- 21 3月, 2020 1 次提交
-
-
由 Florian Westphal 提交于
In rare cases retransmit logic will make a full skb copy, which will not trigger the zeroing added in recent change b738a185 ("tcp: ensure skb->dev is NULL before leaving TCP stack"). Cc: Eric Dumazet <edumazet@google.com> Fixes: 75c119af ("tcp: implement rb-tree based retransmit queue") Fixes: 28f8bfd1 ("netfilter: Support iif matches in POSTROUTING") Signed-off-by: NFlorian Westphal <fw@strlen.de> Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 20 3月, 2020 1 次提交
-
-
由 Eric Dumazet 提交于
skb->rbnode is sharing three skb fields : next, prev, dev When a packet is sent, TCP keeps the original skb (master) in a rtx queue, which was converted to rbtree a while back. __tcp_transmit_skb() is responsible to clone the master skb, and add the TCP header to the clone before sending it to network layer. skb_clone() already clears skb->next and skb->prev, but copies the master oskb->dev into the clone. We need to clear skb->dev, otherwise lower layers could interpret the value as a pointer to a netdev. This old bug surfaced recently when commit 28f8bfd1 ("netfilter: Support iif matches in POSTROUTING") was merged. Before this netfilter commit, skb->dev value was ignored and changed before reaching dev_queue_xmit() Fixes: 75c119af ("tcp: implement rb-tree based retransmit queue") Fixes: 28f8bfd1 ("netfilter: Support iif matches in POSTROUTING") Signed-off-by: NEric Dumazet <edumazet@google.com> Reported-by: NMartin Zaharinov <micron10@gmail.com> Cc: Florian Westphal <fw@strlen.de> Cc: Pablo Neira Ayuso <pablo@netfilter.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 24 1月, 2020 4 次提交
-
-
由 Christoph Paasch 提交于
This implements MP_CAPABLE options parsing and writing according to RFC 6824 bis / RFC 8684: MPTCP v1. Local key is sent on syn/ack, and both keys are sent on 3rd ack. MP_CAPABLE messages len are updated accordingly. We need the skbuff to correctly emit the above, so we push the skbuff struct as an argument all the way from tcp code to the relevant mptcp callbacks. When processing incoming MP_CAPABLE + data, build a full blown DSS-like map info, to simplify later processing. On child socket creation, we need to record the remote key, if available. Signed-off-by: NChristoph Paasch <cpaasch@apple.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Peter Krystad 提交于
Add hooks to tcp_output.c to add MP_CAPABLE to an outgoing SYN request, to capture the MP_CAPABLE in the received SYN-ACK, to add MP_CAPABLE to the final ACK of the three-way handshake. Use the .sk_rx_dst_set() handler in the subflow proto to capture when the responding SYN-ACK is received and notify the MPTCP connection layer. Co-developed-by: NPaolo Abeni <pabeni@redhat.com> Signed-off-by: NPaolo Abeni <pabeni@redhat.com> Co-developed-by: NFlorian Westphal <fw@strlen.de> Signed-off-by: NFlorian Westphal <fw@strlen.de> Signed-off-by: NPeter Krystad <peter.krystad@linux.intel.com> Signed-off-by: NChristoph Paasch <cpaasch@apple.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Peter Krystad 提交于
Add hooks to parse and format the MP_CAPABLE option. This option is handled according to MPTCP version 0 (RFC6824). MPTCP version 1 MP_CAPABLE (RFC6824bis/RFC8684) will be added later in coordination with related code changes. Co-developed-by: NMatthieu Baerts <matthieu.baerts@tessares.net> Signed-off-by: NMatthieu Baerts <matthieu.baerts@tessares.net> Co-developed-by: NFlorian Westphal <fw@strlen.de> Signed-off-by: NFlorian Westphal <fw@strlen.de> Co-developed-by: NDavide Caratti <dcaratti@redhat.com> Signed-off-by: NDavide Caratti <dcaratti@redhat.com> Signed-off-by: NPeter Krystad <peter.krystad@linux.intel.com> Signed-off-by: NChristoph Paasch <cpaasch@apple.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Eric Dumazet 提交于
Latest commit 85369750 ("tcp: Fix highest_sack and highest_sack_seq") apparently allowed syzbot to trigger various crashes in TCP stack [1] I believe this commit only made things easier for syzbot to find its way into triggering use-after-frees. But really the bugs could lead to bad TCP behavior or even plain crashes even for non malicious peers. I have audited all calls to tcp_rtx_queue_unlink() and tcp_rtx_queue_unlink_and_free() and made sure tp->highest_sack would be updated if we are removing from rtx queue the skb that tp->highest_sack points to. These updates were missing in three locations : 1) tcp_clean_rtx_queue() [This one seems quite serious, I have no idea why this was not caught earlier] 2) tcp_rtx_queue_purge() [Probably not a big deal for normal operations] 3) tcp_send_synack() [Probably not a big deal for normal operations] [1] BUG: KASAN: use-after-free in tcp_highest_sack_seq include/net/tcp.h:1864 [inline] BUG: KASAN: use-after-free in tcp_highest_sack_seq include/net/tcp.h:1856 [inline] BUG: KASAN: use-after-free in tcp_check_sack_reordering+0x33c/0x3a0 net/ipv4/tcp_input.c:891 Read of size 4 at addr ffff8880a488d068 by task ksoftirqd/1/16 CPU: 1 PID: 16 Comm: ksoftirqd/1 Not tainted 5.5.0-rc5-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x197/0x210 lib/dump_stack.c:118 print_address_description.constprop.0.cold+0xd4/0x30b mm/kasan/report.c:374 __kasan_report.cold+0x1b/0x41 mm/kasan/report.c:506 kasan_report+0x12/0x20 mm/kasan/common.c:639 __asan_report_load4_noabort+0x14/0x20 mm/kasan/generic_report.c:134 tcp_highest_sack_seq include/net/tcp.h:1864 [inline] tcp_highest_sack_seq include/net/tcp.h:1856 [inline] tcp_check_sack_reordering+0x33c/0x3a0 net/ipv4/tcp_input.c:891 tcp_try_undo_partial net/ipv4/tcp_input.c:2730 [inline] tcp_fastretrans_alert+0xf74/0x23f0 net/ipv4/tcp_input.c:2847 tcp_ack+0x2577/0x5bf0 net/ipv4/tcp_input.c:3710 tcp_rcv_established+0x6dd/0x1e90 net/ipv4/tcp_input.c:5706 tcp_v4_do_rcv+0x619/0x8d0 net/ipv4/tcp_ipv4.c:1619 tcp_v4_rcv+0x307f/0x3b40 net/ipv4/tcp_ipv4.c:2001 ip_protocol_deliver_rcu+0x5a/0x880 net/ipv4/ip_input.c:204 ip_local_deliver_finish+0x23b/0x380 net/ipv4/ip_input.c:231 NF_HOOK include/linux/netfilter.h:307 [inline] NF_HOOK include/linux/netfilter.h:301 [inline] ip_local_deliver+0x1e9/0x520 net/ipv4/ip_input.c:252 dst_input include/net/dst.h:442 [inline] ip_rcv_finish+0x1db/0x2f0 net/ipv4/ip_input.c:428 NF_HOOK include/linux/netfilter.h:307 [inline] NF_HOOK include/linux/netfilter.h:301 [inline] ip_rcv+0xe8/0x3f0 net/ipv4/ip_input.c:538 __netif_receive_skb_one_core+0x113/0x1a0 net/core/dev.c:5148 __netif_receive_skb+0x2c/0x1d0 net/core/dev.c:5262 process_backlog+0x206/0x750 net/core/dev.c:6093 napi_poll net/core/dev.c:6530 [inline] net_rx_action+0x508/0x1120 net/core/dev.c:6598 __do_softirq+0x262/0x98c kernel/softirq.c:292 run_ksoftirqd kernel/softirq.c:603 [inline] run_ksoftirqd+0x8e/0x110 kernel/softirq.c:595 smpboot_thread_fn+0x6a3/0xa40 kernel/smpboot.c:165 kthread+0x361/0x430 kernel/kthread.c:255 ret_from_fork+0x24/0x30 arch/x86/entry/entry_64.S:352 Allocated by task 10091: save_stack+0x23/0x90 mm/kasan/common.c:72 set_track mm/kasan/common.c:80 [inline] __kasan_kmalloc mm/kasan/common.c:513 [inline] __kasan_kmalloc.constprop.0+0xcf/0xe0 mm/kasan/common.c:486 kasan_slab_alloc+0xf/0x20 mm/kasan/common.c:521 slab_post_alloc_hook mm/slab.h:584 [inline] slab_alloc_node mm/slab.c:3263 [inline] kmem_cache_alloc_node+0x138/0x740 mm/slab.c:3575 __alloc_skb+0xd5/0x5e0 net/core/skbuff.c:198 alloc_skb_fclone include/linux/skbuff.h:1099 [inline] sk_stream_alloc_skb net/ipv4/tcp.c:875 [inline] sk_stream_alloc_skb+0x113/0xc90 net/ipv4/tcp.c:852 tcp_sendmsg_locked+0xcf9/0x3470 net/ipv4/tcp.c:1282 tcp_sendmsg+0x30/0x50 net/ipv4/tcp.c:1432 inet_sendmsg+0x9e/0xe0 net/ipv4/af_inet.c:807 sock_sendmsg_nosec net/socket.c:652 [inline] sock_sendmsg+0xd7/0x130 net/socket.c:672 __sys_sendto+0x262/0x380 net/socket.c:1998 __do_sys_sendto net/socket.c:2010 [inline] __se_sys_sendto net/socket.c:2006 [inline] __x64_sys_sendto+0xe1/0x1a0 net/socket.c:2006 do_syscall_64+0xfa/0x790 arch/x86/entry/common.c:294 entry_SYSCALL_64_after_hwframe+0x49/0xbe Freed by task 10095: save_stack+0x23/0x90 mm/kasan/common.c:72 set_track mm/kasan/common.c:80 [inline] kasan_set_free_info mm/kasan/common.c:335 [inline] __kasan_slab_free+0x102/0x150 mm/kasan/common.c:474 kasan_slab_free+0xe/0x10 mm/kasan/common.c:483 __cache_free mm/slab.c:3426 [inline] kmem_cache_free+0x86/0x320 mm/slab.c:3694 kfree_skbmem+0x178/0x1c0 net/core/skbuff.c:645 __kfree_skb+0x1e/0x30 net/core/skbuff.c:681 sk_eat_skb include/net/sock.h:2453 [inline] tcp_recvmsg+0x1252/0x2930 net/ipv4/tcp.c:2166 inet_recvmsg+0x136/0x610 net/ipv4/af_inet.c:838 sock_recvmsg_nosec net/socket.c:886 [inline] sock_recvmsg net/socket.c:904 [inline] sock_recvmsg+0xce/0x110 net/socket.c:900 __sys_recvfrom+0x1ff/0x350 net/socket.c:2055 __do_sys_recvfrom net/socket.c:2073 [inline] __se_sys_recvfrom net/socket.c:2069 [inline] __x64_sys_recvfrom+0xe1/0x1a0 net/socket.c:2069 do_syscall_64+0xfa/0x790 arch/x86/entry/common.c:294 entry_SYSCALL_64_after_hwframe+0x49/0xbe The buggy address belongs to the object at ffff8880a488d040 which belongs to the cache skbuff_fclone_cache of size 456 The buggy address is located 40 bytes inside of 456-byte region [ffff8880a488d040, ffff8880a488d208) The buggy address belongs to the page: page:ffffea0002922340 refcount:1 mapcount:0 mapping:ffff88821b057000 index:0x0 raw: 00fffe0000000200 ffffea00022a5788 ffffea0002624a48 ffff88821b057000 raw: 0000000000000000 ffff8880a488d040 0000000100000006 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff8880a488cf00: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ffff8880a488cf80: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc >ffff8880a488d000: fc fc fc fc fc fc fc fc fb fb fb fb fb fb fb fb ^ ffff8880a488d080: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff8880a488d100: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb Fixes: 85369750 ("tcp: Fix highest_sack and highest_sack_seq") Fixes: 50895b9d ("tcp: highest_sack fix") Fixes: 737ff314 ("tcp: use sequence distance to detect reordering") Signed-off-by: NEric Dumazet <edumazet@google.com> Cc: Cambda Zhu <cambda@linux.alibaba.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Neal Cardwell <ncardwell@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Acked-by: NYuchung Cheng <ycheng@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 10 1月, 2020 3 次提交
-
-
由 Mat Martineau 提交于
Update the SACK check to work with zero option space available, a case that's possible with MPTCP but not MD5+TS. Maintained only one conditional branch for insufficient SACK space. v1 -> v2: - Moves the check inside the SACK branch by taking recent SACK fix: 9424e2e7 (tcp: md5: fix potential overestimation of TCP option space) in to account, but modifies it to work in MPTCP scenarios beyond the MD5+TS corner case. Co-developed-by: NPaolo Abeni <pabeni@redhat.com> Signed-off-by: NPaolo Abeni <pabeni@redhat.com> Reviewed-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NMat Martineau <mathew.j.martineau@linux.intel.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Mat Martineau 提交于
Coalesce and collapse of packets carrying MPTCP extensions is allowed when the newer packet has no extension or the extensions carried by both packets are equal. This allows merging of TSO packet trains and even cross-TSO packets, and does not require any additional action when moving data into existing SKBs. v3 -> v4: - allow collapsing, under mptcp_skb_can_collapse() constraint v5 -> v6: - clarify MPTCP skb extensions must always be cleared at allocation time Co-developed-by: NPaolo Abeni <pabeni@redhat.com> Signed-off-by: NPaolo Abeni <pabeni@redhat.com> Signed-off-by: NMat Martineau <mathew.j.martineau@linux.intel.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Martin KaFai Lau 提交于
This patch makes "struct tcp_congestion_ops" to be the first user of BPF STRUCT_OPS. It allows implementing a tcp_congestion_ops in bpf. The BPF implemented tcp_congestion_ops can be used like regular kernel tcp-cc through sysctl and setsockopt. e.g. [root@arch-fb-vm1 bpf]# sysctl -a | egrep congestion net.ipv4.tcp_allowed_congestion_control = reno cubic bpf_cubic net.ipv4.tcp_available_congestion_control = reno bic cubic bpf_cubic net.ipv4.tcp_congestion_control = bpf_cubic There has been attempt to move the TCP CC to the user space (e.g. CCP in TCP). The common arguments are faster turn around, get away from long-tail kernel versions in production...etc, which are legit points. BPF has been the continuous effort to join both kernel and userspace upsides together (e.g. XDP to gain the performance advantage without bypassing the kernel). The recent BPF advancements (in particular BTF-aware verifier, BPF trampoline, BPF CO-RE...) made implementing kernel struct ops (e.g. tcp cc) possible in BPF. It allows a faster turnaround for testing algorithm in the production while leveraging the existing (and continue growing) BPF feature/framework instead of building one specifically for userspace TCP CC. This patch allows write access to a few fields in tcp-sock (in bpf_tcp_ca_btf_struct_access()). The optional "get_info" is unsupported now. It can be added later. One possible way is to output the info with a btf-id to describe the content. Signed-off-by: NMartin KaFai Lau <kafai@fb.com> Signed-off-by: NAlexei Starovoitov <ast@kernel.org> Acked-by: NAndrii Nakryiko <andriin@fb.com> Acked-by: NYonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20200109003508.3856115-1-kafai@fb.com
-
- 31 12月, 2019 1 次提交
-
-
由 Cambda Zhu 提交于
>From commit 50895b9d ("tcp: highest_sack fix"), the logic about setting tp->highest_sack to the head of the send queue was removed. Of course the logic is error prone, but it is logical. Before we remove the pointer to the highest sack skb and use the seq instead, we need to set tp->highest_sack to NULL when there is no skb after the last sack, and then replace NULL with the real skb when new skb inserted into the rtx queue, because the NULL means the highest sack seq is tp->snd_nxt. If tp->highest_sack is NULL and new data sent, the next ACK with sack option will increase tp->reordering unexpectedly. This patch sets tp->highest_sack to the tail of the rtx queue if it's NULL and new data is sent. The patch keeps the rule that the highest_sack can only be maintained by sack processing, except for this only case. Fixes: 50895b9d ("tcp: highest_sack fix") Signed-off-by: NCambda Zhu <cambda@linux.alibaba.com> Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 18 12月, 2019 1 次提交
-
-
由 Eric Dumazet 提交于
sk->sk_pacing_shift can be read and written without lock synchronization. This patch adds annotations to document this fact and avoid future syzbot complains. This might also avoid unexpected false sharing in sk_pacing_shift_update(), as the compiler could remove the conditional check and always write over sk->sk_pacing_shift : if (sk->sk_pacing_shift != val) sk->sk_pacing_shift = val; Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 14 12月, 2019 2 次提交
-
-
由 Eric Dumazet 提交于
Due to how tcp_sendmsg() is implemented, we can have an empty skb at the tail of the write queue. Most [1] tcp_write_queue_empty() callers want to know if there is anything to send (payload and/or FIN) Instead of checking if the sk_write_queue is empty, we need to test if tp->write_seq == tp->snd_nxt [1] tcp_send_fin() was the only caller that expected to see if an skb was in the write queue, I have changed the code to reuse the tcp_write_queue_tail() result. Signed-off-by: NEric Dumazet <edumazet@google.com> Cc: Neal Cardwell <ncardwell@google.com> Acked-by: NSoheil Hassas Yeganeh <soheil@google.com> Signed-off-by: NJakub Kicinski <jakub.kicinski@netronome.com>
-
由 Eric Dumazet 提交于
Backport of commit fdfc5c85 ("tcp: remove empty skb from write queue in error cases") in linux-4.14 stable triggered various bugs. One of them has been fixed in commit ba2ddb43f270 ("tcp: Don't dequeue SYN/FIN-segments from write-queue"), but we still have crashes in some occasions. Root-cause is that when tcp_sendmsg() has allocated a fresh skb and could not append a fragment before being blocked in sk_stream_wait_memory(), tcp_write_xmit() might be called and decide to send this fresh and empty skb. Sending an empty packet is not only silly, it might have caused many issues we had in the past with tp->packets_out being out of sync. Fixes: c65f7f00 ("[TCP]: Simplify SKB data portion allocation with NETIF_F_SG.") Signed-off-by: NEric Dumazet <edumazet@google.com> Cc: Christoph Paasch <cpaasch@apple.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Cc: Jason Baron <jbaron@akamai.com> Acked-by: NSoheil Hassas Yeganeh <soheil@google.com> Signed-off-by: NJakub Kicinski <jakub.kicinski@netronome.com>
-
- 07 12月, 2019 1 次提交
-
-
由 Eric Dumazet 提交于
Back in 2008, Adam Langley fixed the corner case of packets for flows having all of the following options : MD5 TS SACK Since MD5 needs 20 bytes, and TS needs 12 bytes, no sack block can be cooked from the remaining 8 bytes. tcp_established_options() correctly sets opts->num_sack_blocks to zero, but returns 36 instead of 32. This means TCP cooks packets with 4 extra bytes at the end of options, containing unitialized bytes. Fixes: 33ad798c ("tcp: options clean up") Signed-off-by: NEric Dumazet <edumazet@google.com> Reported-by: Nsyzbot <syzkaller@googlegroups.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Acked-by: NSoheil Hassas Yeganeh <soheil@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 08 11月, 2019 1 次提交
-
-
由 Eric Dumazet 提交于
tcp_make_synack() already uses tcp_clock_ns(), and can pass the value to cookie_init_timestamp() to avoid another call to ktime_get_ns() helper. Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 14 10月, 2019 5 次提交
-
-
由 Eric Dumazet 提交于
For the sake of tcp_poll(), there are few places where we fetch sk->sk_wmem_queued while this field can change from IRQ or other cpu. We need to add READ_ONCE() annotations, and also make sure write sides use corresponding WRITE_ONCE() to avoid store-tearing. sk_wmem_queued_add() helper is added so that we can in the future convert to ADD_ONCE() or equivalent if/when available. Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Eric Dumazet 提交于
There are few places where we fetch tp->snd_nxt while this field can change from IRQ or other cpu. We need to add READ_ONCE() annotations, and also make sure write sides use corresponding WRITE_ONCE() to avoid store-tearing. Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Eric Dumazet 提交于
There are few places where we fetch tp->write_seq while this field can change from IRQ or other cpu. We need to add READ_ONCE() annotations, and also make sure write sides use corresponding WRITE_ONCE() to avoid store-tearing. Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Eric Dumazet 提交于
There are few places where we fetch tp->copied_seq while this field can change from IRQ or other cpu. We need to add READ_ONCE() annotations, and also make sure write sides use corresponding WRITE_ONCE() to avoid store-tearing. Note that tcp_inq_hint() was already using READ_ONCE(tp->copied_seq) Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Eric Dumazet 提交于
Both tcp_v4_err() and tcp_v6_err() do the following operations while they do not own the socket lock : fastopen = tp->fastopen_rsk; snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una; The problem is that without appropriate barrier, the compiler might reload tp->fastopen_rsk and trigger a NULL deref. request sockets are protected by RCU, we can simply add the missing annotations and barriers to solve the issue. Fixes: 168a8f58 ("tcp: TCP Fast Open Server - main code path") Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 12 9月, 2019 1 次提交
-
-
由 Eric Dumazet 提交于
When tcp sends a TSO packet, adding a PSH flag on it reduces the sojourn time of GRO packet in GRO receivers. This is particularly the case under pressure, since RX queues receive packets for many concurrent flows. A sender can give a hint to GRO engines when it is appropriate to flush a super-packet, especially when pacing is in the picture, since next packet is probably delayed by one ms. Having less packets in GRO engine reduces chance of LRU eviction or inflated RTT, and reduces GRO cost. We found recently that we must not set the PSH flag on individual full-size MSS segments [1] : Under pressure (CWR state), we better let the packet sit for a small delay (depending on NAPI logic) so that the ACK packet is delayed, and thus next packet we send is also delayed a bit. Eventually the bottleneck queue can be drained. DCTCP flows with CWND=1 have demonstrated the issue. This patch allows to slowdown the aggregate traffic without involving high resolution timers on senders and/or receivers. It has been used at Google for about four years, and has been discussed at various networking conferences. [1] segments smaller than MSS already have PSH flag set by tcp_sendmsg() / tcp_mark_push(), unless MSG_MORE has been requested by the user. Signed-off-by: NEric Dumazet <edumazet@google.com> Cc: Soheil Hassas Yeganeh <soheil@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Tariq Toukan <tariqt@mellanox.com> Acked-by: NSoheil Hassas Yeganeh <soheil@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 29 8月, 2019 1 次提交
-
-
由 Willem de Bruijn 提交于
TCP associates tx timestamp requests with a byte in the bytestream. If merging skbs in tcp_mtu_probe, migrate the tstamp request. Similar to MSG_EOR, do not allow moving a timestamp from any segment in the probe but the last. This to avoid merging multiple timestamps. Tested with the packetdrill script at https://github.com/wdebruij/packetdrill/commits/mtu_probe-1 Link: http://patchwork.ozlabs.org/patch/1143278/#2232897 Fixes: 4ed2d765 ("net-timestamp: TCP timestamping") Signed-off-by: NWillem de Bruijn <willemb@google.com> Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 09 8月, 2019 1 次提交
-
-
由 Jakub Kicinski 提交于
sk_validate_xmit_skb() and drivers depend on the sk member of struct sk_buff to identify segments requiring encryption. Any operation which removes or does not preserve the original TLS socket such as skb_orphan() or skb_clone() will cause clear text leaks. Make the TCP socket underlying an offloaded TLS connection mark all skbs as decrypted, if TLS TX is in offload mode. Then in sk_validate_xmit_skb() catch skbs which have no socket (or a socket with no validation) and decrypted flag set. Note that CONFIG_SOCK_VALIDATE_XMIT, CONFIG_TLS_DEVICE and sk->sk_validate_xmit_skb are slightly interchangeable right now, they all imply TLS offload. The new checks are guarded by CONFIG_TLS_DEVICE because that's the option guarding the sk_buff->decrypted member. Second, smaller issue with orphaning is that it breaks the guarantee that packets will be delivered to device queues in-order. All TLS offload drivers depend on that scheduling property. This means skb_orphan_partial()'s trick of preserving partial socket references will cause issues in the drivers. We need a full orphan, and as a result netem delay/throttling will cause all TLS offload skbs to be dropped. Reusing the sk_buff->decrypted flag also protects from leaking clear text when incoming, decrypted skb is redirected (e.g. by TC). See commit 0608c69c ("bpf: sk_msg, sock{map|hash} redirect through ULP") for justification why the internal flag is safe. The only location which could leak the flag in is tcp_bpf_sendmsg(), which is taken care of by clearing the previously unused bit. v2: - remove superfluous decrypted mark copy (Willem); - remove the stale doc entry (Boris); - rely entirely on EOR marking to prevent coalescing (Boris); - use an internal sendpages flag instead of marking the socket (Boris). v3 (Willem): - reorganize the can_skb_orphan_partial() condition; - fix the flag leak-in through tcp_bpf_sendmsg. Signed-off-by: NJakub Kicinski <jakub.kicinski@netronome.com> Acked-by: NWillem de Bruijn <willemb@google.com> Reviewed-by: NBoris Pismenny <borisp@mellanox.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 31 7月, 2019 1 次提交
-
-
由 Jonathan Lemon 提交于
Use accessor functions for skb fragment's page_offset instead of direct references, in preparation for bvec conversion. Signed-off-by: NJonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 22 7月, 2019 1 次提交
-
-
由 Eric Dumazet 提交于
Some applications set tiny SO_SNDBUF values and expect TCP to just work. Recent patches to address CVE-2019-11478 broke them in case of losses, since retransmits might be prevented. We should allow these flows to make progress. This patch allows the first and last skb in retransmit queue to be split even if memory limits are hit. It also adds the some room due to the fact that tcp_sendmsg() and tcp_sendpage() might overshoot sk_wmem_queued by about one full TSO skb (64KB size). Note this allowance was already present in stable backports for kernels < 4.15 Note for < 4.15 backports : tcp_rtx_queue_tail() will probably look like : static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk) { struct sk_buff *skb = tcp_send_head(sk); return skb ? tcp_write_queue_prev(sk, skb) : tcp_write_queue_tail(sk); } Fixes: f070ef2a ("tcp: tcp_fragment() should apply sane memory limits") Signed-off-by: NEric Dumazet <edumazet@google.com> Reported-by: NAndrew Prout <aprout@ll.mit.edu> Tested-by: NAndrew Prout <aprout@ll.mit.edu> Tested-by: NJonathan Lemon <jonathan.lemon@gmail.com> Tested-by: NMichal Kubecek <mkubecek@suse.cz> Acked-by: NNeal Cardwell <ncardwell@google.com> Acked-by: NYuchung Cheng <ycheng@google.com> Acked-by: NChristoph Paasch <cpaasch@apple.com> Cc: Jonathan Looney <jtl@netflix.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 22 6月, 2019 1 次提交
-
-
由 Eric Dumazet 提交于
tcp_fragment() might be called for skbs in the write queue. Memory limits might have been exceeded because tcp_sendmsg() only checks limits at full skb (64KB) boundaries. Therefore, we need to make sure tcp_fragment() wont punish applications that might have setup very low SO_SNDBUF values. Fixes: f070ef2a ("tcp: tcp_fragment() should apply sane memory limits") Signed-off-by: NEric Dumazet <edumazet@google.com> Reported-by: NChristoph Paasch <cpaasch@apple.com> Tested-by: NChristoph Paasch <cpaasch@apple.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 16 6月, 2019 3 次提交
-
-
由 Eric Dumazet 提交于
Some TCP peers announce a very small MSS option in their SYN and/or SYN/ACK messages. This forces the stack to send packets with a very high network/cpu overhead. Linux has enforced a minimal value of 48. Since this value includes the size of TCP options, and that the options can consume up to 40 bytes, this means that each segment can include only 8 bytes of payload. In some cases, it can be useful to increase the minimal value to a saner value. We still let the default to 48 (TCP_MIN_SND_MSS), for compatibility reasons. Note that TCP_MAXSEG socket option enforces a minimal value of (TCP_MIN_MSS). David Miller increased this minimal value in commit c39508d6 ("tcp: Make TCP_MAXSEG minimum more correct.") from 64 to 88. We might in the future merge TCP_MIN_SND_MSS and TCP_MIN_MSS. CVE-2019-11479 -- tcp mss hardcoded to 48 Signed-off-by: NEric Dumazet <edumazet@google.com> Suggested-by: NJonathan Looney <jtl@netflix.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Tyler Hicks <tyhicks@canonical.com> Cc: Bruce Curtis <brucec@netflix.com> Cc: Jonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Eric Dumazet 提交于
Jonathan Looney reported that a malicious peer can force a sender to fragment its retransmit queue into tiny skbs, inflating memory usage and/or overflow 32bit counters. TCP allows an application to queue up to sk_sndbuf bytes, so we need to give some allowance for non malicious splitting of retransmit queue. A new SNMP counter is added to monitor how many times TCP did not allow to split an skb if the allowance was exceeded. Note that this counter might increase in the case applications use SO_SNDBUF socket option to lower sk_sndbuf. CVE-2019-11478 : tcp_fragment, prevent fragmenting a packet when the socket is already using more than half the allowed space Signed-off-by: NEric Dumazet <edumazet@google.com> Reported-by: NJonathan Looney <jtl@netflix.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Acked-by: NYuchung Cheng <ycheng@google.com> Reviewed-by: NTyler Hicks <tyhicks@canonical.com> Cc: Bruce Curtis <brucec@netflix.com> Cc: Jonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Eric Dumazet 提交于
Jonathan Looney reported that TCP can trigger the following crash in tcp_shifted_skb() : BUG_ON(tcp_skb_pcount(skb) < pcount); This can happen if the remote peer has advertized the smallest MSS that linux TCP accepts : 48 An skb can hold 17 fragments, and each fragment can hold 32KB on x86, or 64KB on PowerPC. This means that the 16bit witdh of TCP_SKB_CB(skb)->tcp_gso_segs can overflow. Note that tcp_sendmsg() builds skbs with less than 64KB of payload, so this problem needs SACK to be enabled. SACK blocks allow TCP to coalesce multiple skbs in the retransmit queue, thus filling the 17 fragments to maximal capacity. CVE-2019-11477 -- u16 overflow of TCP_SKB_CB(skb)->tcp_gso_segs Fixes: 832d11c5 ("tcp: Try to restore large SKBs while SACK processing") Signed-off-by: NEric Dumazet <edumazet@google.com> Reported-by: NJonathan Looney <jtl@netflix.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Reviewed-by: NTyler Hicks <tyhicks@canonical.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Bruce Curtis <brucec@netflix.com> Cc: Jonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 13 6月, 2019 1 次提交
-
-
由 Eric Dumazet 提交于
Adding delays to TCP flows is crucial for studying behavior of TCP stacks, including congestion control modules. Linux offers netem module, but it has unpractical constraints : - Need root access to change qdisc - Hard to setup on egress if combined with non trivial qdisc like FQ - Single delay for all flows. EDT (Earliest Departure Time) adoption in TCP stack allows us to enable a per socket delay at a very small cost. Networking tools can now establish thousands of flows, each of them with a different delay, simulating real world conditions. This requires FQ packet scheduler or a EDT-enabled NIC. This patchs adds TCP_TX_DELAY socket option, to set a delay in usec units. unsigned int tx_delay = 10000; /* 10 msec */ setsockopt(fd, SOL_TCP, TCP_TX_DELAY, &tx_delay, sizeof(tx_delay)); Note that FQ packet scheduler limits might need some tweaking : man tc-fq PARAMETERS limit Hard limit on the real queue size. When this limit is reached, new packets are dropped. If the value is lowered, packets are dropped so that the new limit is met. Default is 10000 packets. flow_limit Hard limit on the maximum number of packets queued per flow. Default value is 100. Use of TCP_TX_DELAY option will increase number of skbs in FQ qdisc, so packets would be dropped if any of the previous limit is hit. Use of a jump label makes this support runtime-free, for hosts never using the option. Also note that TSQ (TCP Small Queues) limits are slightly changed with this patch : we need to account that skbs artificially delayed wont stop us providind more skbs to feed the pipe (netem uses skb_orphan_partial() for this purpose, but FQ can not use this trick) Because of that, using big delays might very well trigger old bugs in TSO auto defer logic and/or sndbuf limited detection. Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 21 5月, 2019 1 次提交
-
-
由 Thomas Gleixner 提交于
Add SPDX license identifiers to all files which: - Have no license information of any form - Have EXPORT_.*_SYMBOL_GPL inside which was used in the initial scan/conversion to ignore the file These files fall under the project license, GPL v2 only. The resulting SPDX license identifier is: GPL-2.0-only Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 01 5月, 2019 1 次提交
-
-
由 Yuchung Cheng 提交于
Detecting spurious SYNACK timeout using timestamp option requires recording the exact SYNACK skb timestamp. Previously the SYNACK sent timestamp was stamped slightly earlier before the skb was transmitted. This patch uses the SYNACK skb transmission timestamp directly. Signed-off-by: NYuchung Cheng <ycheng@google.com> Signed-off-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 07 4月, 2019 1 次提交
-
-
由 Colin Ian King 提交于
The non-null check on tskb is always false because it is in an else path of a check on tskb and hence tskb is null in this code block. This is check is therefore redundant and can be removed as well as the label coalesc. if (tsbk) { ... } else { ... if (unlikely(!skb)) { if (tskb) /* can never be true, redundant code */ goto coalesc; return; } } Addresses-Coverity: ("Logically dead code") Signed-off-by: NColin Ian King <colin.king@canonical.com> Reviewed-by: NMukesh Ojha <mojha@codeaurora.org> Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 24 3月, 2019 1 次提交
-
-
由 Eric Dumazet 提交于
tcp_clock_ns() (aka ktime_get_ns()) is using monotonic clock, so the checks we had in tcp_mstamp_refresh() are no longer relevant. This patch removes cpu stall (when the cache line is not hot) Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 27 2月, 2019 2 次提交
-
-
由 Eric Dumazet 提交于
tso_fragment() is only called for packets still in write queue. Remove the tcp_queue parameter to make this more obvious, even if the comment clearly states this. Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Eric Dumazet 提交于
We prefer static_branch_unlikely() over static_key_false() these days. Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 24 2月, 2019 1 次提交
-
-
由 Eric Dumazet 提交于
syzbot reported a WARN_ON(!tcp_skb_pcount(skb)) in tcp_send_loss_probe() [1] This was caused by TCP_REPAIR sent skbs that inadvertenly were missing a call to tcp_init_tso_segs() [1] WARNING: CPU: 1 PID: 0 at net/ipv4/tcp_output.c:2534 tcp_send_loss_probe+0x771/0x8a0 net/ipv4/tcp_output.c:2534 Kernel panic - not syncing: panic_on_warn set ... CPU: 1 PID: 0 Comm: swapper/1 Not tainted 5.0.0-rc7+ #77 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: <IRQ> __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x172/0x1f0 lib/dump_stack.c:113 panic+0x2cb/0x65c kernel/panic.c:214 __warn.cold+0x20/0x45 kernel/panic.c:571 report_bug+0x263/0x2b0 lib/bug.c:186 fixup_bug arch/x86/kernel/traps.c:178 [inline] fixup_bug arch/x86/kernel/traps.c:173 [inline] do_error_trap+0x11b/0x200 arch/x86/kernel/traps.c:271 do_invalid_op+0x37/0x50 arch/x86/kernel/traps.c:290 invalid_op+0x14/0x20 arch/x86/entry/entry_64.S:973 RIP: 0010:tcp_send_loss_probe+0x771/0x8a0 net/ipv4/tcp_output.c:2534 Code: 88 fc ff ff 4c 89 ef e8 ed 75 c8 fb e9 c8 fc ff ff e8 43 76 c8 fb e9 63 fd ff ff e8 d9 75 c8 fb e9 94 f9 ff ff e8 bf 03 91 fb <0f> 0b e9 7d fa ff ff e8 b3 03 91 fb 0f b6 1d 37 43 7a 03 31 ff 89 RSP: 0018:ffff8880ae907c60 EFLAGS: 00010206 RAX: ffff8880a989c340 RBX: 0000000000000000 RCX: ffffffff85dedbdb RDX: 0000000000000100 RSI: ffffffff85dee0b1 RDI: 0000000000000005 RBP: ffff8880ae907c90 R08: ffff8880a989c340 R09: ffffed10147d1ae1 R10: ffffed10147d1ae0 R11: ffff8880a3e8d703 R12: ffff888091b90040 R13: ffff8880a3e8d540 R14: 0000000000008000 R15: ffff888091b90860 tcp_write_timer_handler+0x5c0/0x8a0 net/ipv4/tcp_timer.c:583 tcp_write_timer+0x10e/0x1d0 net/ipv4/tcp_timer.c:607 call_timer_fn+0x190/0x720 kernel/time/timer.c:1325 expire_timers kernel/time/timer.c:1362 [inline] __run_timers kernel/time/timer.c:1681 [inline] __run_timers kernel/time/timer.c:1649 [inline] run_timer_softirq+0x652/0x1700 kernel/time/timer.c:1694 __do_softirq+0x266/0x95a kernel/softirq.c:292 invoke_softirq kernel/softirq.c:373 [inline] irq_exit+0x180/0x1d0 kernel/softirq.c:413 exiting_irq arch/x86/include/asm/apic.h:536 [inline] smp_apic_timer_interrupt+0x14a/0x570 arch/x86/kernel/apic/apic.c:1062 apic_timer_interrupt+0xf/0x20 arch/x86/entry/entry_64.S:807 </IRQ> RIP: 0010:native_safe_halt+0x2/0x10 arch/x86/include/asm/irqflags.h:58 Code: ff ff ff 48 89 c7 48 89 45 d8 e8 59 0c a1 fa 48 8b 45 d8 e9 ce fe ff ff 48 89 df e8 48 0c a1 fa eb 82 90 90 90 90 90 90 fb f4 <c3> 0f 1f 00 66 2e 0f 1f 84 00 00 00 00 00 f4 c3 90 90 90 90 90 90 RSP: 0018:ffff8880a98afd78 EFLAGS: 00000286 ORIG_RAX: ffffffffffffff13 RAX: 1ffffffff1125061 RBX: ffff8880a989c340 RCX: 0000000000000000 RDX: dffffc0000000000 RSI: 0000000000000001 RDI: ffff8880a989cbbc RBP: ffff8880a98afda8 R08: ffff8880a989c340 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000001 R13: ffffffff889282f8 R14: 0000000000000001 R15: 0000000000000000 arch_cpu_idle+0x10/0x20 arch/x86/kernel/process.c:555 default_idle_call+0x36/0x90 kernel/sched/idle.c:93 cpuidle_idle_call kernel/sched/idle.c:153 [inline] do_idle+0x386/0x570 kernel/sched/idle.c:262 cpu_startup_entry+0x1b/0x20 kernel/sched/idle.c:353 start_secondary+0x404/0x5c0 arch/x86/kernel/smpboot.c:271 secondary_startup_64+0xa4/0xb0 arch/x86/kernel/head_64.S:243 Kernel Offset: disabled Rebooting in 86400 seconds.. Fixes: 79861919 ("tcp: fix TCP_REPAIR xmit queue setup") Signed-off-by: NEric Dumazet <edumazet@google.com> Reported-by: Nsyzbot <syzkaller@googlegroups.com> Cc: Andrey Vagin <avagin@openvz.org> Cc: Soheil Hassas Yeganeh <soheil@google.com> Cc: Neal Cardwell <ncardwell@google.com> Acked-by: NSoheil Hassas Yeganeh <soheil@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 28 1月, 2019 2 次提交
-
-
由 Wei Wang 提交于
In order to be more confident about an on-going interactive session, we increment pingpong count by 1 for every interactive transaction and we adjust TCP_PINGPONG_THRESH to 3. This means, we only consider a session in pingpong mode after we see 3 interactive transactions, and start to activate delayed acks in quick ack mode. And in order to not over-count the credits, we only increase pingpong count for the first packet sent in response for the previous received packet. This is mainly to prevent delaying the ack immediately after some handshake protocol but no real interactive traffic pattern afterwards. Signed-off-by: NWei Wang <weiwan@google.com> Signed-off-by: NYuchung Cheng <ycheng@google.com> Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Wei Wang 提交于
Instead of using pingpong as a single bit information, we refactor the code to treat it as a counter. When interactive session is detected, we set pingpong count to TCP_PINGPONG_THRESH. And when pingpong count is >= TCP_PINGPONG_THRESH, we consider the session in pingpong mode. This patch is a pure refactor and sets foundation for the next patch. This patch itself does not change any pingpong logic. Signed-off-by: NWei Wang <weiwan@google.com> Signed-off-by: NYuchung Cheng <ycheng@google.com> Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 26 1月, 2019 1 次提交
-
-
由 Willem de Bruijn 提交于
Accept MSG_ZEROCOPY in all the TCP states that allow sendmsg. Remove the explicit check for ESTABLISHED and CLOSE_WAIT states. This requires correctly handling zerocopy state (uarg, sk_zckey) in all paths reachable from other TCP states. Such as the EPIPE case in sk_stream_wait_connect, which a sendmsg() in incorrect state will now hit. Most paths are already safe. Only extension needed is for TCP Fastopen active open. This can build an skb with data in tcp_send_syn_data. Pass the uarg along with other fastopen state, so that this skb also generates a zerocopy notification on release. Tested with active and passive tcp fastopen packetdrill scripts at https://github.com/wdebruij/packetdrill/commit/1747eef03d25a2404e8132817d0f1244fd6f129dSigned-off-by: NWillem de Bruijn <willemb@google.com> Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-