- 05 3月, 2012 5 次提交
-
-
由 Scott Wood 提交于
Split out the portions of tlbe_priv that should be associated with host entries into tlbe_ref. Base victim selection on the number of hardware entries, not guest entries. For TLB1, where one guest entry can be mapped by multiple host entries, we use the host tlbe_ref for tracking page references. For the guest TLB0 entries, we still track it with gtlb_priv, to avoid having to retranslate if the entry is evicted from the host TLB but not the guest TLB. Signed-off-by: NScott Wood <scottwood@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de> Signed-off-by: NAvi Kivity <avi@redhat.com>
-
由 Scott Wood 提交于
The only place it makes sense to call this function already needs to have preemption disabled. Signed-off-by: NScott Wood <scottwood@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de> Signed-off-by: NAvi Kivity <avi@redhat.com>
-
由 Scott Wood 提交于
Delay allocation of the shadow pid until we're ready to disable preemption and write the entry. Signed-off-by: NScott Wood <scottwood@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de> Signed-off-by: NAvi Kivity <avi@redhat.com>
-
由 Carsten Otte 提交于
This patch exports the s390 SIE hardware control block to userspace via the mapping of the vcpu file descriptor. In order to do so, a new arch callback named kvm_arch_vcpu_fault is introduced for all architectures. It allows to map architecture specific pages. Signed-off-by: NCarsten Otte <cotte@de.ibm.com> Signed-off-by: NMarcelo Tosatti <mtosatti@redhat.com> Signed-off-by: NAvi Kivity <avi@redhat.com>
-
由 Carsten Otte 提交于
This patch introduces a new config option for user controlled kernel virtual machines. It introduces a parameter to KVM_CREATE_VM that allows to set bits that alter the capabilities of the newly created virtual machine. The parameter is passed to kvm_arch_init_vm for all architectures. The only valid modifier bit for now is KVM_VM_S390_UCONTROL. This requires CAP_SYS_ADMIN privileges and creates a user controlled virtual machine on s390 architectures. Signed-off-by: NCarsten Otte <cotte@de.ibm.com> Signed-off-by: NMarcelo Tosatti <mtosatti@redhat.com> Signed-off-by: NAvi Kivity <avi@redhat.com>
-
- 27 12月, 2011 2 次提交
-
-
由 Nishanth Aravamudan 提交于
kvm_rma_init() is only called at boot-time, by setup_arch, which is also __init. Signed-off-by: NNishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Xiao Guangrong 提交于
Introduce id_to_memslot to get memslot by slot id Signed-off-by: NXiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Signed-off-by: NAvi Kivity <avi@redhat.com>
-
- 26 12月, 2011 3 次提交
-
-
由 Scott Wood 提交于
This is required for THIS_MODULE. We recently stopped acquiring it via some other header. Signed-off-by: NScott Wood <scottwood@freescale.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Michael Neuling 提交于
Currently kvmppc_start_thread() tries to wake other SMT threads via xics_wake_cpu(). Unfortunately xics_wake_cpu only exists when CONFIG_SMP=Y so when compiling with CONFIG_SMP=N we get: arch/powerpc/kvm/built-in.o: In function `.kvmppc_start_thread': book3s_hv.c:(.text+0xa1e0): undefined reference to `.xics_wake_cpu' The following should be fine since kvmppc_start_thread() shouldn't called to start non-zero threads when SMP=N since threads_per_core=1. Signed-off-by: NMichael Neuling <mikey@neuling.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Andreas Schwab 提交于
kvmppc_h_pr is only available if CONFIG_KVM_BOOK3S_64_PR. Signed-off-by: NAndreas Schwab <schwab@linux-m68k.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
- 08 12月, 2011 1 次提交
-
-
由 Paul Mackerras 提交于
This fixes a problem where a CPU thread coming out of nap mode can think it has valid values in the nonvolatile GPRs (r14 - r31) as saved away in power7_idle, but in fact the values have been trashed because the thread was used for KVM in the mean time. The result is that the thread crashes because code that called power7_idle (e.g., pnv_smp_cpu_kill_self()) goes to use values in registers that have been trashed. The bit field in SRR1 that tells whether state was lost only reflects the most recent nap, which may not have been the nap instruction in power7_idle. So we need an extra PACA field to indicate that state has been lost even if SRR1 indicates that the most recent nap didn't lose state. We clear this field when saving the state in power7_idle, we set it to a non-zero value when we use the thread for KVM, and we test it in power7_wakeup_noloss. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 17 11月, 2011 1 次提交
-
-
由 Alexander Graf 提交于
This reverts commit a15bd354. It exceeded the padding on the SREGS struct, rendering the ABI backwards-incompatible. Conflicts: arch/powerpc/kvm/powerpc.c include/linux/kvm.h Signed-off-by: NAvi Kivity <avi@redhat.com>
-
- 16 11月, 2011 1 次提交
-
-
由 Michael Neuling 提交于
If you build with KVM and UP it fails with the following due to a missing include. /arch/powerpc/kvm/book3s_hv.c: In function 'do_h_register_vpa': arch/powerpc/kvm/book3s_hv.c:156:10: error: 'H_PARAMETER' undeclared (first use in this function) arch/powerpc/kvm/book3s_hv.c:156:10: note: each undeclared identifier is reported only once for each function it appears in arch/powerpc/kvm/book3s_hv.c:192:12: error: 'H_RESOURCE' undeclared (first use in this function) arch/powerpc/kvm/book3s_hv.c:222:9: error: 'H_SUCCESS' undeclared (first use in this function) arch/powerpc/kvm/book3s_hv.c: In function 'kvmppc_pseries_do_hcall': arch/powerpc/kvm/book3s_hv.c:228:30: error: 'H_SUCCESS' undeclared (first use in this function) arch/powerpc/kvm/book3s_hv.c:232:7: error: 'H_CEDE' undeclared (first use in this function) arch/powerpc/kvm/book3s_hv.c:234:7: error: 'H_PROD' undeclared (first use in this function) arch/powerpc/kvm/book3s_hv.c:238:10: error: 'H_PARAMETER' undeclared (first use in this function) arch/powerpc/kvm/book3s_hv.c:250:7: error: 'H_CONFER' undeclared (first use in this function) arch/powerpc/kvm/book3s_hv.c:252:7: error: 'H_REGISTER_VPA' undeclared (first use in this function) make[2]: *** [arch/powerpc/kvm/book3s_hv.o] Error 1 Signed-off-by: NMichael Neuling <mikey@neuling.org> cc: stable@kernel.org (3.1 only) Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 08 11月, 2011 1 次提交
-
-
由 Nishanth Aravamudan 提交于
Fix KVM build for older toolchains (found with .powerpc64-unknown-linux-gnu-gcc (crosstool-NG-1.8.1) 4.3.2): AS arch/powerpc/kvm/book3s_hv_rmhandlers.o arch/powerpc/kvm/book3s_hv_rmhandlers.S: Assembler messages: arch/powerpc/kvm/book3s_hv_rmhandlers.S:1388: Error: Unrecognized opcode: `popcntw' make[1]: *** [arch/powerpc/kvm/book3s_hv_rmhandlers.o] Error 1 make: *** [_module_arch/powerpc/kvm] Error 2 Signed-off-by: NNishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 01 11月, 2011 4 次提交
-
-
由 Paul Gortmaker 提交于
None of the files touched here are modules, and they are not exporting any symbols either -- so there is no need to be including the module.h. Builds of all the files remains successful. Even kernel/module.c does not need to include it, since it includes linux/moduleloader.h instead. Signed-off-by: NPaul Gortmaker <paul.gortmaker@windriver.com>
-
由 Paul Gortmaker 提交于
All these files were including module.h just for the basic EXPORT_SYMBOL infrastructure. We can shift them off to the export.h header which is a way smaller footprint and thus realize some compile time gains. Signed-off-by: NPaul Gortmaker <paul.gortmaker@windriver.com>
-
由 Paul Gortmaker 提交于
Fix failures in powerpc associated with the previously allowed implicit module.h presence that now lead to things like this: arch/powerpc/mm/mmu_context_hash32.c:76:1: error: type defaults to 'int' in declaration of 'EXPORT_SYMBOL_GPL' arch/powerpc/mm/tlb_hash32.c:48:1: error: type defaults to 'int' in declaration of 'EXPORT_SYMBOL' arch/powerpc/kernel/pci_32.c:51:1: error: type defaults to 'int' in declaration of 'EXPORT_SYMBOL_GPL' arch/powerpc/kernel/iomap.c:36:1: error: type defaults to 'int' in declaration of 'EXPORT_SYMBOL' arch/powerpc/platforms/44x/canyonlands.c:126:1: error: type defaults to 'int' in declaration of 'EXPORT_SYMBOL' arch/powerpc/kvm/44x.c:168:59: error: 'THIS_MODULE' undeclared (first use in this function) [with several contibutions from Stephen Rothwell <sfr@canb.auug.org.au>] Signed-off-by: NPaul Gortmaker <paul.gortmaker@windriver.com>
-
由 Paul Gortmaker 提交于
With module.h being implicitly everywhere via device.h, the absence of explicitly including something for EXPORT_SYMBOL went unnoticed. Since we are heading to fix things up and clean module.h from the device.h file, we need to explicitly include these files now. Signed-off-by: NPaul Gortmaker <paul.gortmaker@windriver.com>
-
- 26 9月, 2011 13 次提交
-
-
由 Paul Mackerras 提交于
With a KVM guest operating in SMT4 mode (i.e. 4 hardware threads per core), whenever a CPU goes idle, we have to pull all the other hardware threads in the core out of the guest, because the H_CEDE hcall is handled in the kernel. This is inefficient. This adds code to book3s_hv_rmhandlers.S to handle the H_CEDE hcall in real mode. When a guest vcpu does an H_CEDE hcall, we now only exit to the kernel if all the other vcpus in the same core are also idle. Otherwise we mark this vcpu as napping, save state that could be lost in nap mode (mainly GPRs and FPRs), and execute the nap instruction. When the thread wakes up, because of a decrementer or external interrupt, we come back in at kvm_start_guest (from the system reset interrupt vector), find the `napping' flag set in the paca, and go to the resume path. This has some other ramifications. First, when starting a core, we now start all the threads, both those that are immediately runnable and those that are idle. This is so that we don't have to pull all the threads out of the guest when an idle thread gets a decrementer interrupt and wants to start running. In fact the idle threads will all start with the H_CEDE hcall returning; being idle they will just do another H_CEDE immediately and go to nap mode. This required some changes to kvmppc_run_core() and kvmppc_run_vcpu(). These functions have been restructured to make them simpler and clearer. We introduce a level of indirection in the wait queue that gets woken when external and decrementer interrupts get generated for a vcpu, so that we can have the 4 vcpus in a vcore using the same wait queue. We need this because the 4 vcpus are being handled by one thread. Secondly, when we need to exit from the guest to the kernel, we now have to generate an IPI for any napping threads, because an HDEC interrupt doesn't wake up a napping thread. Thirdly, we now need to be able to handle virtual external interrupts and decrementer interrupts becoming pending while a thread is napping, and deliver those interrupts to the guest when the thread wakes. This is done in kvmppc_cede_reentry, just before fast_guest_return. Finally, since we are not using the generic kvm_vcpu_block for book3s_hv, and hence not calling kvm_arch_vcpu_runnable, we can remove the #ifdef from kvm_arch_vcpu_runnable. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
This simplifies the way that the book3s_pr makes the transition to real mode when entering the guest. We now call kvmppc_entry_trampoline (renamed from kvmppc_rmcall) in the base kernel using a normal function call instead of doing an indirect call through a pointer in the vcpu. If kvm is a module, the module loader takes care of generating a trampoline as it does for other calls to functions outside the module. kvmppc_entry_trampoline then disables interrupts and jumps to kvmppc_handler_trampoline_enter in real mode using an rfi[d]. That then uses the link register as the address to return to (potentially in module space) when the guest exits. This also simplifies the way that we call the Linux interrupt handler when we exit the guest due to an external, decrementer or performance monitor interrupt. Instead of turning on the MMU, then deciding that we need to call the Linux handler and turning the MMU back off again, we now go straight to the handler at the point where we would turn the MMU on. The handler will then return to the virtual-mode code (potentially in the module). Along the way, this moves the setting and clearing of the HID5 DCBZ32 bit into real-mode interrupts-off code, and also makes sure that we clear the MSR[RI] bit before loading values into SRR0/1. The net result is that we no longer need any code addresses to be stored in vcpu->arch. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
This makes arch/powerpc/kvm/book3s_rmhandlers.S and arch/powerpc/kvm/book3s_hv_rmhandlers.S be assembled as separate compilation units rather than having them #included in arch/powerpc/kernel/exceptions-64s.S. We no longer have any conditional branches between the exception prologs in exceptions-64s.S and the KVM handlers, so there is no need to keep their contents close together in the vmlinux image. In their current location, they are using up part of the limited space between the first-level interrupt handlers and the firmware NMI data area at offset 0x7000, and with some kernel configurations this area will overflow (e.g. allyesconfig), leading to an "attempt to .org backwards" error when compiling exceptions-64s.S. Moving them out requires that we add some #includes that the book3s_{,hv_}rmhandlers.S code was previously getting implicitly via exceptions-64s.S. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Alexander Graf 提交于
There are multiple features in PowerPC KVM that can now be enabled depending on the user's wishes. Some of the combinations don't make sense or don't work though. So this patch adds a way to check if the executing environment would actually be able to run the guest properly. It also adds sanity checks if PVR is set (should always be true given the current code flow), if PAPR is only used with book3s_64 where it works and that HV KVM is only used in PAPR mode. Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Alexander Graf 提交于
Now that Book3S PV mode can also run PAPR guests, we can add a PAPR cap and enable it for all Book3S targets. Enabling that CAP switches KVM into PAPR mode. Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Alexander Graf 提交于
PAPR defines hypercalls as SC1 instructions. Using these, the guest modifies page tables and does other privileged operations that it wouldn't be allowed to do in supervisor mode. This patch adds support for PR KVM to trap these instructions and route them through the same PAPR hypercall interface that we already use for HV style KVM. Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Alexander Graf 提交于
Recent Linux versions use the CFAR and PURR SPRs, but don't really care about their contents (yet). So for now, we can simply return 0 when the guest wants to read them. Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Alexander Graf 提交于
When running a PAPR guest, we need to handle a few hypercalls in kernel space, most prominently the page table invalidation (to sync the shadows). So this patch adds handling for a few PAPR hypercalls to PR mode KVM. I tried to share the code with HV mode, but it ended up being a lot easier this way around, as the two differ too much in those details. Signed-off-by: NAlexander Graf <agraf@suse.de> --- v1 -> v2: - whitespace fix
-
由 Alexander Graf 提交于
Until now, we always set HIOR based on the PVR, but this is just wrong. Instead, we should be setting HIOR explicitly, so user space can decide what the initial HIOR value is - just like on real hardware. We keep the old PVR based way around for backwards compatibility, but once user space uses the SREGS based method, we drop the PVR logic. Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Alexander Graf 提交于
We have a few traps where we cache the instruction that cause the trap for analysis later on. Since we now need to be able to distinguish between SC 0 and SC 1 system calls and the only way to find out which is which is by looking at the instruction, we also read out the instruction causing the system call. Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Alexander Graf 提交于
When running a PAPR guest, the guest is not allowed to set SDR1 - instead the HTAB information is held in internal hypervisor structures. But all of our current code relies on SDR1 and walking the HTAB like on real hardware. So in order to not be too intrusive, we simply set SDR1 to the HTAB we hold in host memory. That way we can keep the HTAB in user space, but use it from kernel space to map the guest. Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Alexander Graf 提交于
We have 3 privilege levels: problem state, supervisor state and hypervisor state. Each of them can access different SPRs, so we need to check on every SPR if it's accessible in the respective mode. Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Alexander Graf 提交于
We need the compute_tlbie_rb in _pr and _hv implementations for papr soon, so let's move it over to a common header file that both implementations can leverage. Signed-off-by: NAlexander Graf <agraf@suse.de>
-
- 05 8月, 2011 1 次提交
-
-
由 Nishanth Aravamudan 提交于
On a box with gcc 4.3.2, I see errors like: arch/powerpc/kvm/book3s_hv_rmhandlers.S:1254: Error: Unrecognized opcode: stxvd2x arch/powerpc/kvm/book3s_hv_rmhandlers.S:1316: Error: Unrecognized opcode: lxvd2x Signed-off-by: NNishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 23 7月, 2011 1 次提交
-
-
由 Ohad Ben-Cohen 提交于
virtio has been so far used only in the context of virtualization, and the virtio Kconfig was sourced directly by the relevant arch Kconfigs when VIRTUALIZATION was selected. Now that we start using virtio for inter-processor communications, we need to source the virtio Kconfig outside of the virtualization scope too. Moreover, some architectures might use virtio for both virtualization and inter-processor communications, so directly sourcing virtio might yield unexpected results due to conflicting selections. The simple solution offered by this patch is to always source virtio's Kconfig in drivers/Kconfig, and remove it from the appropriate arch Kconfigs. Additionally, a virtio menu entry has been added so virtio drivers don't show up in the general drivers menu. This way anyone can use virtio, though it's arguably less accessible (and neat!) for virtualization users now. Note: some architectures (mips and sh) seem to have a VIRTUALIZATION menu merely for sourcing virtio's Kconfig, so that menu is removed too. Signed-off-by: NOhad Ben-Cohen <ohad@wizery.com> Signed-off-by: NRusty Russell <rusty@rustcorp.com.au>
-
- 12 7月, 2011 7 次提交
-
-
由 Paul Mackerras 提交于
This adds support for running KVM guests in supervisor mode on those PPC970 processors that have a usable hypervisor mode. Unfortunately, Apple G5 machines have supervisor mode disabled (MSR[HV] is forced to 1), but the YDL PowerStation does have a usable hypervisor mode. There are several differences between the PPC970 and POWER7 in how guests are managed. These differences are accommodated using the CPU_FTR_ARCH_201 (PPC970) and CPU_FTR_ARCH_206 (POWER7) CPU feature bits. Notably, on PPC970: * The LPCR, LPID or RMOR registers don't exist, and the functions of those registers are provided by bits in HID4 and one bit in HID0. * External interrupts can be directed to the hypervisor, but unlike POWER7 they are masked by MSR[EE] in non-hypervisor modes and use SRR0/1 not HSRR0/1. * There is no virtual RMA (VRMA) mode; the guest must use an RMO (real mode offset) area. * The TLB entries are not tagged with the LPID, so it is necessary to flush the whole TLB on partition switch. Furthermore, when switching partitions we have to ensure that no other CPU is executing the tlbie or tlbsync instructions in either the old or the new partition, otherwise undefined behaviour can occur. * The PMU has 8 counters (PMC registers) rather than 6. * The DSCR, PURR, SPURR, AMR, AMOR, UAMOR registers don't exist. * The SLB has 64 entries rather than 32. * There is no mediated external interrupt facility, so if we switch to a guest that has a virtual external interrupt pending but the guest has MSR[EE] = 0, we have to arrange to have an interrupt pending for it so that we can get control back once it re-enables interrupts. We do that by sending ourselves an IPI with smp_send_reschedule after hard-disabling interrupts. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
This replaces the single CPU_FTR_HVMODE_206 bit with two bits, one to indicate that we have a usable hypervisor mode, and another to indicate that the processor conforms to PowerISA version 2.06. We also add another bit to indicate that the processor conforms to ISA version 2.01 and set that for PPC970 and derivatives. Some PPC970 chips (specifically those in Apple machines) have a hypervisor mode in that MSR[HV] is always 1, but the hypervisor mode is not useful in the sense that there is no way to run any code in supervisor mode (HV=0 PR=0). On these processors, the LPES0 and LPES1 bits in HID4 are always 0, and we use that as a way of detecting that hypervisor mode is not useful. Where we have a feature section in assembly code around code that only applies on POWER7 in hypervisor mode, we use a construct like END_FTR_SECTION_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206) The definition of END_FTR_SECTION_IFSET is such that the code will be enabled (not overwritten with nops) only if all bits in the provided mask are set. Note that the CPU feature check in __tlbie() only needs to check the ARCH_206 bit, not the HVMODE bit, because __tlbie() can only get called if we are running bare-metal, i.e. in hypervisor mode. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
This adds infrastructure which will be needed to allow book3s_hv KVM to run on older POWER processors, including PPC970, which don't support the Virtual Real Mode Area (VRMA) facility, but only the Real Mode Offset (RMO) facility. These processors require a physically contiguous, aligned area of memory for each guest. When the guest does an access in real mode (MMU off), the address is compared against a limit value, and if it is lower, the address is ORed with an offset value (from the Real Mode Offset Register (RMOR)) and the result becomes the real address for the access. The size of the RMA has to be one of a set of supported values, which usually includes 64MB, 128MB, 256MB and some larger powers of 2. Since we are unlikely to be able to allocate 64MB or more of physically contiguous memory after the kernel has been running for a while, we allocate a pool of RMAs at boot time using the bootmem allocator. The size and number of the RMAs can be set using the kvm_rma_size=xx and kvm_rma_count=xx kernel command line options. KVM exports a new capability, KVM_CAP_PPC_RMA, to signal the availability of the pool of preallocated RMAs. The capability value is 1 if the processor can use an RMA but doesn't require one (because it supports the VRMA facility), or 2 if the processor requires an RMA for each guest. This adds a new ioctl, KVM_ALLOCATE_RMA, which allocates an RMA from the pool and returns a file descriptor which can be used to map the RMA. It also returns the size of the RMA in the argument structure. Having an RMA means we will get multiple KMV_SET_USER_MEMORY_REGION ioctl calls from userspace. To cope with this, we now preallocate the kvm->arch.ram_pginfo array when the VM is created with a size sufficient for up to 64GB of guest memory. Subsequently we will get rid of this array and use memory associated with each memslot instead. This moves most of the code that translates the user addresses into host pfns (page frame numbers) out of kvmppc_prepare_vrma up one level to kvmppc_core_prepare_memory_region. Also, instead of having to look up the VMA for each page in order to check the page size, we now check that the pages we get are compound pages of 16MB. However, if we are adding memory that is mapped to an RMA, we don't bother with calling get_user_pages_fast and instead just offset from the base pfn for the RMA. Typically the RMA gets added after vcpus are created, which makes it inconvenient to have the LPCR (logical partition control register) value in the vcpu->arch struct, since the LPCR controls whether the processor uses RMA or VRMA for the guest. This moves the LPCR value into the kvm->arch struct and arranges for the MER (mediated external request) bit, which is the only bit that varies between vcpus, to be set in assembly code when going into the guest if there is a pending external interrupt request. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
This lifts the restriction that book3s_hv guests can only run one hardware thread per core, and allows them to use up to 4 threads per core on POWER7. The host still has to run single-threaded. This capability is advertised to qemu through a new KVM_CAP_PPC_SMT capability. The return value of the ioctl querying this capability is the number of vcpus per virtual CPU core (vcore), currently 4. To use this, the host kernel should be booted with all threads active, and then all the secondary threads should be offlined. This will put the secondary threads into nap mode. KVM will then wake them from nap mode and use them for running guest code (while they are still offline). To wake the secondary threads, we send them an IPI using a new xics_wake_cpu() function, implemented in arch/powerpc/sysdev/xics/icp-native.c. In other words, at this stage we assume that the platform has a XICS interrupt controller and we are using icp-native.c to drive it. Since the woken thread will need to acknowledge and clear the IPI, we also export the base physical address of the XICS registers using kvmppc_set_xics_phys() for use in the low-level KVM book3s code. When a vcpu is created, it is assigned to a virtual CPU core. The vcore number is obtained by dividing the vcpu number by the number of threads per core in the host. This number is exported to userspace via the KVM_CAP_PPC_SMT capability. If qemu wishes to run the guest in single-threaded mode, it should make all vcpu numbers be multiples of the number of threads per core. We distinguish three states of a vcpu: runnable (i.e., ready to execute the guest), blocked (that is, idle), and busy in host. We currently implement a policy that the vcore can run only when all its threads are runnable or blocked. This way, if a vcpu needs to execute elsewhere in the kernel or in qemu, it can do so without being starved of CPU by the other vcpus. When a vcore starts to run, it executes in the context of one of the vcpu threads. The other vcpu threads all go to sleep and stay asleep until something happens requiring the vcpu thread to return to qemu, or to wake up to run the vcore (this can happen when another vcpu thread goes from busy in host state to blocked). It can happen that a vcpu goes from blocked to runnable state (e.g. because of an interrupt), and the vcore it belongs to is already running. In that case it can start to run immediately as long as the none of the vcpus in the vcore have started to exit the guest. We send the next free thread in the vcore an IPI to get it to start to execute the guest. It synchronizes with the other threads via the vcore->entry_exit_count field to make sure that it doesn't go into the guest if the other vcpus are exiting by the time that it is ready to actually enter the guest. Note that there is no fixed relationship between the hardware thread number and the vcpu number. Hardware threads are assigned to vcpus as they become runnable, so we will always use the lower-numbered hardware threads in preference to higher-numbered threads if not all the vcpus in the vcore are runnable, regardless of which vcpus are runnable. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 David Gibson 提交于
This improves I/O performance for guests using the PAPR paravirtualization interface by making the H_PUT_TCE hcall faster, by implementing it in real mode. H_PUT_TCE is used for updating virtual IOMMU tables, and is used both for virtual I/O and for real I/O in the PAPR interface. Since this moves the IOMMU tables into the kernel, we define a new KVM_CREATE_SPAPR_TCE ioctl to allow qemu to create the tables. The ioctl returns a file descriptor which can be used to mmap the newly created table. The qemu driver models use them in the same way as userspace managed tables, but they can be updated directly by the guest with a real-mode H_PUT_TCE implementation, reducing the number of host/guest context switches during guest IO. There are certain circumstances where it is useful for userland qemu to write to the TCE table even if the kernel H_PUT_TCE path is used most of the time. Specifically, allowing this will avoid awkwardness when we need to reset the table. More importantly, we will in the future need to write the table in order to restore its state after a checkpoint resume or migration. Signed-off-by: NDavid Gibson <david@gibson.dropbear.id.au> Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
This adds the infrastructure for handling PAPR hcalls in the kernel, either early in the guest exit path while we are still in real mode, or later once the MMU has been turned back on and we are in the full kernel context. The advantage of handling hcalls in real mode if possible is that we avoid two partition switches -- and this will become more important when we support SMT4 guests, since a partition switch means we have to pull all of the threads in the core out of the guest. The disadvantage is that we can only access the kernel linear mapping, not anything vmalloced or ioremapped, since the MMU is off. This also adds code to handle the following hcalls in real mode: H_ENTER Add an HPTE to the hashed page table H_REMOVE Remove an HPTE from the hashed page table H_READ Read HPTEs from the hashed page table H_PROTECT Change the protection bits in an HPTE H_BULK_REMOVE Remove up to 4 HPTEs from the hashed page table H_SET_DABR Set the data address breakpoint register Plus code to handle the following hcalls in the kernel: H_CEDE Idle the vcpu until an interrupt or H_PROD hcall arrives H_PROD Wake up a ceded vcpu H_REGISTER_VPA Register a virtual processor area (VPA) The code that runs in real mode has to be in the base kernel, not in the module, if KVM is compiled as a module. The real-mode code can only access the kernel linear mapping, not vmalloc or ioremap space. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
This adds support for KVM running on 64-bit Book 3S processors, specifically POWER7, in hypervisor mode. Using hypervisor mode means that the guest can use the processor's supervisor mode. That means that the guest can execute privileged instructions and access privileged registers itself without trapping to the host. This gives excellent performance, but does mean that KVM cannot emulate a processor architecture other than the one that the hardware implements. This code assumes that the guest is running paravirtualized using the PAPR (Power Architecture Platform Requirements) interface, which is the interface that IBM's PowerVM hypervisor uses. That means that existing Linux distributions that run on IBM pSeries machines will also run under KVM without modification. In order to communicate the PAPR hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code to include/linux/kvm.h. Currently the choice between book3s_hv support and book3s_pr support (i.e. the existing code, which runs the guest in user mode) has to be made at kernel configuration time, so a given kernel binary can only do one or the other. This new book3s_hv code doesn't support MMIO emulation at present. Since we are running paravirtualized guests, this isn't a serious restriction. With the guest running in supervisor mode, most exceptions go straight to the guest. We will never get data or instruction storage or segment interrupts, alignment interrupts, decrementer interrupts, program interrupts, single-step interrupts, etc., coming to the hypervisor from the guest. Therefore this introduces a new KVMTEST_NONHV macro for the exception entry path so that we don't have to do the KVM test on entry to those exception handlers. We do however get hypervisor decrementer, hypervisor data storage, hypervisor instruction storage, and hypervisor emulation assist interrupts, so we have to handle those. In hypervisor mode, real-mode accesses can access all of RAM, not just a limited amount. Therefore we put all the guest state in the vcpu.arch and use the shadow_vcpu in the PACA only for temporary scratch space. We allocate the vcpu with kzalloc rather than vzalloc, and we don't use anything in the kvmppc_vcpu_book3s struct, so we don't allocate it. We don't have a shared page with the guest, but we still need a kvm_vcpu_arch_shared struct to store the values of various registers, so we include one in the vcpu_arch struct. The POWER7 processor has a restriction that all threads in a core have to be in the same partition. MMU-on kernel code counts as a partition (partition 0), so we have to do a partition switch on every entry to and exit from the guest. At present we require the host and guest to run in single-thread mode because of this hardware restriction. This code allocates a hashed page table for the guest and initializes it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We require that the guest memory is allocated using 16MB huge pages, in order to simplify the low-level memory management. This also means that we can get away without tracking paging activity in the host for now, since huge pages can't be paged or swapped. This also adds a few new exports needed by the book3s_hv code. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-