently a correct version of that patch never made it into the kernel. Cc: stable@vger.kernel.org Signed-off-by: NAlexander Steffen <Alexander.Steffen@infineon.com> Reviewed-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Tested-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
-
由 Alexander Steffen 提交于
The TPM can choose one of two ways to react to the TPM2_SelfTest command. It can either run all self tests synchronously and then return RC_SUCCESS once all tests were successful. Or it can choose to run the tests asynchronously and return RC_TESTING immediately while the self tests still execute in the background. The previous implementation apparently was not aware of those possibilities and attributed RC_TESTING to some prototype chips instead. With this change the return code of TPM2_SelfTest is interpreted correctly, i.e. the self test result is polled if and only if RC_TESTING is received. Unfortunately, the polling cannot be done in the most straightforward way. If RC_TESTING is received, ideally the code should now poll the selfTestDone bit in the STS register, as this avoids sending more commands, that might interrupt self tests executing in the background and thus prevent them from ever completing. But it cannot be guaranteed that this bit is correctly implemented for all devices, so the next best thing would be to use TPM2_GetTestResult to query the test result. But the response to that command can be very long, and the code currently lacks the capabilities for efficient unmarshalling, so it is difficult to execute this command. Therefore, we simply run the TPM2_SelfTest command in a loop, which should complete eventually, since we only request the execution of self tests that have not yet been done. Signed-off-by: NAlexander Steffen <Alexander.Steffen@infineon.com> Reviewed-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Tested-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
-
由 Alexander Steffen 提交于
In order to avoid delaying the code longer than necessary while still giving the TPM enough time to execute the self tests asynchronously, start with a small delay between two polls and increase it each round. Signed-off-by: NAlexander Steffen <Alexander.Steffen@infineon.com> Reviewed-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Tested-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Signed-off-by: NJarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
-