1. 07 11月, 2021 40 次提交
    • C
    • C
      mm/damon: simplify stop mechanism · 0f91d133
      Changbin Du 提交于
      A kernel thread can exit gracefully with kthread_stop().  So we don't
      need a new flag 'kdamond_stop'.  And to make sure the task struct is not
      freed when accessing it, get reference to it before termination.
      
      Link: https://lkml.kernel.org/r/20211027130517.4404-1-changbin.du@gmail.comSigned-off-by: NChangbin Du <changbin.du@gmail.com>
      Reviewed-by: NSeongJae Park <sj@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      0f91d133
    • S
      Docs/admin-guide/mm/pagemap: wordsmith page flags descriptions · 0d16cfd4
      SeongJae Park 提交于
      Some descriptions of page flags in 'pagemap.rst' are written in
      assumption of none-rst, which respects every new line, as below:
      
          7 - SLAB
             page is managed by the SLAB/SLOB/SLUB/SLQB kernel memory allocator
             When compound page is used, SLUB/SLQB will only set this flag on the head
      
      Because rst ignores the new line between the first sentence and second
      sentence, resulting html looks a little bit weird, as below.
      
          7 - SLAB
          page is managed by the SLAB/SLOB/SLUB/SLQB kernel memory allocator When
                                                                             ^
          compound page is used, SLUB/SLQB will only set this flag on the head
          page; SLOB will not flag it at all.
      
      This change makes it more natural and consistent with other parts in the
      rendered version.
      
      Link: https://lkml.kernel.org/r/20211022090311.3856-5-sj@kernel.orgSigned-off-by: NSeongJae Park <sj@kernel.org>
      Cc: Jonathan Corbet <corbet@lwn.net>
      Cc: Peter Xu <peterx@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      0d16cfd4
    • S
      Docs/admin-guide/mm/damon/start: simplify the content · b1eee3c5
      SeongJae Park 提交于
      Information in 'TL; DR' section of 'Getting Started' is duplicated in
      other parts of the doc.  It is also asking readers to visit the access
      pattern visualizations gallery web site to show the results of example
      visualization commands, while the users of the commands can use terminal
      output.
      
      To make the doc simple, this removes the duplicated 'TL; DR' section and
      replaces the visualization example commands with versions using terminal
      outputs.
      
      Link: https://lkml.kernel.org/r/20211022090311.3856-4-sj@kernel.orgSigned-off-by: NSeongJae Park <sj@kernel.org>
      Cc: Jonathan Corbet <corbet@lwn.net>
      Cc: Peter Xu <peterx@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      b1eee3c5
    • S
      Docs/admin-guide/mm/damon/start: fix a wrong link · 49ce7dee
      SeongJae Park 提交于
      The 'Getting Started' of DAMON is providing a link to DAMON's user
      interface document while saying about its user space tool's detailed
      usages.  This fixes the link.
      
      Link: https://lkml.kernel.org/r/20211022090311.3856-3-sj@kernel.orgSigned-off-by: NSeongJae Park <sj@kernel.org>
      Cc: Jonathan Corbet <corbet@lwn.net>
      Cc: Peter Xu <peterx@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      49ce7dee
    • S
      Docs/admin-guide/mm/damon/start: fix wrong example commands · 82e3fff5
      SeongJae Park 提交于
      Patch series "Fix trivial nits in Documentation/admin-guide/mm".
      
      This patchset fixes trivial nits in admin guide documents for DAMON and
      pagemap.
      
      This patch (of 4):
      
      Some of the example commands in DAMON getting started guide are
      outdated, missing sudo, or just wrong.  This fixes those.
      
      Link: https://lkml.kernel.org/r/20211022090311.3856-2-sj@kernel.orgSigned-off-by: NSeongJae Park <sj@kernel.org>
      Cc: Jonathan Corbet <corbet@lwn.net>
      Cc: Peter Xu <peterx@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      82e3fff5
    • X
      mm/damon/dbgfs: add adaptive_targets list check before enable monitor_on · b5ca3e83
      Xin Hao 提交于
      When the ctx->adaptive_targets list is empty, I did some test on
      monitor_on interface like this.
      
          # cat /sys/kernel/debug/damon/target_ids
          #
          # echo on > /sys/kernel/debug/damon/monitor_on
          # damon: kdamond (5390) starts
      
      Though the ctx->adaptive_targets list is empty, but the kthread_run
      still be called, and the kdamond.x thread still be created, this is
      meaningless.
      
      So there adds a judgment in 'dbgfs_monitor_on_write', if the
      ctx->adaptive_targets list is empty, return -EINVAL.
      
      Link: https://lkml.kernel.org/r/0a60a6e8ec9d71989e0848a4dc3311996ca3b5d4.1634720326.git.xhao@linux.alibaba.comSigned-off-by: NXin Hao <xhao@linux.alibaba.com>
      Reviewed-by: NSeongJae Park <sj@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      b5ca3e83
    • X
      mm/damon: remove unnecessary variable initialization · a460a360
      Xin Hao 提交于
      Patch series "mm/damon: Fix some small bugs", v4.
      
      This patch (of 2):
      
      In 'damon_va_apply_three_regions' there is no need to set variable 'i'
      to zero.
      
      Link: https://lkml.kernel.org/r/b7df8d3dad0943a37e01f60c441b1968b2b20354.1634720326.git.xhao@linux.alibaba.com
      Link: https://lkml.kernel.org/r/cover.1634720326.git.xhao@linux.alibaba.comSigned-off-by: NXin Hao <xhao@linux.alibaba.com>
      Reviewed-by: NSeongJae Park <sj@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      a460a360
    • S
      Documentation/admin-guide/mm/damon: add a document for DAMON_RECLAIM · bec976b6
      SeongJae Park 提交于
      This adds an admin-guide document for DAMON-based Reclamation.
      
      Link: https://lkml.kernel.org/r/20211019150731.16699-16-sj@kernel.orgSigned-off-by: NSeongJae Park <sj@kernel.org>
      Cc: Amit Shah <amit@kernel.org>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: David Hildenbrand <david@redhat.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: David Woodhouse <dwmw@amazon.com>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
      Cc: Jonathan Corbet <corbet@lwn.net>
      Cc: Leonard Foerster <foersleo@amazon.de>
      Cc: Marco Elver <elver@google.com>
      Cc: Markus Boehme <markubo@amazon.de>
      Cc: Shakeel Butt <shakeelb@google.com>
      Cc: Shuah Khan <shuah@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      bec976b6
    • S
      mm/damon: introduce DAMON-based Reclamation (DAMON_RECLAIM) · 43b0536c
      SeongJae Park 提交于
      This implements a new kernel subsystem that finds cold memory regions
      using DAMON and reclaims those immediately.  It is intended to be used
      as proactive lightweigh reclamation logic for light memory pressure.
      For heavy memory pressure, it could be inactivated and fall back to the
      traditional page-scanning based reclamation.
      
      It's implemented on top of DAMON framework to use the DAMON-based
      Operation Schemes (DAMOS) feature.  It utilizes all the DAMOS features
      including speed limit, prioritization, and watermarks.
      
      It could be enabled and tuned in boot time via the kernel boot
      parameter, and in run time via its module parameters
      ('/sys/module/damon_reclaim/parameters/') interface.
      
      [yangyingliang@huawei.com: fix error return code in damon_reclaim_turn()]
        Link: https://lkml.kernel.org/r/20211025124500.2758060-1-yangyingliang@huawei.com
      
      Link: https://lkml.kernel.org/r/20211019150731.16699-15-sj@kernel.orgSigned-off-by: NSeongJae Park <sj@kernel.org>
      Signed-off-by: NYang Yingliang <yangyingliang@huawei.com>
      Cc: Amit Shah <amit@kernel.org>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: David Hildenbrand <david@redhat.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: David Woodhouse <dwmw@amazon.com>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
      Cc: Jonathan Corbet <corbet@lwn.net>
      Cc: Leonard Foerster <foersleo@amazon.de>
      Cc: Marco Elver <elver@google.com>
      Cc: Markus Boehme <markubo@amazon.de>
      Cc: Shakeel Butt <shakeelb@google.com>
      Cc: Shuah Khan <shuah@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      43b0536c
    • S
      selftests/damon: support watermarks · 1dc90ccd
      SeongJae Park 提交于
      This updates DAMON selftests for 'schemes' debugfs file to reflect the
      changes in the format.
      
      Link: https://lkml.kernel.org/r/20211019150731.16699-14-sj@kernel.orgSigned-off-by: NSeongJae Park <sj@kernel.org>
      Cc: Amit Shah <amit@kernel.org>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: David Hildenbrand <david@redhat.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: David Woodhouse <dwmw@amazon.com>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
      Cc: Jonathan Corbet <corbet@lwn.net>
      Cc: Leonard Foerster <foersleo@amazon.de>
      Cc: Marco Elver <elver@google.com>
      Cc: Markus Boehme <markubo@amazon.de>
      Cc: Shakeel Butt <shakeelb@google.com>
      Cc: Shuah Khan <shuah@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      1dc90ccd
    • S
      mm/damon/dbgfs: support watermarks · ae666a6d
      SeongJae Park 提交于
      This updates DAMON debugfs interface to support the watermarks based
      schemes activation.  For this, now 'schemes' file receives five more
      values.
      
      Link: https://lkml.kernel.org/r/20211019150731.16699-13-sj@kernel.orgSigned-off-by: NSeongJae Park <sj@kernel.org>
      Cc: Amit Shah <amit@kernel.org>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: David Hildenbrand <david@redhat.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: David Woodhouse <dwmw@amazon.com>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
      Cc: Jonathan Corbet <corbet@lwn.net>
      Cc: Leonard Foerster <foersleo@amazon.de>
      Cc: Marco Elver <elver@google.com>
      Cc: Markus Boehme <markubo@amazon.de>
      Cc: Shakeel Butt <shakeelb@google.com>
      Cc: Shuah Khan <shuah@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      ae666a6d
    • S
      mm/damon/schemes: activate schemes based on a watermarks mechanism · ee801b7d
      SeongJae Park 提交于
      DAMON-based operation schemes need to be manually turned on and off.  In
      some use cases, however, the condition for turning a scheme on and off
      would depend on the system's situation.  For example, schemes for
      proactive pages reclamation would need to be turned on when some memory
      pressure is detected, and turned off when the system has enough free
      memory.
      
      For easier control of schemes activation based on the system situation,
      this introduces a watermarks-based mechanism.  The client can describe
      the watermark metric (e.g., amount of free memory in the system),
      watermark check interval, and three watermarks, namely high, mid, and
      low.  If the scheme is deactivated, it only gets the metric and compare
      that to the three watermarks for every check interval.  If the metric is
      higher than the high watermark, the scheme is deactivated.  If the
      metric is between the mid watermark and the low watermark, the scheme is
      activated.  If the metric is lower than the low watermark, the scheme is
      deactivated again.  This is to allow users fall back to traditional
      page-granularity mechanisms.
      
      Link: https://lkml.kernel.org/r/20211019150731.16699-12-sj@kernel.orgSigned-off-by: NSeongJae Park <sj@kernel.org>
      Cc: Amit Shah <amit@kernel.org>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: David Hildenbrand <david@redhat.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: David Woodhouse <dwmw@amazon.com>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
      Cc: Jonathan Corbet <corbet@lwn.net>
      Cc: Leonard Foerster <foersleo@amazon.de>
      Cc: Marco Elver <elver@google.com>
      Cc: Markus Boehme <markubo@amazon.de>
      Cc: Shakeel Butt <shakeelb@google.com>
      Cc: Shuah Khan <shuah@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      ee801b7d
    • S
      tools/selftests/damon: update for regions prioritization of schemes · 5a0d6a08
      SeongJae Park 提交于
      This updates the DAMON selftests for 'schemes' debugfs file, as the file
      format is updated.
      
      Link: https://lkml.kernel.org/r/20211019150731.16699-11-sj@kernel.orgSigned-off-by: NSeongJae Park <sj@kernel.org>
      Cc: Amit Shah <amit@kernel.org>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: David Hildenbrand <david@redhat.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: David Woodhouse <dwmw@amazon.com>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
      Cc: Jonathan Corbet <corbet@lwn.net>
      Cc: Leonard Foerster <foersleo@amazon.de>
      Cc: Marco Elver <elver@google.com>
      Cc: Markus Boehme <markubo@amazon.de>
      Cc: Shakeel Butt <shakeelb@google.com>
      Cc: Shuah Khan <shuah@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      5a0d6a08
    • S
      mm/damon/dbgfs: support prioritization weights · f4a68b4a
      SeongJae Park 提交于
      This allows DAMON debugfs interface users set the prioritization weights
      by putting three more numbers to the 'schemes' file.
      
      Link: https://lkml.kernel.org/r/20211019150731.16699-10-sj@kernel.orgSigned-off-by: NSeongJae Park <sj@kernel.org>
      Cc: Amit Shah <amit@kernel.org>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: David Hildenbrand <david@redhat.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: David Woodhouse <dwmw@amazon.com>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
      Cc: Jonathan Corbet <corbet@lwn.net>
      Cc: Leonard Foerster <foersleo@amazon.de>
      Cc: Marco Elver <elver@google.com>
      Cc: Markus Boehme <markubo@amazon.de>
      Cc: Shakeel Butt <shakeelb@google.com>
      Cc: Shuah Khan <shuah@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      f4a68b4a
    • S
      mm/damon/vaddr,paddr: support pageout prioritization · 198f0f4c
      SeongJae Park 提交于
      This makes the default monitoring primitives for virtual address spaces
      and the physical address sapce to support memory regions prioritization
      for 'PAGEOUT' DAMOS action.  It calculates hotness of each region as
      weighted sum of 'nr_accesses' and 'age' of the region and get the
      priority score as reverse of the hotness, so that cold regions can be
      paged out first.
      
      Link: https://lkml.kernel.org/r/20211019150731.16699-9-sj@kernel.orgSigned-off-by: NSeongJae Park <sj@kernel.org>
      Cc: Amit Shah <amit@kernel.org>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: David Hildenbrand <david@redhat.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: David Woodhouse <dwmw@amazon.com>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
      Cc: Jonathan Corbet <corbet@lwn.net>
      Cc: Leonard Foerster <foersleo@amazon.de>
      Cc: Marco Elver <elver@google.com>
      Cc: Markus Boehme <markubo@amazon.de>
      Cc: Shakeel Butt <shakeelb@google.com>
      Cc: Shuah Khan <shuah@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      198f0f4c
    • S
      mm/damon/schemes: prioritize regions within the quotas · 38683e00
      SeongJae Park 提交于
      This makes DAMON apply schemes to regions having higher priority first,
      if it cannot apply schemes to all regions due to the quotas.
      
      The prioritization function should be implemented in the monitoring
      primitives.  Those would commonly calculate the priority of the region
      using attributes of regions, namely 'size', 'nr_accesses', and 'age'.
      For example, some primitive would calculate the priority of each region
      using a weighted sum of 'nr_accesses' and 'age' of the region.
      
      The optimal weights would depend on give environments, so this makes
      those customizable.  Nevertheless, the score calculation functions are
      only encouraged to respect the weights, not mandated.
      
      Link: https://lkml.kernel.org/r/20211019150731.16699-8-sj@kernel.orgSigned-off-by: NSeongJae Park <sj@kernel.org>
      Cc: Amit Shah <amit@kernel.org>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: David Hildenbrand <david@redhat.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: David Woodhouse <dwmw@amazon.com>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
      Cc: Jonathan Corbet <corbet@lwn.net>
      Cc: Leonard Foerster <foersleo@amazon.de>
      Cc: Marco Elver <elver@google.com>
      Cc: Markus Boehme <markubo@amazon.de>
      Cc: Shakeel Butt <shakeelb@google.com>
      Cc: Shuah Khan <shuah@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      38683e00
    • S
      mm/damon/selftests: support schemes quotas · a2cb4dd0
      SeongJae Park 提交于
      This updates DAMON selftests to support updated schemes debugfs file
      format for the quotas.
      
      Link: https://lkml.kernel.org/r/20211019150731.16699-7-sj@kernel.orgSigned-off-by: NSeongJae Park <sj@kernel.org>
      Cc: Amit Shah <amit@kernel.org>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: David Hildenbrand <david@redhat.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: David Woodhouse <dwmw@amazon.com>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
      Cc: Jonathan Corbet <corbet@lwn.net>
      Cc: Leonard Foerster <foersleo@amazon.de>
      Cc: Marco Elver <elver@google.com>
      Cc: Markus Boehme <markubo@amazon.de>
      Cc: Shakeel Butt <shakeelb@google.com>
      Cc: Shuah Khan <shuah@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      a2cb4dd0
    • S
      mm/damon/dbgfs: support quotas of schemes · d7d0ec85
      SeongJae Park 提交于
      This makes the debugfs interface of DAMON support the scheme quotas by
      chaning the format of the input for the schemes file.
      
      Link: https://lkml.kernel.org/r/20211019150731.16699-6-sj@kernel.orgSigned-off-by: NSeongJae Park <sj@kernel.org>
      Cc: Amit Shah <amit@kernel.org>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: David Hildenbrand <david@redhat.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: David Woodhouse <dwmw@amazon.com>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
      Cc: Jonathan Corbet <corbet@lwn.net>
      Cc: Leonard Foerster <foersleo@amazon.de>
      Cc: Marco Elver <elver@google.com>
      Cc: Markus Boehme <markubo@amazon.de>
      Cc: Shakeel Butt <shakeelb@google.com>
      Cc: Shuah Khan <shuah@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      d7d0ec85
    • S
      mm/damon/schemes: implement time quota · 1cd24303
      SeongJae Park 提交于
      The size quota feature of DAMOS is useful for IO resource-critical
      systems, but not so intuitive for CPU time-critical systems.  Systems
      using zram or zswap-like swap device would be examples.
      
      To provide another intuitive ways for such systems, this implements
      time-based quota for DAMON-based Operation Schemes.  If the quota is
      set, DAMOS tries to use only up to the user-defined quota of CPU time
      within a given time window.
      
      Link: https://lkml.kernel.org/r/20211019150731.16699-5-sj@kernel.orgSigned-off-by: NSeongJae Park <sj@kernel.org>
      Cc: Amit Shah <amit@kernel.org>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: David Hildenbrand <david@redhat.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: David Woodhouse <dwmw@amazon.com>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
      Cc: Jonathan Corbet <corbet@lwn.net>
      Cc: Leonard Foerster <foersleo@amazon.de>
      Cc: Marco Elver <elver@google.com>
      Cc: Markus Boehme <markubo@amazon.de>
      Cc: Shakeel Butt <shakeelb@google.com>
      Cc: Shuah Khan <shuah@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      1cd24303
    • S
      mm/damon/schemes: skip already charged targets and regions · 50585192
      SeongJae Park 提交于
      If DAMOS has stopped applying action in the middle of a group of memory
      regions due to its size quota, it starts the work again from the
      beginning of the address space in the next charge window.  If there is a
      huge memory region at the beginning of the address space and it fulfills
      the scheme's target data access pattern always, the action will applied
      to only the region.
      
      This mitigates the case by skipping memory regions that charged in
      current charge window at the beginning of next charge window.
      
      Link: https://lkml.kernel.org/r/20211019150731.16699-4-sj@kernel.orgSigned-off-by: NSeongJae Park <sj@kernel.org>
      Cc: Amit Shah <amit@kernel.org>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: David Hildenbrand <david@redhat.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: David Woodhouse <dwmw@amazon.com>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
      Cc: Jonathan Corbet <corbet@lwn.net>
      Cc: Leonard Foerster <foersleo@amazon.de>
      Cc: Marco Elver <elver@google.com>
      Cc: Markus Boehme <markubo@amazon.de>
      Cc: Shakeel Butt <shakeelb@google.com>
      Cc: Shuah Khan <shuah@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      50585192
    • S
      mm/damon/schemes: implement size quota for schemes application speed control · 2b8a248d
      SeongJae Park 提交于
      There could be arbitrarily large memory regions fulfilling the target
      data access pattern of a DAMON-based operation scheme.  In the case,
      applying the action of the scheme could incur too high overhead.  To
      provide an intuitive way for avoiding it, this implements a feature
      called size quota.  If the quota is set, DAMON tries to apply the action
      only up to the given amount of memory regions within a given time
      window.
      
      Link: https://lkml.kernel.org/r/20211019150731.16699-3-sj@kernel.orgSigned-off-by: NSeongJae Park <sj@kernel.org>
      Cc: Amit Shah <amit@kernel.org>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: David Hildenbrand <david@redhat.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: David Woodhouse <dwmw@amazon.com>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
      Cc: Jonathan Corbet <corbet@lwn.net>
      Cc: Leonard Foerster <foersleo@amazon.de>
      Cc: Marco Elver <elver@google.com>
      Cc: Markus Boehme <markubo@amazon.de>
      Cc: Shakeel Butt <shakeelb@google.com>
      Cc: Shuah Khan <shuah@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      2b8a248d
    • S
      mm/damon/paddr: support the pageout scheme · 57223ac2
      SeongJae Park 提交于
      Introduction
      ============
      
      This patchset 1) makes the engine for general data access
      pattern-oriented memory management (DAMOS) be more useful for production
      environments, and 2) implements a static kernel module for lightweight
      proactive reclamation using the engine.
      
      Proactive Reclamation
      ---------------------
      
      On general memory over-committed systems, proactively reclaiming cold
      pages helps saving memory and reducing latency spikes that incurred by
      the direct reclaim or the CPU consumption of kswapd, while incurring
      only minimal performance degradation[2].
      
      A Free Pages Reporting[8] based memory over-commit virtualization system
      would be one more specific use case.  In the system, the guest VMs
      reports their free memory to host, and the host reallocates the reported
      memory to other guests.  As a result, the system's memory utilization
      can be maximized.  However, the guests could be not so memory-frugal,
      because some kernel subsystems and user-space applications are designed
      to use as much memory as available.  Then, guests would report only
      small amount of free memory to host, results in poor memory utilization.
      Running the proactive reclamation in such guests could help mitigating
      this problem.
      
      Google has also implemented this idea and using it in their data center.
      They further proposed upstreaming it in LSFMM'19, and "the general
      consensus was that, while this sort of proactive reclaim would be useful
      for a number of users, the cost of this particular solution was too high
      to consider merging it upstream"[3].  The cost mainly comes from the
      coldness tracking.  Roughly speaking, the implementation periodically
      scans the 'Accessed' bit of each page.  For the reason, the overhead
      linearly increases as the size of the memory and the scanning frequency
      grows.  As a result, Google is known to dedicating one CPU for the work.
      That's a reasonable option to someone like Google, but it wouldn't be so
      to some others.
      
      DAMON and DAMOS: An engine for data access pattern-oriented memory management
      -----------------------------------------------------------------------------
      
      DAMON[4] is a framework for general data access monitoring.  Its
      adaptive monitoring overhead control feature minimizes its monitoring
      overhead.  It also let the upper-bound of the overhead be configurable
      by clients, regardless of the size of the monitoring target memory.
      While monitoring 70 GiB memory of a production system every 5
      milliseconds, it consumes less than 1% single CPU time.  For this, it
      could sacrify some of the quality of the monitoring results.
      Nevertheless, the lower-bound of the quality is configurable, and it
      uses a best-effort algorithm for better quality.  Our test results[5]
      show the quality is practical enough.  From the production system
      monitoring, we were able to find a 4 KiB region in the 70 GiB memory
      that shows highest access frequency.
      
      We normally don't monitor the data access pattern just for fun but to
      improve something like memory management.  Proactive reclamation is one
      such usage.  For such general cases, DAMON provides a feature called
      DAMon-based Operation Schemes (DAMOS)[6].  It makes DAMON an engine for
      general data access pattern oriented memory management.  Using this,
      clients can ask DAMON to find memory regions of specific data access
      pattern and apply some memory management action (e.g., page out, move to
      head of the LRU list, use huge page, ...).  We call the request
      'scheme'.
      
      Proactive Reclamation on top of DAMON/DAMOS
      -------------------------------------------
      
      Therefore, by using DAMON for the cold pages detection, the proactive
      reclamation's monitoring overhead issue can be solved.  Actually, we
      previously implemented a version of proactive reclamation using DAMOS
      and achieved noticeable improvements with our evaluation setup[5].
      Nevertheless, it more for a proof-of-concept, rather than production
      uses.  It supports only virtual address spaces of processes, and require
      additional tuning efforts for given workloads and the hardware.  For the
      tuning, we introduced a simple auto-tuning user space tool[8].  Google
      is also known to using a ML-based similar approach for their fleets[2].
      But, making it just works with intuitive knobs in the kernel would be
      helpful for general users.
      
      To this end, this patchset improves DAMOS to be ready for such
      production usages, and implements another version of the proactive
      reclamation, namely DAMON_RECLAIM, on top of it.
      
      DAMOS Improvements: Aggressiveness Control, Prioritization, and Watermarks
      --------------------------------------------------------------------------
      
      First of all, the current version of DAMOS supports only virtual address
      spaces.  This patchset makes it supports the physical address space for
      the page out action.
      
      Next major problem of the current version of DAMOS is the lack of the
      aggressiveness control, which can results in arbitrary overhead.  For
      example, if huge memory regions having the data access pattern of
      interest are found, applying the requested action to all of the regions
      could incur significant overhead.  It can be controlled by tuning the
      target data access pattern with manual or automated approaches[2,7].
      But, some people would prefer the kernel to just work with only
      intuitive tuning or default values.
      
      For such cases, this patchset implements a safeguard, namely time/size
      quota.  Using this, the clients can specify up to how much time can be
      used for applying the action, and/or up to how much memory regions the
      action can be applied within a user-specified time duration.  A followup
      question is, to which memory regions should the action applied within
      the limits? We implement a simple regions prioritization mechanism for
      each action and make DAMOS to apply the action to high priority regions
      first.  It also allows clients tune the prioritization mechanism to use
      different weights for size, access frequency, and age of memory regions.
      This means we could use not only LRU but also LFU or some fancy
      algorithms like CAR[9] with lightweight overhead.
      
      Though DAMON is lightweight, someone would want to remove even the cold
      pages monitoring overhead when it is unnecessary.  Currently, it should
      manually turned on and off by clients, but some clients would simply
      want to turn it on and off based on some metrics like free memory ratio
      or memory fragmentation.  For such cases, this patchset implements a
      watermarks-based automatic activation feature.  It allows the clients
      configure the metric of their interest, and three watermarks of the
      metric.  If the metric is higher than the high watermark or lower than
      the low watermark, the scheme is deactivated.  If the metric is lower
      than the mid watermark but higher than the low watermark, the scheme is
      activated.
      
      DAMON-based Reclaim
      -------------------
      
      Using the improved version of DAMOS, this patchset implements a static
      kernel module called 'damon_reclaim'.  It finds memory regions that
      didn't accessed for specific time duration and page out.  Consuming too
      much CPU for the paging out operations, or doing pageout too frequently
      can be critical for systems configuring their swap devices with
      software-defined in-memory block devices like zram/zswap or total number
      of writes limited devices like SSDs, respectively.  To avoid the
      problems, the time/size quotas can be configured.  Under the quotas, it
      pages out memory regions that didn't accessed longer first.  Also, to
      remove the monitoring overhead under peaceful situation, and to fall
      back to the LRU-list based page granularity reclamation when it doesn't
      make progress, the three watermarks based activation mechanism is used,
      with the free memory ratio as the watermark metric.
      
      For convenient configurations, it provides several module parameters.
      Using these, sysadmins can enable/disable it, and tune its parameters
      including the coldness identification time threshold, the time/size
      quotas and the three watermarks.
      
      Evaluation
      ==========
      
      In short, DAMON_RECLAIM with 50ms/s time quota and regions
      prioritization on v5.15-rc5 Linux kernel with ZRAM swap device achieves
      38.58% memory saving with only 1.94% runtime overhead.  For this,
      DAMON_RECLAIM consumes only 4.97% of single CPU time.
      
      Setup
      -----
      
      We evaluate DAMON_RECLAIM to show how each of the DAMOS improvements
      make effect.  For this, we measure DAMON_RECLAIM's CPU consumption,
      entire system memory footprint, total number of major page faults, and
      runtime of 24 realistic workloads in PARSEC3 and SPLASH-2X benchmark
      suites on my QEMU/KVM based virtual machine.  The virtual machine runs
      on an i3.metal AWS instance, has 130GiB memory, and runs a linux kernel
      built on latest -mm tree[1] plus this patchset.  It also utilizes a 4
      GiB ZRAM swap device.  We repeats the measurement 5 times and use
      averages.
      
      [1] https://github.com/hnaz/linux-mm/tree/v5.15-rc5-mmots-2021-10-13-19-55
      
      Detailed Results
      ----------------
      
      The results are summarized in the below table.
      
      With coldness identification threshold of 5 seconds, DAMON_RECLAIM
      without the time quota-based speed limit achieves 47.21% memory saving,
      but incur 4.59% runtime slowdown to the workloads on average.  For this,
      DAMON_RECLAIM consumes about 11.28% single CPU time.
      
      Applying time quotas of 200ms/s, 50ms/s, and 10ms/s without the regions
      prioritization reduces the slowdown to 4.89%, 2.65%, and 1.5%,
      respectively.  Time quota of 200ms/s (20%) makes no real change compared
      to the quota unapplied version, because the quota unapplied version
      consumes only 11.28% CPU time.  DAMON_RECLAIM's CPU utilization also
      similarly reduced: 11.24%, 5.51%, and 2.01% of single CPU time.  That
      is, the overhead is proportional to the speed limit.  Nevertheless, it
      also reduces the memory saving because it becomes less aggressive.  In
      detail, the three variants show 48.76%, 37.83%, and 7.85% memory saving,
      respectively.
      
      Applying the regions prioritization (page out regions that not accessed
      longer first within the time quota) further reduces the performance
      degradation.  Runtime slowdowns and total number of major page faults
      increase has been 4.89%/218,690% -> 4.39%/166,136% (200ms/s),
      2.65%/111,886% -> 1.94%/59,053% (50ms/s), and 1.5%/34,973.40% ->
      2.08%/8,781.75% (10ms/s).  The runtime under 10ms/s time quota has
      increased with prioritization, but apparently that's under the margin of
      error.
      
          time quota   prioritization  memory_saving  cpu_util  slowdown  pgmajfaults overhead
          N            N               47.21%         11.28%    4.59%     194,802%
          200ms/s      N               48.76%         11.24%    4.89%     218,690%
          50ms/s       N               37.83%         5.51%     2.65%     111,886%
          10ms/s       N               7.85%          2.01%     1.5%      34,793.40%
          200ms/s      Y               50.08%         10.38%    4.39%     166,136%
          50ms/s       Y               38.58%         4.97%     1.94%     59,053%
          10ms/s       Y               3.63%          1.73%     2.08%     8,781.75%
      
      Baseline and Complete Git Trees
      ===============================
      
      The patches are based on the latest -mm tree
      (v5.15-rc5-mmots-2021-10-13-19-55).  You can also clone the complete git tree
      from:
      
          $ git clone git://github.com/sjp38/linux -b damon_reclaim/patches/v1
      
      The web is also available:
      https://git.kernel.org/pub/scm/linux/kernel/git/sj/linux.git/tag/?h=damon_reclaim/patches/v1
      
      Sequence Of Patches
      ===================
      
      The first patch makes DAMOS support the physical address space for the
      page out action.  Following five patches (patches 2-6) implement the
      time/size quotas.  Next four patches (patches 7-10) implement the memory
      regions prioritization within the limit.  Then, three following patches
      (patches 11-13) implement the watermarks-based schemes activation.
      
      Finally, the last two patches (patches 14-15) implement and document the
      DAMON-based reclamation using the advanced DAMOS.
      
      [1] https://www.kernel.org/doc/html/v5.15-rc1/vm/damon/index.html
      [2] https://research.google/pubs/pub48551/
      [3] https://lwn.net/Articles/787611/
      [4] https://damonitor.github.io
      [5] https://damonitor.github.io/doc/html/latest/vm/damon/eval.html
      [6] https://lore.kernel.org/linux-mm/20211001125604.29660-1-sj@kernel.org/
      [7] https://github.com/awslabs/damoos
      [8] https://www.kernel.org/doc/html/latest/vm/free_page_reporting.html
      [9] https://www.usenix.org/conference/fast-04/car-clock-adaptive-replacement
      
      This patch (of 15):
      
      This makes the DAMON primitives for physical address space support the
      pageout action for DAMON-based Operation Schemes.  With this commit,
      hence, users can easily implement system-level data access-aware
      reclamations using DAMOS.
      
      [sj@kernel.org: fix missing-prototype build warning]
        Link: https://lkml.kernel.org/r/20211025064220.13904-1-sj@kernel.org
      
      Link: https://lkml.kernel.org/r/20211019150731.16699-1-sj@kernel.org
      Link: https://lkml.kernel.org/r/20211019150731.16699-2-sj@kernel.orgSigned-off-by: NSeongJae Park <sj@kernel.org>
      Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
      Cc: Amit Shah <amit@kernel.org>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: Jonathan Corbet <corbet@lwn.net>
      Cc: David Hildenbrand <david@redhat.com>
      Cc: David Woodhouse <dwmw@amazon.com>
      Cc: Marco Elver <elver@google.com>
      Cc: Leonard Foerster <foersleo@amazon.de>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: Markus Boehme <markubo@amazon.de>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Shakeel Butt <shakeelb@google.com>
      Cc: Shuah Khan <shuah@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      57223ac2
    • R
      mm/damon/dbgfs: remove unnecessary variables · 9210622a
      Rongwei Wang 提交于
      In some functions, it's unnecessary to declare 'err' and 'ret' variables
      at the same time.  This patch mainly to simplify the issue of such
      declarations by reusing one variable.
      
      Link: https://lkml.kernel.org/r/20211014073014.35754-1-sj@kernel.orgSigned-off-by: NRongwei Wang <rongwei.wang@linux.alibaba.com>
      Signed-off-by: NSeongJae Park <sj@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      9210622a
    • R
      mm/damon/vaddr: constify static mm_walk_ops · 199b50f4
      Rikard Falkeborn 提交于
      The only usage of these structs is to pass their addresses to
      walk_page_range(), which takes a pointer to const mm_walk_ops as
      argument.  Make them const to allow the compiler to put them in
      read-only memory.
      
      Link: https://lkml.kernel.org/r/20211014075042.17174-2-rikard.falkeborn@gmail.comSigned-off-by: NRikard Falkeborn <rikard.falkeborn@gmail.com>
      Reviewed-by: NSeongJae Park <sj@kernel.org>
      Reviewed-by: NAnshuman Khandual <anshuman.khandual@arm.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      199b50f4
    • S
      Docs/DAMON: document physical memory monitoring support · c6380721
      SeongJae Park 提交于
      This updates the DAMON documents for the physical memory address space
      monitoring support.
      
      Link: https://lkml.kernel.org/r/20211012205711.29216-8-sj@kernel.orgSigned-off-by: NSeongJae Park <sj@kernel.org>
      Cc: Amit Shah <amit@kernel.org>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: Brendan Higgins <brendanhiggins@google.com>
      Cc: David Hildenbrand <david@redhat.com>
      Cc: David Rienjes <rientjes@google.com>
      Cc: David Woodhouse <dwmw@amazon.com>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
      Cc: Jonathan Corbet <corbet@lwn.net>
      Cc: Leonard Foerster <foersleo@amazon.de>
      Cc: Marco Elver <elver@google.com>
      Cc: Markus Boehme <markubo@amazon.de>
      Cc: Shakeel Butt <shakeelb@google.com>
      Cc: Shuah Khan <shuah@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      c6380721
    • S
      mm/damon/dbgfs: support physical memory monitoring · c026291a
      SeongJae Park 提交于
      This makes the 'damon-dbgfs' to support the physical memory monitoring,
      in addition to the virtual memory monitoring.
      
      Users can do the physical memory monitoring by writing a special
      keyword, 'paddr' to the 'target_ids' debugfs file.  Then, DAMON will
      check the special keyword and configure the monitoring context to run
      with the primitives for the physical address space.
      
      Unlike the virtual memory monitoring, the monitoring target region will
      not be automatically set.  Therefore, users should also set the
      monitoring target address region using the 'init_regions' debugfs file.
      
      Also, note that the physical memory monitoring will not automatically
      terminated.  The user should explicitly turn off the monitoring by
      writing 'off' to the 'monitor_on' debugfs file.
      
      Link: https://lkml.kernel.org/r/20211012205711.29216-7-sj@kernel.orgSigned-off-by: NSeongJae Park <sj@kernel.org>
      Cc: Amit Shah <amit@kernel.org>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: Brendan Higgins <brendanhiggins@google.com>
      Cc: David Hildenbrand <david@redhat.com>
      Cc: David Rienjes <rientjes@google.com>
      Cc: David Woodhouse <dwmw@amazon.com>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
      Cc: Jonathan Corbet <corbet@lwn.net>
      Cc: Leonard Foerster <foersleo@amazon.de>
      Cc: Marco Elver <elver@google.com>
      Cc: Markus Boehme <markubo@amazon.de>
      Cc: Shakeel Butt <shakeelb@google.com>
      Cc: Shuah Khan <shuah@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      c026291a
    • S
      mm/damon: implement primitives for physical address space monitoring · a28397be
      SeongJae Park 提交于
      This implements the monitoring primitives for the physical memory
      address space.  Internally, it uses the PTE Accessed bit, similar to
      that of the virtual address spaces monitoring primitives.  It supports
      only user memory pages, as idle pages tracking does.  If the monitoring
      target physical memory address range contains non-user memory pages,
      access check of the pages will do nothing but simply treat the pages as
      not accessed.
      
      Link: https://lkml.kernel.org/r/20211012205711.29216-6-sj@kernel.orgSigned-off-by: NSeongJae Park <sj@kernel.org>
      Cc: Amit Shah <amit@kernel.org>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: Brendan Higgins <brendanhiggins@google.com>
      Cc: David Hildenbrand <david@redhat.com>
      Cc: David Rienjes <rientjes@google.com>
      Cc: David Woodhouse <dwmw@amazon.com>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
      Cc: Jonathan Corbet <corbet@lwn.net>
      Cc: Leonard Foerster <foersleo@amazon.de>
      Cc: Marco Elver <elver@google.com>
      Cc: Markus Boehme <markubo@amazon.de>
      Cc: Shakeel Butt <shakeelb@google.com>
      Cc: Shuah Khan <shuah@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      a28397be
    • S
      mm/damon/vaddr: separate commonly usable functions · 46c3a0ac
      SeongJae Park 提交于
      This moves functions in the default virtual address spaces monitoring
      primitives that commonly usable from other address spaces like physical
      address space into a header file.  Those will be reused by the physical
      address space monitoring primitives which will be implemented by the
      following commit.
      
      [sj@kernel.org: include 'highmem.h' to fix a build failure]
        Link: https://lkml.kernel.org/r/20211014110848.5204-1-sj@kernel.org
      
      Link: https://lkml.kernel.org/r/20211012205711.29216-5-sj@kernel.orgSigned-off-by: NSeongJae Park <sj@kernel.org>
      Cc: Amit Shah <amit@kernel.org>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: Brendan Higgins <brendanhiggins@google.com>
      Cc: David Hildenbrand <david@redhat.com>
      Cc: David Rienjes <rientjes@google.com>
      Cc: David Woodhouse <dwmw@amazon.com>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
      Cc: Jonathan Corbet <corbet@lwn.net>
      Cc: Leonard Foerster <foersleo@amazon.de>
      Cc: Marco Elver <elver@google.com>
      Cc: Markus Boehme <markubo@amazon.de>
      Cc: Shakeel Butt <shakeelb@google.com>
      Cc: Shuah Khan <shuah@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      46c3a0ac
    • S
      Docs/admin-guide/mm/damon: document 'init_regions' feature · c2fe4987
      SeongJae Park 提交于
      This adds description of the 'init_regions' feature in the DAMON usage
      document.
      
      Link: https://lkml.kernel.org/r/20211012205711.29216-4-sj@kernel.orgSigned-off-by: NSeongJae Park <sj@kernel.org>
      Cc: Amit Shah <amit@kernel.org>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: Brendan Higgins <brendanhiggins@google.com>
      Cc: David Hildenbrand <david@redhat.com>
      Cc: David Rienjes <rientjes@google.com>
      Cc: David Woodhouse <dwmw@amazon.com>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
      Cc: Jonathan Corbet <corbet@lwn.net>
      Cc: Leonard Foerster <foersleo@amazon.de>
      Cc: Marco Elver <elver@google.com>
      Cc: Markus Boehme <markubo@amazon.de>
      Cc: Shakeel Butt <shakeelb@google.com>
      Cc: Shuah Khan <shuah@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      c2fe4987
    • S
      mm/damon/dbgfs-test: add a unit test case for 'init_regions' · 1c2e11bf
      SeongJae Park 提交于
      This adds another test case for the new feature, 'init_regions'.
      
      Link: https://lkml.kernel.org/r/20211012205711.29216-3-sj@kernel.orgSigned-off-by: NSeongJae Park <sj@kernel.org>
      Reviewed-by: NBrendan Higgins <brendanhiggins@google.com>
      Cc: Amit Shah <amit@kernel.org>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: David Hildenbrand <david@redhat.com>
      Cc: David Rienjes <rientjes@google.com>
      Cc: David Woodhouse <dwmw@amazon.com>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
      Cc: Jonathan Corbet <corbet@lwn.net>
      Cc: Leonard Foerster <foersleo@amazon.de>
      Cc: Marco Elver <elver@google.com>
      Cc: Markus Boehme <markubo@amazon.de>
      Cc: Shakeel Butt <shakeelb@google.com>
      Cc: Shuah Khan <shuah@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      1c2e11bf
    • S
      mm/damon/dbgfs: allow users to set initial monitoring target regions · 90bebce9
      SeongJae Park 提交于
      Patch series "DAMON: Support Physical Memory Address Space Monitoring:.
      
      DAMON currently supports only virtual address spaces monitoring.  It can
      be easily extended for various use cases and address spaces by
      configuring its monitoring primitives layer to use appropriate
      primitives implementations, though.  This patchset implements monitoring
      primitives for the physical address space monitoring using the
      structure.
      
      The first 3 patches allow the user space users manually set the
      monitoring regions.  The 1st patch implements the feature in the
      'damon-dbgfs'.  Then, patches for adding a unit tests (the 2nd patch)
      and updating the documentation (the 3rd patch) follow.
      
      Following 4 patches implement the physical address space monitoring
      primitives.  The 4th patch makes some primitive functions for the
      virtual address spaces primitives reusable.  The 5th patch implements
      the physical address space monitoring primitives.  The 6th patch links
      the primitives to the 'damon-dbgfs'.  Finally, 7th patch documents this
      new features.
      
      This patch (of 7):
      
      Some 'damon-dbgfs' users would want to monitor only a part of the entire
      virtual memory address space.  The program interface users in the kernel
      space could use '->before_start()' callback or set the regions inside
      the context struct as they want, but 'damon-dbgfs' users cannot.
      
      For that reason, this introduces a new debugfs file called
      'init_region'.  'damon-dbgfs' users can specify which initial monitoring
      target address regions they want by writing special input to the file.
      The input should describe each region in each line in the below form:
      
          <pid> <start address> <end address>
      
      Note that the regions will be updated to cover entire memory mapped
      regions after a 'regions update interval' is passed.  If you want the
      regions to not be updated after the initial setting, you could set the
      interval as a very long time, say, a few decades.
      
      Link: https://lkml.kernel.org/r/20211012205711.29216-1-sj@kernel.org
      Link: https://lkml.kernel.org/r/20211012205711.29216-2-sj@kernel.orgSigned-off-by: NSeongJae Park <sj@kernel.org>
      Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
      Cc: Amit Shah <amit@kernel.org>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: Jonathan Corbet <corbet@lwn.net>
      Cc: David Hildenbrand <david@redhat.com>
      Cc: David Woodhouse <dwmw@amazon.com>
      Cc: Marco Elver <elver@google.com>
      Cc: Leonard Foerster <foersleo@amazon.de>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: Markus Boehme <markubo@amazon.de>
      Cc: David Rienjes <rientjes@google.com>
      Cc: Shakeel Butt <shakeelb@google.com>
      Cc: Shuah Khan <shuah@kernel.org>
      Cc: Brendan Higgins <brendanhiggins@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      90bebce9
    • S
      Docs/admin-guide/mm/damon: document DAMON-based Operation Schemes · 68536f8e
      SeongJae Park 提交于
      This adds the description of DAMON-based operation schemes in the DAMON
      documents.
      
      Link: https://lkml.kernel.org/r/20211001125604.29660-8-sj@kernel.orgSigned-off-by: NSeongJae Park <sj@kernel.org>
      Cc: Amit Shah <amit@kernel.org>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: David Hildenbrand <david@redhat.com>
      Cc: David Rienjes <rientjes@google.com>
      Cc: David Woodhouse <dwmw@amazon.com>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
      Cc: Jonathan Corbet <corbet@lwn.net>
      Cc: Leonard Foerster <foersleo@amazon.de>
      Cc: Marco Elver <elver@google.com>
      Cc: Markus Boehme <markubo@amazon.de>
      Cc: Shakeel Butt <shakeelb@google.com>
      Cc: Shuah Khan <shuah@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      68536f8e
    • S
      selftests/damon: add 'schemes' debugfs tests · 8d5d4c63
      SeongJae Park 提交于
      This adds simple selftets for 'schemes' debugfs file of DAMON.
      
      Link: https://lkml.kernel.org/r/20211001125604.29660-7-sj@kernel.orgSigned-off-by: NSeongJae Park <sj@kernel.org>
      Cc: Amit Shah <amit@kernel.org>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: David Hildenbrand <david@redhat.com>
      Cc: David Rienjes <rientjes@google.com>
      Cc: David Woodhouse <dwmw@amazon.com>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
      Cc: Jonathan Corbet <corbet@lwn.net>
      Cc: Leonard Foerster <foersleo@amazon.de>
      Cc: Marco Elver <elver@google.com>
      Cc: Markus Boehme <markubo@amazon.de>
      Cc: Shakeel Butt <shakeelb@google.com>
      Cc: Shuah Khan <shuah@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      8d5d4c63
    • S
      mm/damon/schemes: implement statistics feature · 2f0b548c
      SeongJae Park 提交于
      To tune the DAMON-based operation schemes, knowing how many and how
      large regions are affected by each of the schemes will be helful.  Those
      stats could be used for not only the tuning, but also monitoring of the
      working set size and the number of regions, if the scheme does not
      change the program behavior too much.
      
      For the reason, this implements the statistics for the schemes.  The
      total number and size of the regions that each scheme is applied are
      exported to users via '->stat_count' and '->stat_sz' of 'struct damos'.
      Admins can also check the number by reading 'schemes' debugfs file.  The
      last two integers now represents the stats.  To allow collecting the
      stats without changing the program behavior, this also adds new scheme
      action, 'DAMOS_STAT'.  Note that 'DAMOS_STAT' is not only making no
      memory operation actions, but also does not reset the age of regions.
      
      Link: https://lkml.kernel.org/r/20211001125604.29660-6-sj@kernel.orgSigned-off-by: NSeongJae Park <sj@kernel.org>
      Cc: Amit Shah <amit@kernel.org>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: David Hildenbrand <david@redhat.com>
      Cc: David Rienjes <rientjes@google.com>
      Cc: David Woodhouse <dwmw@amazon.com>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
      Cc: Jonathan Corbet <corbet@lwn.net>
      Cc: Leonard Foerster <foersleo@amazon.de>
      Cc: Marco Elver <elver@google.com>
      Cc: Markus Boehme <markubo@amazon.de>
      Cc: Shakeel Butt <shakeelb@google.com>
      Cc: Shuah Khan <shuah@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      2f0b548c
    • S
      mm/damon/dbgfs: support DAMON-based Operation Schemes · af122dd8
      SeongJae Park 提交于
      This makes 'damon-dbgfs' to support the data access monitoring oriented
      memory management schemes.  Users can read and update the schemes using
      ``<debugfs>/damon/schemes`` file.  The format is::
      
          <min/max size> <min/max access frequency> <min/max age> <action>
      
      Link: https://lkml.kernel.org/r/20211001125604.29660-5-sj@kernel.orgSigned-off-by: NSeongJae Park <sj@kernel.org>
      Cc: Amit Shah <amit@kernel.org>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: David Hildenbrand <david@redhat.com>
      Cc: David Rienjes <rientjes@google.com>
      Cc: David Woodhouse <dwmw@amazon.com>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
      Cc: Jonathan Corbet <corbet@lwn.net>
      Cc: Leonard Foerster <foersleo@amazon.de>
      Cc: Marco Elver <elver@google.com>
      Cc: Markus Boehme <markubo@amazon.de>
      Cc: Shakeel Butt <shakeelb@google.com>
      Cc: Shuah Khan <shuah@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      af122dd8
    • S
      mm/damon/vaddr: support DAMON-based Operation Schemes · 6dea8add
      SeongJae Park 提交于
      This makes DAMON's default primitives for virtual address spaces to
      support DAMON-based Operation Schemes (DAMOS) by implementing actions
      application functions and registering it to the monitoring context.  The
      implementation simply links 'madvise()' for related DAMOS actions.  That
      is, 'madvise(MADV_WILLNEED)' is called for 'WILLNEED' DAMOS action and
      similar for other actions ('COLD', 'PAGEOUT', 'HUGEPAGE', 'NOHUGEPAGE').
      
      So, the kernel space DAMON users can now use the DAMON-based
      optimizations with only small amount of code.
      
      Link: https://lkml.kernel.org/r/20211001125604.29660-4-sj@kernel.orgSigned-off-by: NSeongJae Park <sj@kernel.org>
      Cc: Amit Shah <amit@kernel.org>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: David Hildenbrand <david@redhat.com>
      Cc: David Rienjes <rientjes@google.com>
      Cc: David Woodhouse <dwmw@amazon.com>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
      Cc: Jonathan Corbet <corbet@lwn.net>
      Cc: Leonard Foerster <foersleo@amazon.de>
      Cc: Marco Elver <elver@google.com>
      Cc: Markus Boehme <markubo@amazon.de>
      Cc: Shakeel Butt <shakeelb@google.com>
      Cc: Shuah Khan <shuah@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      6dea8add
    • S
      mm/damon/core: implement DAMON-based Operation Schemes (DAMOS) · 1f366e42
      SeongJae Park 提交于
      In many cases, users might use DAMON for simple data access aware memory
      management optimizations such as applying an operation scheme to a
      memory region of a specific size having a specific access frequency for
      a specific time.  For example, "page out a memory region larger than 100
      MiB but having a low access frequency more than 10 minutes", or "Use THP
      for a memory region larger than 2 MiB having a high access frequency for
      more than 2 seconds".
      
      Most simple form of the solution would be doing offline data access
      pattern profiling using DAMON and modifying the application source code
      or system configuration based on the profiling results.  Or, developing
      a daemon constructed with two modules (one for access monitoring and the
      other for applying memory management actions via mlock(), madvise(),
      sysctl, etc) is imaginable.
      
      To avoid users spending their time for implementation of such simple
      data access monitoring-based operation schemes, this makes DAMON to
      handle such schemes directly.  With this change, users can simply
      specify their desired schemes to DAMON.  Then, DAMON will automatically
      apply the schemes to the user-specified target processes.
      
      Each of the schemes is composed with conditions for filtering of the
      target memory regions and desired memory management action for the
      target.  Specifically, the format is::
      
          <min/max size> <min/max access frequency> <min/max age> <action>
      
      The filtering conditions are size of memory region, number of accesses
      to the region monitored by DAMON, and the age of the region.  The age of
      region is incremented periodically but reset when its addresses or
      access frequency has significantly changed or the action of a scheme was
      applied.  For the action, current implementation supports a few of
      madvise()-like hints, ``WILLNEED``, ``COLD``, ``PAGEOUT``, ``HUGEPAGE``,
      and ``NOHUGEPAGE``.
      
      Because DAMON supports various address spaces and application of the
      actions to a monitoring target region is dependent to the type of the
      target address space, the application code should be implemented by each
      primitives and registered to the framework.  Note that this only
      implements the framework part.  Following commit will implement the
      action applications for virtual address spaces primitives.
      
      Link: https://lkml.kernel.org/r/20211001125604.29660-3-sj@kernel.orgSigned-off-by: NSeongJae Park <sj@kernel.org>
      Cc: Amit Shah <amit@kernel.org>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: David Hildenbrand <david@redhat.com>
      Cc: David Rienjes <rientjes@google.com>
      Cc: David Woodhouse <dwmw@amazon.com>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
      Cc: Jonathan Corbet <corbet@lwn.net>
      Cc: Leonard Foerster <foersleo@amazon.de>
      Cc: Marco Elver <elver@google.com>
      Cc: Markus Boehme <markubo@amazon.de>
      Cc: Shakeel Butt <shakeelb@google.com>
      Cc: Shuah Khan <shuah@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      1f366e42
    • S
      mm/damon/core: account age of target regions · fda504fa
      SeongJae Park 提交于
      Patch series "Implement Data Access Monitoring-based Memory Operation Schemes".
      
      Introduction
      ============
      
      DAMON[1] can be used as a primitive for data access aware memory
      management optimizations.  For that, users who want such optimizations
      should run DAMON, read the monitoring results, analyze it, plan a new
      memory management scheme, and apply the new scheme by themselves.  Such
      efforts will be inevitable for some complicated optimizations.
      
      However, in many other cases, the users would simply want the system to
      apply a memory management action to a memory region of a specific size
      having a specific access frequency for a specific time.  For example,
      "page out a memory region larger than 100 MiB keeping only rare accesses
      more than 2 minutes", or "Do not use THP for a memory region larger than
      2 MiB rarely accessed for more than 1 seconds".
      
      To make the works easier and non-redundant, this patchset implements a
      new feature of DAMON, which is called Data Access Monitoring-based
      Operation Schemes (DAMOS).  Using the feature, users can describe the
      normal schemes in a simple way and ask DAMON to execute those on its
      own.
      
      [1] https://damonitor.github.io
      
      Evaluations
      ===========
      
      DAMOS is accurate and useful for memory management optimizations.  An
      experimental DAMON-based operation scheme for THP, 'ethp', removes
      76.15% of THP memory overheads while preserving 51.25% of THP speedup.
      Another experimental DAMON-based 'proactive reclamation' implementation,
      'prcl', reduces 93.38% of residential sets and 23.63% of system memory
      footprint while incurring only 1.22% runtime overhead in the best case
      (parsec3/freqmine).
      
      NOTE that the experimental THP optimization and proactive reclamation
      are not for production but only for proof of concepts.
      
      Please refer to the showcase web site's evaluation document[1] for
      detailed evaluation setup and results.
      
      [1] https://damonitor.github.io/doc/html/v34/vm/damon/eval.html
      
      Long-term Support Trees
      -----------------------
      
      For people who want to test DAMON but using LTS kernels, there are
      another couple of trees based on two latest LTS kernels respectively and
      containing the 'damon/master' backports.
      
      - For v5.4.y: https://git.kernel.org/sj/h/damon/for-v5.4.y
      - For v5.10.y: https://git.kernel.org/sj/h/damon/for-v5.10.y
      
      Sequence Of Patches
      ===================
      
      The 1st patch accounts age of each region.  The 2nd patch implements the
      core of the DAMON-based operation schemes feature.  The 3rd patch makes
      the default monitoring primitives for virtual address spaces to support
      the schemes.  From this point, the kernel space users can use DAMOS.
      The 4th patch exports the feature to the user space via the debugfs
      interface.  The 5th patch implements schemes statistics feature for
      easier tuning of the schemes and runtime access pattern analysis, and
      the 6th patch adds selftests for these changes.  Finally, the 7th patch
      documents this new feature.
      
      This patch (of 7):
      
      DAMON can be used for data access pattern aware memory management
      optimizations.  For that, users should run DAMON, read the monitoring
      results, analyze it, plan a new memory management scheme, and apply the
      new scheme by themselves.  It would not be too hard, but still require
      some level of effort.  For complicated cases, this effort is inevitable.
      
      That said, in many cases, users would simply want to apply an actions to
      a memory region of a specific size having a specific access frequency
      for a specific time.  For example, "page out a memory region larger than
      100 MiB but having a low access frequency more than 10 minutes", or "Use
      THP for a memory region larger than 2 MiB having a high access frequency
      for more than 2 seconds".
      
      For such optimizations, users will need to first account the age of each
      region themselves.  To reduce such efforts, this implements a simple age
      account of each region in DAMON.  For each aggregation step, DAMON
      compares the access frequency with that from last aggregation and reset
      the age of the region if the change is significant.  Else, the age is
      incremented.  Also, in case of the merge of regions, the region
      size-weighted average of the ages is set as the age of merged new
      region.
      
      Link: https://lkml.kernel.org/r/20211001125604.29660-1-sj@kernel.org
      Link: https://lkml.kernel.org/r/20211001125604.29660-2-sj@kernel.orgSigned-off-by: NSeongJae Park <sj@kernel.org>
      Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
      Cc: Amit Shah <amit@kernel.org>
      Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
      Cc: Jonathan Corbet <corbet@lwn.net>
      Cc: David Hildenbrand <david@redhat.com>
      Cc: David Woodhouse <dwmw@amazon.com>
      Cc: Marco Elver <elver@google.com>
      Cc: Leonard Foerster <foersleo@amazon.de>
      Cc: Greg Thelen <gthelen@google.com>
      Cc: Markus Boehme <markubo@amazon.de>
      Cc: David Rienjes <rientjes@google.com>
      Cc: Shakeel Butt <shakeelb@google.com>
      Cc: Shuah Khan <shuah@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      fda504fa
    • C
      mm/damon/core: nullify pointer ctx->kdamond with a NULL · 7ec1992b
      Colin Ian King 提交于
      Currently a plain integer is being used to nullify the pointer
      ctx->kdamond.  Use NULL instead.  Cleans up sparse warning:
      
        mm/damon/core.c:317:40: warning: Using plain integer as NULL pointer
      
      Link: https://lkml.kernel.org/r/20210925215908.181226-1-colin.king@canonical.comSigned-off-by: NColin Ian King <colin.king@canonical.com>
      Reviewed-by: NSeongJae Park <sj@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      7ec1992b