1. 15 2月, 2008 2 次提交
  2. 09 2月, 2008 1 次提交
  3. 22 10月, 2007 2 次提交
  4. 20 10月, 2007 2 次提交
  5. 17 10月, 2007 2 次提交
  6. 12 9月, 2007 1 次提交
  7. 20 7月, 2007 1 次提交
    • P
      mm: Remove slab destructors from kmem_cache_create(). · 20c2df83
      Paul Mundt 提交于
      Slab destructors were no longer supported after Christoph's
      c59def9f change. They've been
      BUGs for both slab and slub, and slob never supported them
      either.
      
      This rips out support for the dtor pointer from kmem_cache_create()
      completely and fixes up every single callsite in the kernel (there were
      about 224, not including the slab allocator definitions themselves,
      or the documentation references).
      Signed-off-by: NPaul Mundt <lethal@linux-sh.org>
      20c2df83
  8. 18 7月, 2007 1 次提交
  9. 17 5月, 2007 1 次提交
    • C
      Remove SLAB_CTOR_CONSTRUCTOR · a35afb83
      Christoph Lameter 提交于
      SLAB_CTOR_CONSTRUCTOR is always specified. No point in checking it.
      Signed-off-by: NChristoph Lameter <clameter@sgi.com>
      Cc: David Howells <dhowells@redhat.com>
      Cc: Jens Axboe <jens.axboe@oracle.com>
      Cc: Steven French <sfrench@us.ibm.com>
      Cc: Michael Halcrow <mhalcrow@us.ibm.com>
      Cc: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp>
      Cc: Miklos Szeredi <miklos@szeredi.hu>
      Cc: Steven Whitehouse <swhiteho@redhat.com>
      Cc: Roman Zippel <zippel@linux-m68k.org>
      Cc: David Woodhouse <dwmw2@infradead.org>
      Cc: Dave Kleikamp <shaggy@austin.ibm.com>
      Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
      Cc: "J. Bruce Fields" <bfields@fieldses.org>
      Cc: Anton Altaparmakov <aia21@cantab.net>
      Cc: Mark Fasheh <mark.fasheh@oracle.com>
      Cc: Paul Mackerras <paulus@samba.org>
      Cc: Christoph Hellwig <hch@lst.de>
      Cc: Jan Kara <jack@ucw.cz>
      Cc: David Chinner <dgc@sgi.com>
      Cc: "David S. Miller" <davem@davemloft.net>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      a35afb83
  10. 09 5月, 2007 2 次提交
  11. 08 5月, 2007 1 次提交
    • C
      slab allocators: Remove SLAB_DEBUG_INITIAL flag · 50953fe9
      Christoph Lameter 提交于
      I have never seen a use of SLAB_DEBUG_INITIAL.  It is only supported by
      SLAB.
      
      I think its purpose was to have a callback after an object has been freed
      to verify that the state is the constructor state again?  The callback is
      performed before each freeing of an object.
      
      I would think that it is much easier to check the object state manually
      before the free.  That also places the check near the code object
      manipulation of the object.
      
      Also the SLAB_DEBUG_INITIAL callback is only performed if the kernel was
      compiled with SLAB debugging on.  If there would be code in a constructor
      handling SLAB_DEBUG_INITIAL then it would have to be conditional on
      SLAB_DEBUG otherwise it would just be dead code.  But there is no such code
      in the kernel.  I think SLUB_DEBUG_INITIAL is too problematic to make real
      use of, difficult to understand and there are easier ways to accomplish the
      same effect (i.e.  add debug code before kfree).
      
      There is a related flag SLAB_CTOR_VERIFY that is frequently checked to be
      clear in fs inode caches.  Remove the pointless checks (they would even be
      pointless without removeal of SLAB_DEBUG_INITIAL) from the fs constructors.
      
      This is the last slab flag that SLUB did not support.  Remove the check for
      unimplemented flags from SLUB.
      Signed-off-by: NChristoph Lameter <clameter@sgi.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      50953fe9
  12. 13 2月, 2007 1 次提交
  13. 09 12月, 2006 1 次提交
  14. 08 12月, 2006 3 次提交
  15. 04 11月, 2006 1 次提交
  16. 12 10月, 2006 1 次提交
  17. 01 10月, 2006 3 次提交
    • J
      [PATCH] reiserfs: on-demand bitmap loading · 5065227b
      Jeff Mahoney 提交于
      This is the patch the three previous ones have been leading up to.
      
      It changes the behavior of ReiserFS from loading and caching all the bitmaps
      as special, to treating the bitmaps like any other bit of metadata and just
      letting the system-wide caches figure out what to hang on to.
      
      Buffer heads are allocated on the fly, so there is no need to retain pointers
      to all of them.  The caching of the metadata occurs when the data is read and
      updated, and is considered invalid and uncached until then.
      
      I needed to remove the vs-4040 check for performing a duplicate operation on a
      particular bit.  The reason is that while the other sites for working with
      bitmaps are allowed to schedule, is_reusable() is called from do_balance(),
      which will panic if a schedule occurs in certain places.
      
      The benefit of on-demand bitmaps clearly outweighs a sanity check that depends
      on a compile-time option that is discouraged.
      
      [akpm@osdl.org: warning fix]
      Signed-off-by: NJeff Mahoney <jeffm@suse.com>
      Cc: <reiserfs-dev@namesys.com>
      Signed-off-by: NAndrew Morton <akpm@osdl.org>
      Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
      5065227b
    • J
      [PATCH] reiserfs: reorganize bitmap loading functions · 6f01046b
      Jeff Mahoney 提交于
      This patch moves the bitmap loading code from super.c to bitmap.c
      
      The code is also restructured somewhat.  The only difference between new
      format bitmaps and old format bitmaps is where they are.  That's a two liner
      before loading the block to use the correct one.  There's no need for an
      entirely separate code path.
      
      The load path is generally the same, with the pattern being to throw out a
      bunch of requests and then wait for them, then cache the metadata from the
      contents.
      
      Again, like the previous patches, the purpose is to set up for later ones.
      
      Update: There was a bug in the previously posted version of this that resulted
      in corruption.  The problem was that bitmap 0 on new format file systems must
      be treated specially, and wasn't.  A stupid bug with an easy fix.
      
      This is hopefully the last fix for the disaster that is the reiserfs bitmap
      patch set.
      
      If a bitmap block was full, first_zero_hint would end up at zero since it
      would never be changed from it's zeroed out value.  This just sets it
      beyond the end of the bitmap block.  If any bits are freed, it will be
      reset to a valid bit.  When info->free_count = 0, then we already know it's
      full.
      Signed-off-by: NJeff Mahoney <jeffm@suse.com>
      Cc: <reiserfs-dev@namesys.com>
      Signed-off-by: NAndrew Morton <akpm@osdl.org>
      Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
      6f01046b
    • J
      [PATCH] reiserfs: fix is_reusable bitmap check to not traverse the bitmap info array · e1fabd3c
      Jeff Mahoney 提交于
      There is a check in is_reusable to determine if a particular block is a bitmap
      block.  It verifies this by going through the array of bitmap block buffer
      heads and comparing the block number to each one.
      
      Bitmap blocks are at defined locations on the disk in both old and current
      formats.  Simply checking against the known good values is enough.
      
      This is a trivial optimization for a non-production codepath, but this is the
      first in a series of patches that will ultimately remove the buffer heads from
      that array.
      Signed-off-by: NJeff Mahoney <jeffm@suse.com>
      Cc: <reiserfs-dev@namesys.com>
      Signed-off-by: NAndrew Morton <akpm@osdl.org>
      Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
      e1fabd3c
  18. 30 9月, 2006 1 次提交
  19. 27 9月, 2006 2 次提交
  20. 04 7月, 2006 1 次提交
    • A
      [PATCH] lockdep: annotate the quota code · 5c81a419
      Arjan van de Ven 提交于
      The quota code plays interesting games with the lock ordering; to quote Jan:
      
      | i_mutex of inode containing quota file is acquired after all other
      | quota locks. i_mutex of all other inodes is acquired before quota
      | locks. Quota code makes sure (by resetting inode operations and
      | setting special flag on inode) that noone tries to enter quota code
      | while holding i_mutex on a quota file...
      
      The good news is that all of this special case i_mutex grabbing happens in the
      (per filesystem) low level quota write function.  For this special case we
      need a new I_MUTEX_* nesting level, since this just entirely outside any of
      the regular VFS locking rules for i_mutex.  I trust Jan on his blue eyes that
      this is not ever going to deadlock; and based on that the patch below is what
      it takes to inform lockdep of these very interesting new locking rules.
      
      The new locking rule for the I_MUTEX_QUOTA nesting level is that this is the
      deepest possible level of nesting for i_mutex, and that this only should be
      used in quota write (and possibly read) function of filesystems.  This makes
      the lock ordering of the I_MUTEX_* levels:
      
      I_MUTEX_PARENT -> I_MUTEX_CHILD -> I_MUTEX_NORMAL -> I_MUTEX_QUOTA
      
      Has no effect on non-lockdep kernels.
      Signed-off-by: NArjan van de Ven <arjan@linux.intel.com>
      Acked-by: NIngo Molnar <mingo@elte.hu>
      Cc: Jan Kara <jack@ucw.cz>
      Signed-off-by: NAndrew Morton <akpm@osdl.org>
      Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
      5c81a419
  21. 01 7月, 2006 1 次提交
  22. 23 6月, 2006 2 次提交
    • D
      [PATCH] VFS: Permit filesystem to perform statfs with a known root dentry · 726c3342
      David Howells 提交于
      Give the statfs superblock operation a dentry pointer rather than a superblock
      pointer.
      
      This complements the get_sb() patch.  That reduced the significance of
      sb->s_root, allowing NFS to place a fake root there.  However, NFS does
      require a dentry to use as a target for the statfs operation.  This permits
      the root in the vfsmount to be used instead.
      
      linux/mount.h has been added where necessary to make allyesconfig build
      successfully.
      
      Interest has also been expressed for use with the FUSE and XFS filesystems.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Acked-by: NAl Viro <viro@zeniv.linux.org.uk>
      Cc: Nathan Scott <nathans@sgi.com>
      Signed-off-by: NAndrew Morton <akpm@osdl.org>
      Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
      726c3342
    • D
      [PATCH] VFS: Permit filesystem to override root dentry on mount · 454e2398
      David Howells 提交于
      Extend the get_sb() filesystem operation to take an extra argument that
      permits the VFS to pass in the target vfsmount that defines the mountpoint.
      
      The filesystem is then required to manually set the superblock and root dentry
      pointers.  For most filesystems, this should be done with simple_set_mnt()
      which will set the superblock pointer and then set the root dentry to the
      superblock's s_root (as per the old default behaviour).
      
      The get_sb() op now returns an integer as there's now no need to return the
      superblock pointer.
      
      This patch permits a superblock to be implicitly shared amongst several mount
      points, such as can be done with NFS to avoid potential inode aliasing.  In
      such a case, simple_set_mnt() would not be called, and instead the mnt_root
      and mnt_sb would be set directly.
      
      The patch also makes the following changes:
      
       (*) the get_sb_*() convenience functions in the core kernel now take a vfsmount
           pointer argument and return an integer, so most filesystems have to change
           very little.
      
       (*) If one of the convenience function is not used, then get_sb() should
           normally call simple_set_mnt() to instantiate the vfsmount. This will
           always return 0, and so can be tail-called from get_sb().
      
       (*) generic_shutdown_super() now calls shrink_dcache_sb() to clean up the
           dcache upon superblock destruction rather than shrink_dcache_anon().
      
           This is required because the superblock may now have multiple trees that
           aren't actually bound to s_root, but that still need to be cleaned up. The
           currently called functions assume that the whole tree is rooted at s_root,
           and that anonymous dentries are not the roots of trees which results in
           dentries being left unculled.
      
           However, with the way NFS superblock sharing are currently set to be
           implemented, these assumptions are violated: the root of the filesystem is
           simply a dummy dentry and inode (the real inode for '/' may well be
           inaccessible), and all the vfsmounts are rooted on anonymous[*] dentries
           with child trees.
      
           [*] Anonymous until discovered from another tree.
      
       (*) The documentation has been adjusted, including the additional bit of
           changing ext2_* into foo_* in the documentation.
      
      [akpm@osdl.org: convert ipath_fs, do other stuff]
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Acked-by: NAl Viro <viro@zeniv.linux.org.uk>
      Cc: Nathan Scott <nathans@sgi.com>
      Cc: Roland Dreier <rolandd@cisco.com>
      Signed-off-by: NAndrew Morton <akpm@osdl.org>
      Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
      454e2398
  23. 26 3月, 2006 1 次提交
  24. 24 3月, 2006 2 次提交
    • P
      [PATCH] cpuset memory spread: slab cache format · fffb60f9
      Paul Jackson 提交于
      Rewrap the overly long source code lines resulting from the previous
      patch's addition of the slab cache flag SLAB_MEM_SPREAD.  This patch
      contains only formatting changes, and no function change.
      Signed-off-by: NPaul Jackson <pj@sgi.com>
      Signed-off-by: NAndrew Morton <akpm@osdl.org>
      Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
      fffb60f9
    • P
      [PATCH] cpuset memory spread: slab cache filesystems · 4b6a9316
      Paul Jackson 提交于
      Mark file system inode and similar slab caches subject to SLAB_MEM_SPREAD
      memory spreading.
      
      If a slab cache is marked SLAB_MEM_SPREAD, then anytime that a task that's
      in a cpuset with the 'memory_spread_slab' option enabled goes to allocate
      from such a slab cache, the allocations are spread evenly over all the
      memory nodes (task->mems_allowed) allowed to that task, instead of favoring
      allocation on the node local to the current cpu.
      
      The following inode and similar caches are marked SLAB_MEM_SPREAD:
      
          file                               cache
          ====                               =====
          fs/adfs/super.c                    adfs_inode_cache
          fs/affs/super.c                    affs_inode_cache
          fs/befs/linuxvfs.c                 befs_inode_cache
          fs/bfs/inode.c                     bfs_inode_cache
          fs/block_dev.c                     bdev_cache
          fs/cifs/cifsfs.c                   cifs_inode_cache
          fs/coda/inode.c                    coda_inode_cache
          fs/dquot.c                         dquot
          fs/efs/super.c                     efs_inode_cache
          fs/ext2/super.c                    ext2_inode_cache
          fs/ext2/xattr.c (fs/mbcache.c)     ext2_xattr
          fs/ext3/super.c                    ext3_inode_cache
          fs/ext3/xattr.c (fs/mbcache.c)     ext3_xattr
          fs/fat/cache.c                     fat_cache
          fs/fat/inode.c                     fat_inode_cache
          fs/freevxfs/vxfs_super.c           vxfs_inode
          fs/hpfs/super.c                    hpfs_inode_cache
          fs/isofs/inode.c                   isofs_inode_cache
          fs/jffs/inode-v23.c                jffs_fm
          fs/jffs2/super.c                   jffs2_i
          fs/jfs/super.c                     jfs_ip
          fs/minix/inode.c                   minix_inode_cache
          fs/ncpfs/inode.c                   ncp_inode_cache
          fs/nfs/direct.c                    nfs_direct_cache
          fs/nfs/inode.c                     nfs_inode_cache
          fs/ntfs/super.c                    ntfs_big_inode_cache_name
          fs/ntfs/super.c                    ntfs_inode_cache
          fs/ocfs2/dlm/dlmfs.c               dlmfs_inode_cache
          fs/ocfs2/super.c                   ocfs2_inode_cache
          fs/proc/inode.c                    proc_inode_cache
          fs/qnx4/inode.c                    qnx4_inode_cache
          fs/reiserfs/super.c                reiser_inode_cache
          fs/romfs/inode.c                   romfs_inode_cache
          fs/smbfs/inode.c                   smb_inode_cache
          fs/sysv/inode.c                    sysv_inode_cache
          fs/udf/super.c                     udf_inode_cache
          fs/ufs/super.c                     ufs_inode_cache
          net/socket.c                       sock_inode_cache
          net/sunrpc/rpc_pipe.c              rpc_inode_cache
      
      The choice of which slab caches to so mark was quite simple.  I marked
      those already marked SLAB_RECLAIM_ACCOUNT, except for fs/xfs, dentry_cache,
      inode_cache, and buffer_head, which were marked in a previous patch.  Even
      though SLAB_RECLAIM_ACCOUNT is for a different purpose, it marks the same
      potentially large file system i/o related slab caches as we need for memory
      spreading.
      
      Given that the rule now becomes "wherever you would have used a
      SLAB_RECLAIM_ACCOUNT slab cache flag before (usually the inode cache), use
      the SLAB_MEM_SPREAD flag too", this should be easy enough to maintain.
      Future file system writers will just copy one of the existing file system
      slab cache setups and tend to get it right without thinking.
      Signed-off-by: NPaul Jackson <pj@sgi.com>
      Signed-off-by: NAndrew Morton <akpm@osdl.org>
      Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
      4b6a9316
  25. 13 2月, 2006 1 次提交
  26. 04 2月, 2006 1 次提交
  27. 02 2月, 2006 1 次提交
  28. 10 1月, 2006 1 次提交