提交 fdcec004 编写于 作者: L Linus Torvalds

Merge tag 'rproc-v5.3' of git://github.com/andersson/remoteproc

Pull remoteproc updates from Bjorn Andersson:
 "This adds support for the STM32 remoteproc, additional i.MX platforms
  with Cortex M4 remoteprocs and Qualcomm's QCS404 Compute DSP.

  Also initial support for vendor specific resource table entries and
  support for unprocessed Qualcomm firmware files"

* tag 'rproc-v5.3' of git://github.com/andersson/remoteproc:
  remoteproc: stm32: fix building without ARM SMCC
  remoteproc: qcom: q6v5-mss: Fix build error without QCOM_MDT_LOADER
  remoteproc: copy parent dma_pfn_offset for vdev
  remoteproc: qcom: q6v5-mss: Support loading non-split images
  soc: qcom: mdt_loader: Support loading non-split images
  remoteproc: stm32: add an ST stm32_rproc driver
  dt-bindings: remoteproc: add bindings for stm32 remote processor driver
  dt-bindings: stm32: add bindings for ML-AHB interconnect
  remoteproc: Use struct_size() helper
  remoteproc: add vendor resources handling
  remoteproc: imx: Fix typo in "failed"
  remoteproc: imx: Broaden the Kconfig selection logic
  remoteproc,rpmsg: add missing MAINTAINERS file entries
  remoteproc: qcom: qdsp6-adsp: Add support for QCS404 CDSP
  dt-bindings: remoteproc: Rename and amend Hexagon v56 binding
ML-AHB interconnect bindings
These bindings describe the STM32 SoCs ML-AHB interconnect bus which connects
a Cortex-M subsystem with dedicated memories.
The MCU SRAM and RETRAM memory parts can be accessed through different addresses
(see "RAM aliases" in [1]) using different buses (see [2]) : balancing the
Cortex-M firmware accesses among those ports allows to tune the system
performance.
[1]: https://www.st.com/resource/en/reference_manual/dm00327659.pdf
[2]: https://wiki.st.com/stm32mpu/wiki/STM32MP15_RAM_mapping
Required properties:
- compatible: should be "simple-bus"
- dma-ranges: describes memory addresses translation between the local CPU and
the remote Cortex-M processor. Each memory region, is declared with
3 parameters:
- param 1: device base address (Cortex-M processor address)
- param 2: physical base address (local CPU address)
- param 3: size of the memory region.
The Cortex-M remote processor accessed via the mlahb interconnect is described
by a child node.
Example:
mlahb {
compatible = "simple-bus";
#address-cells = <1>;
#size-cells = <1>;
dma-ranges = <0x00000000 0x38000000 0x10000>,
<0x10000000 0x10000000 0x60000>,
<0x30000000 0x30000000 0x60000>;
m4_rproc: m4@10000000 {
...
};
};
Qualcomm Technology Inc. ADSP Peripheral Image Loader
Qualcomm Technology Inc. Hexagon v56 Peripheral Image Loader
This document defines the binding for a component that loads and boots firmware
on the Qualcomm Technology Inc. ADSP Hexagon core.
on the Qualcomm Technology Inc. Hexagon v56 core.
- compatible:
Usage: required
Value type: <string>
Definition: must be one of:
"qcom,qcs404-cdsp-pil",
"qcom,sdm845-adsp-pil"
- reg:
......@@ -28,10 +29,11 @@ on the Qualcomm Technology Inc. ADSP Hexagon core.
- clocks:
Usage: required
Value type: <prop-encoded-array>
Definition: List of 8 phandle and clock specifier pairs for the adsp.
Definition: List of phandles and clock specifier pairs for the Hexagon,
per clock-names below.
- clock-names:
Usage: required
Usage: required for SDM845 ADSP
Value type: <stringlist>
Definition: List of clock input name strings sorted in the same
order as the clocks property. Definition must have
......@@ -39,6 +41,14 @@ on the Qualcomm Technology Inc. ADSP Hexagon core.
"lpass_ahbm_aon_cbcr", "qdsp6ss_xo", "qdsp6ss_sleep"
and "qdsp6ss_core".
- clock-names:
Usage: required for QCS404 CDSP
Value type: <stringlist>
Definition: List of clock input name strings sorted in the same
order as the clocks property. Definition must have
"xo", "sway", "tbu", "bimc", "ahb_aon", "q6ss_slave",
"q6ss_master", "q6_axim".
- power-domains:
Usage: required
Value type: <phandle>
......@@ -47,28 +57,33 @@ on the Qualcomm Technology Inc. ADSP Hexagon core.
- resets:
Usage: required
Value type: <phandle>
Definition: reference to the list of 2 reset-controller for the adsp.
Definition: reference to the list of resets for the Hexagon.
- reset-names:
Usage: required
Usage: required for SDM845 ADSP
Value type: <stringlist>
Definition: must be "pdc_sync" and "cc_lpass"
- reset-names:
Usage: required for QCS404 CDSP
Value type: <stringlist>
Definition: must be "restart"
- qcom,halt-regs:
Usage: required
Value type: <prop-encoded-array>
Definition: a phandle reference to a syscon representing TCSR followed
by the offset within syscon for lpass halt register.
by the offset within syscon for Hexagon halt register.
- memory-region:
Usage: required
Value type: <phandle>
Definition: reference to the reserved-memory for the ADSP
Definition: reference to the reserved-memory for the firmware
- qcom,smem-states:
Usage: required
Value type: <phandle>
Definition: reference to the smem state for requesting the ADSP to
Definition: reference to the smem state for requesting the Hexagon to
shut down
- qcom,smem-state-names:
......@@ -79,7 +94,7 @@ on the Qualcomm Technology Inc. ADSP Hexagon core.
= SUBNODES
The adsp node may have an subnode named "glink-edge" that describes the
communication edge, channels and devices related to the ADSP.
communication edge, channels and devices related to the Hexagon.
See ../soc/qcom/qcom,glink.txt for details on how to describe these.
= EXAMPLE
......
STMicroelectronics STM32 Remoteproc
-----------------------------------
This document defines the binding for the remoteproc component that loads and
boots firmwares on the ST32MP family chipset.
Required properties:
- compatible: Must be "st,stm32mp1-m4"
- reg: Address ranges of the RETRAM and MCU SRAM memories used by the
remote processor.
- resets: Reference to a reset controller asserting the remote processor.
- st,syscfg-holdboot: Reference to the system configuration which holds the
remote processor reset hold boot
1st cell: phandle of syscon block
2nd cell: register offset containing the hold boot setting
3rd cell: register bitmask for the hold boot field
- st,syscfg-tz: Reference to the system configuration which holds the RCC trust
zone mode
1st cell: phandle to syscon block
2nd cell: register offset containing the RCC trust zone mode setting
3rd cell: register bitmask for the RCC trust zone mode bit
Optional properties:
- interrupts: Should contain the watchdog interrupt
- mboxes: This property is required only if the rpmsg/virtio functionality
is used. List of phandle and mailbox channel specifiers:
- a channel (a) used to communicate through virtqueues with the
remote proc.
Bi-directional channel:
- from local to remote = send message
- from remote to local = send message ack
- a channel (b) working the opposite direction of channel (a)
- a channel (c) used by the local proc to notify the remote proc
that it is about to be shut down.
Unidirectional channel:
- from local to remote, where ACK from the remote means
that it is ready for shutdown
- mbox-names: This property is required if the mboxes property is used.
- must be "vq0" for channel (a)
- must be "vq1" for channel (b)
- must be "shutdown" for channel (c)
- memory-region: List of phandles to the reserved memory regions associated with
the remoteproc device. This is variable and describes the
memories shared with the remote processor (eg: remoteproc
firmware and carveouts, rpmsg vrings, ...).
(see ../reserved-memory/reserved-memory.txt)
- st,syscfg-pdds: Reference to the system configuration which holds the remote
processor deep sleep setting
1st cell: phandle to syscon block
2nd cell: register offset containing the deep sleep setting
3rd cell: register bitmask for the deep sleep bit
- st,auto-boot: If defined, when remoteproc is probed, it loads the default
firmware and starts the remote processor.
Example:
m4_rproc: m4@10000000 {
compatible = "st,stm32mp1-m4";
reg = <0x10000000 0x40000>,
<0x30000000 0x40000>,
<0x38000000 0x10000>;
resets = <&rcc MCU_R>;
st,syscfg-holdboot = <&rcc 0x10C 0x1>;
st,syscfg-tz = <&rcc 0x000 0x1>;
};
......@@ -314,6 +314,8 @@ Here are the various resource types that are currently supported::
* @RSC_VDEV: declare support for a virtio device, and serve as its
* virtio header.
* @RSC_LAST: just keep this one at the end
* @RSC_VENDOR_START: start of the vendor specific resource types range
* @RSC_VENDOR_END: end of the vendor specific resource types range
*
* Please note that these values are used as indices to the rproc_handle_rsc
* lookup table, so please keep them sane. Moreover, @RSC_LAST is used to
......@@ -321,11 +323,13 @@ Here are the various resource types that are currently supported::
* please update it as needed.
*/
enum fw_resource_type {
RSC_CARVEOUT = 0,
RSC_DEVMEM = 1,
RSC_TRACE = 2,
RSC_VDEV = 3,
RSC_LAST = 4,
RSC_CARVEOUT = 0,
RSC_DEVMEM = 1,
RSC_TRACE = 2,
RSC_VDEV = 3,
RSC_LAST = 4,
RSC_VENDOR_START = 128,
RSC_VENDOR_END = 512,
};
For more details regarding a specific resource type, please see its
......
......@@ -13590,9 +13590,11 @@ L: linux-remoteproc@vger.kernel.org
T: git git://git.kernel.org/pub/scm/linux/kernel/git/ohad/remoteproc.git
S: Maintained
F: Documentation/devicetree/bindings/remoteproc/
F: Documentation/ABI/testing/sysfs-class-remoteproc
F: Documentation/remoteproc.txt
F: drivers/remoteproc/
F: include/linux/remoteproc.h
F: include/linux/remoteproc/
REMOTE PROCESSOR MESSAGING (RPMSG) SUBSYSTEM
M: Ohad Ben-Cohen <ohad@wizery.com>
......@@ -13602,8 +13604,11 @@ T: git git://git.kernel.org/pub/scm/linux/kernel/git/ohad/rpmsg.git
S: Maintained
F: drivers/rpmsg/
F: Documentation/rpmsg.txt
F: Documentation/ABI/testing/sysfs-bus-rpmsg
F: include/linux/rpmsg.h
F: include/linux/rpmsg/
F: include/uapi/linux/rpmsg.h
F: samples/rpmsg/
RENESAS CLOCK DRIVERS
M: Geert Uytterhoeven <geert+renesas@glider.be>
......
......@@ -16,7 +16,7 @@ if REMOTEPROC
config IMX_REMOTEPROC
tristate "IMX6/7 remoteproc support"
depends on SOC_IMX6SX || SOC_IMX7D
depends on ARCH_MXC
help
Say y here to support iMX's remote processors (Cortex M4
on iMX7D) via the remote processor framework.
......@@ -116,6 +116,7 @@ config QCOM_Q6V5_MSS
depends on RPMSG_QCOM_GLINK_SMEM || RPMSG_QCOM_GLINK_SMEM=n
depends on QCOM_SYSMON || QCOM_SYSMON=n
select MFD_SYSCON
select QCOM_MDT_LOADER
select QCOM_Q6V5_COMMON
select QCOM_RPROC_COMMON
select QCOM_SCM
......@@ -198,6 +199,21 @@ config ST_REMOTEPROC
config ST_SLIM_REMOTEPROC
tristate
config STM32_RPROC
tristate "STM32 remoteproc support"
depends on ARCH_STM32
depends on REMOTEPROC
select MAILBOX
help
Say y here to support STM32 MCU processors via the
remote processor framework.
You want to say y here in order to enable AMP
use-cases to run on your platform (dedicated firmware could be
offloaded to remote MCU processors using this framework).
This can be either built-in or a loadable module.
endif # REMOTEPROC
endmenu
......@@ -26,3 +26,4 @@ qcom_wcnss_pil-y += qcom_wcnss.o
qcom_wcnss_pil-y += qcom_wcnss_iris.o
obj-$(CONFIG_ST_REMOTEPROC) += st_remoteproc.o
obj-$(CONFIG_ST_SLIM_REMOTEPROC) += st_slim_rproc.o
obj-$(CONFIG_STM32_RPROC) += stm32_rproc.o
......@@ -165,7 +165,7 @@ static int imx_rproc_start(struct rproc *rproc)
ret = regmap_update_bits(priv->regmap, dcfg->src_reg,
dcfg->src_mask, dcfg->src_start);
if (ret)
dev_err(dev, "Filed to enable M4!\n");
dev_err(dev, "Failed to enable M4!\n");
return ret;
}
......@@ -180,7 +180,7 @@ static int imx_rproc_stop(struct rproc *rproc)
ret = regmap_update_bits(priv->regmap, dcfg->src_reg,
dcfg->src_mask, dcfg->src_stop);
if (ret)
dev_err(dev, "Filed to stop M4!\n");
dev_err(dev, "Failed to stop M4!\n");
return ret;
}
......@@ -203,7 +203,7 @@ static int imx_rproc_da_to_sys(struct imx_rproc *priv, u64 da,
}
}
dev_warn(priv->dev, "Translation filed: da = 0x%llx len = 0x%x\n",
dev_warn(priv->dev, "Translation failed: da = 0x%llx len = 0x%x\n",
da, len);
return -ENOENT;
}
......@@ -349,7 +349,7 @@ static int imx_rproc_probe(struct platform_device *pdev)
ret = imx_rproc_addr_init(priv, pdev);
if (ret) {
dev_err(dev, "filed on imx_rproc_addr_init\n");
dev_err(dev, "failed on imx_rproc_addr_init\n");
goto err_put_rproc;
}
......
......@@ -46,11 +46,9 @@
#define LPASS_PWR_ON_REG 0x10
#define LPASS_HALTREQ_REG 0x0
/* list of clocks required by ADSP PIL */
static const char * const adsp_clk_id[] = {
"sway_cbcr", "lpass_ahbs_aon_cbcr", "lpass_ahbm_aon_cbcr",
"qdsp6ss_xo", "qdsp6ss_sleep", "qdsp6ss_core",
};
#define QDSP6SS_XO_CBCR 0x38
#define QDSP6SS_CORE_CBCR 0x20
#define QDSP6SS_SLEEP_CBCR 0x3c
struct adsp_pil_data {
int crash_reason_smem;
......@@ -59,6 +57,9 @@ struct adsp_pil_data {
const char *ssr_name;
const char *sysmon_name;
int ssctl_id;
const char **clk_ids;
int num_clks;
};
struct qcom_adsp {
......@@ -75,7 +76,7 @@ struct qcom_adsp {
void __iomem *qdsp6ss_base;
struct reset_control *pdc_sync_reset;
struct reset_control *cc_lpass_restart;
struct reset_control *restart;
struct regmap *halt_map;
unsigned int halt_lpass;
......@@ -143,7 +144,7 @@ static int qcom_adsp_shutdown(struct qcom_adsp *adsp)
/* Assert the LPASS PDC Reset */
reset_control_assert(adsp->pdc_sync_reset);
/* Place the LPASS processor into reset */
reset_control_assert(adsp->cc_lpass_restart);
reset_control_assert(adsp->restart);
/* wait after asserting subsystem restart from AOSS */
usleep_range(200, 300);
......@@ -153,7 +154,7 @@ static int qcom_adsp_shutdown(struct qcom_adsp *adsp)
/* De-assert the LPASS PDC Reset */
reset_control_deassert(adsp->pdc_sync_reset);
/* Remove the LPASS reset */
reset_control_deassert(adsp->cc_lpass_restart);
reset_control_deassert(adsp->restart);
/* wait after de-asserting subsystem restart from AOSS */
usleep_range(200, 300);
......@@ -192,6 +193,15 @@ static int adsp_start(struct rproc *rproc)
goto disable_power_domain;
}
/* Enable the XO clock */
writel(1, adsp->qdsp6ss_base + QDSP6SS_XO_CBCR);
/* Enable the QDSP6SS sleep clock */
writel(1, adsp->qdsp6ss_base + QDSP6SS_SLEEP_CBCR);
/* Enable the QDSP6 core clock */
writel(1, adsp->qdsp6ss_base + QDSP6SS_CORE_CBCR);
/* Program boot address */
writel(adsp->mem_phys >> 4, adsp->qdsp6ss_base + RST_EVB_REG);
......@@ -280,8 +290,9 @@ static const struct rproc_ops adsp_ops = {
.load = adsp_load,
};
static int adsp_init_clock(struct qcom_adsp *adsp)
static int adsp_init_clock(struct qcom_adsp *adsp, const char **clk_ids)
{
int num_clks = 0;
int i, ret;
adsp->xo = devm_clk_get(adsp->dev, "xo");
......@@ -292,32 +303,39 @@ static int adsp_init_clock(struct qcom_adsp *adsp)
return ret;
}
adsp->num_clks = ARRAY_SIZE(adsp_clk_id);
for (i = 0; clk_ids[i]; i++)
num_clks++;
adsp->num_clks = num_clks;
adsp->clks = devm_kcalloc(adsp->dev, adsp->num_clks,
sizeof(*adsp->clks), GFP_KERNEL);
if (!adsp->clks)
return -ENOMEM;
for (i = 0; i < adsp->num_clks; i++)
adsp->clks[i].id = adsp_clk_id[i];
adsp->clks[i].id = clk_ids[i];
return devm_clk_bulk_get(adsp->dev, adsp->num_clks, adsp->clks);
}
static int adsp_init_reset(struct qcom_adsp *adsp)
{
adsp->pdc_sync_reset = devm_reset_control_get_exclusive(adsp->dev,
adsp->pdc_sync_reset = devm_reset_control_get_optional_exclusive(adsp->dev,
"pdc_sync");
if (IS_ERR(adsp->pdc_sync_reset)) {
dev_err(adsp->dev, "failed to acquire pdc_sync reset\n");
return PTR_ERR(adsp->pdc_sync_reset);
}
adsp->cc_lpass_restart = devm_reset_control_get_exclusive(adsp->dev,
"cc_lpass");
if (IS_ERR(adsp->cc_lpass_restart)) {
dev_err(adsp->dev, "failed to acquire cc_lpass restart\n");
return PTR_ERR(adsp->cc_lpass_restart);
adsp->restart = devm_reset_control_get_optional_exclusive(adsp->dev, "restart");
/* Fall back to the old "cc_lpass" if "restart" is absent */
if (!adsp->restart)
adsp->restart = devm_reset_control_get_exclusive(adsp->dev, "cc_lpass");
if (IS_ERR(adsp->restart)) {
dev_err(adsp->dev, "failed to acquire restart\n");
return PTR_ERR(adsp->restart);
}
return 0;
......@@ -415,7 +433,7 @@ static int adsp_probe(struct platform_device *pdev)
if (ret)
goto free_rproc;
ret = adsp_init_clock(adsp);
ret = adsp_init_clock(adsp, desc->clk_ids);
if (ret)
goto free_rproc;
......@@ -479,9 +497,28 @@ static const struct adsp_pil_data adsp_resource_init = {
.ssr_name = "lpass",
.sysmon_name = "adsp",
.ssctl_id = 0x14,
.clk_ids = (const char*[]) {
"sway_cbcr", "lpass_ahbs_aon_cbcr", "lpass_ahbm_aon_cbcr",
"qdsp6ss_xo", "qdsp6ss_sleep", "qdsp6ss_core", NULL
},
.num_clks = 7,
};
static const struct adsp_pil_data cdsp_resource_init = {
.crash_reason_smem = 601,
.firmware_name = "cdsp.mdt",
.ssr_name = "cdsp",
.sysmon_name = "cdsp",
.ssctl_id = 0x17,
.clk_ids = (const char*[]) {
"sway", "tbu", "bimc", "ahb_aon", "q6ss_slave", "q6ss_master",
"q6_axim", NULL
},
.num_clks = 7,
};
static const struct of_device_id adsp_of_match[] = {
{ .compatible = "qcom,qcs404-cdsp-pil", .data = &cdsp_resource_init },
{ .compatible = "qcom,sdm845-adsp-pil", .data = &adsp_resource_init },
{ },
};
......
......@@ -659,23 +659,29 @@ static int q6v5_mpss_init_image(struct q6v5 *qproc, const struct firmware *fw)
{
unsigned long dma_attrs = DMA_ATTR_FORCE_CONTIGUOUS;
dma_addr_t phys;
void *metadata;
int mdata_perm;
int xferop_ret;
size_t size;
void *ptr;
int ret;
ptr = dma_alloc_attrs(qproc->dev, fw->size, &phys, GFP_KERNEL, dma_attrs);
metadata = qcom_mdt_read_metadata(fw, &size);
if (IS_ERR(metadata))
return PTR_ERR(metadata);
ptr = dma_alloc_attrs(qproc->dev, size, &phys, GFP_KERNEL, dma_attrs);
if (!ptr) {
kfree(metadata);
dev_err(qproc->dev, "failed to allocate mdt buffer\n");
return -ENOMEM;
}
memcpy(ptr, fw->data, fw->size);
memcpy(ptr, metadata, size);
/* Hypervisor mapping to access metadata by modem */
mdata_perm = BIT(QCOM_SCM_VMID_HLOS);
ret = q6v5_xfer_mem_ownership(qproc, &mdata_perm,
true, phys, fw->size);
ret = q6v5_xfer_mem_ownership(qproc, &mdata_perm, true, phys, size);
if (ret) {
dev_err(qproc->dev,
"assigning Q6 access to metadata failed: %d\n", ret);
......@@ -693,14 +699,14 @@ static int q6v5_mpss_init_image(struct q6v5 *qproc, const struct firmware *fw)
dev_err(qproc->dev, "MPSS header authentication failed: %d\n", ret);
/* Metadata authentication done, remove modem access */
xferop_ret = q6v5_xfer_mem_ownership(qproc, &mdata_perm,
false, phys, fw->size);
xferop_ret = q6v5_xfer_mem_ownership(qproc, &mdata_perm, false, phys, size);
if (xferop_ret)
dev_warn(qproc->dev,
"mdt buffer not reclaimed system may become unstable\n");
free_dma_attrs:
dma_free_attrs(qproc->dev, fw->size, ptr, phys, dma_attrs);
dma_free_attrs(qproc->dev, size, ptr, phys, dma_attrs);
kfree(metadata);
return ret < 0 ? ret : 0;
}
......@@ -981,7 +987,18 @@ static int q6v5_mpss_load(struct q6v5 *qproc)
ptr = qproc->mpss_region + offset;
if (phdr->p_filesz) {
if (phdr->p_filesz && phdr->p_offset < fw->size) {
/* Firmware is large enough to be non-split */
if (phdr->p_offset + phdr->p_filesz > fw->size) {
dev_err(qproc->dev,
"failed to load segment %d from truncated file %s\n",
i, fw_name);
ret = -EINVAL;
goto release_firmware;
}
memcpy(ptr, fw->data + phdr->p_offset, phdr->p_filesz);
} else if (phdr->p_filesz) {
/* Replace "xxx.xxx" with "xxx.bxx" */
sprintf(fw_name + fw_name_len - 3, "b%02d", i);
ret = request_firmware(&seg_fw, fw_name, qproc->dev);
......
......@@ -512,6 +512,7 @@ static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
/* Initialise vdev subdevice */
snprintf(name, sizeof(name), "vdev%dbuffer", rvdev->index);
rvdev->dev.parent = rproc->dev.parent;
rvdev->dev.dma_pfn_offset = rproc->dev.parent->dma_pfn_offset;
rvdev->dev.release = rproc_rvdev_release;
dev_set_name(&rvdev->dev, "%s#%s", dev_name(rvdev->dev.parent), name);
dev_set_drvdata(&rvdev->dev, rvdev);
......@@ -1058,6 +1059,20 @@ static int rproc_handle_resources(struct rproc *rproc,
dev_dbg(dev, "rsc: type %d\n", hdr->type);
if (hdr->type >= RSC_VENDOR_START &&
hdr->type <= RSC_VENDOR_END) {
ret = rproc_handle_rsc(rproc, hdr->type, rsc,
offset + sizeof(*hdr), avail);
if (ret == RSC_HANDLED)
continue;
else if (ret < 0)
break;
dev_warn(dev, "unsupported vendor resource %d\n",
hdr->type);
continue;
}
if (hdr->type >= RSC_LAST) {
dev_warn(dev, "unsupported resource %d\n", hdr->type);
continue;
......
......@@ -247,8 +247,7 @@ find_table(struct device *dev, struct elf32_hdr *ehdr, size_t fw_size)
}
/* make sure the offsets array isn't truncated */
if (table->num * sizeof(table->offset[0]) +
sizeof(struct resource_table) > size) {
if (struct_size(table, offset, table->num) > size) {
dev_err(dev, "resource table incomplete\n");
return NULL;
}
......
......@@ -98,6 +98,17 @@ static inline int rproc_parse_fw(struct rproc *rproc, const struct firmware *fw)
return 0;
}
static inline
int rproc_handle_rsc(struct rproc *rproc, u32 rsc_type, void *rsc, int offset,
int avail)
{
if (rproc->ops->handle_rsc)
return rproc->ops->handle_rsc(rproc, rsc_type, rsc, offset,
avail);
return RSC_IGNORED;
}
static inline
struct resource_table *rproc_find_loaded_rsc_table(struct rproc *rproc,
const struct firmware *fw)
......
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) STMicroelectronics 2018 - All Rights Reserved
* Authors: Ludovic Barre <ludovic.barre@st.com> for STMicroelectronics.
* Fabien Dessenne <fabien.dessenne@st.com> for STMicroelectronics.
*/
#include <linux/arm-smccc.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/mailbox_client.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/of_reserved_mem.h>
#include <linux/regmap.h>
#include <linux/remoteproc.h>
#include <linux/reset.h>
#include "remoteproc_internal.h"
#define HOLD_BOOT 0
#define RELEASE_BOOT 1
#define MBOX_NB_VQ 2
#define MBOX_NB_MBX 3
#define STM32_SMC_RCC 0x82001000
#define STM32_SMC_REG_WRITE 0x1
#define STM32_MBX_VQ0 "vq0"
#define STM32_MBX_VQ1 "vq1"
#define STM32_MBX_SHUTDOWN "shutdown"
struct stm32_syscon {
struct regmap *map;
u32 reg;
u32 mask;
};
struct stm32_rproc_mem {
char name[20];
void __iomem *cpu_addr;
phys_addr_t bus_addr;
u32 dev_addr;
size_t size;
};
struct stm32_rproc_mem_ranges {
u32 dev_addr;
u32 bus_addr;
u32 size;
};
struct stm32_mbox {
const unsigned char name[10];
struct mbox_chan *chan;
struct mbox_client client;
int vq_id;
};
struct stm32_rproc {
struct reset_control *rst;
struct stm32_syscon hold_boot;
struct stm32_syscon pdds;
u32 nb_rmems;
struct stm32_rproc_mem *rmems;
struct stm32_mbox mb[MBOX_NB_MBX];
bool secured_soc;
};
static int stm32_rproc_pa_to_da(struct rproc *rproc, phys_addr_t pa, u64 *da)
{
unsigned int i;
struct stm32_rproc *ddata = rproc->priv;
struct stm32_rproc_mem *p_mem;
for (i = 0; i < ddata->nb_rmems; i++) {
p_mem = &ddata->rmems[i];
if (pa < p_mem->bus_addr ||
pa >= p_mem->bus_addr + p_mem->size)
continue;
*da = pa - p_mem->bus_addr + p_mem->dev_addr;
dev_dbg(rproc->dev.parent, "pa %pa to da %llx\n", &pa, *da);
return 0;
}
return -EINVAL;
}
static int stm32_rproc_mem_alloc(struct rproc *rproc,
struct rproc_mem_entry *mem)
{
struct device *dev = rproc->dev.parent;
void *va;
dev_dbg(dev, "map memory: %pa+%x\n", &mem->dma, mem->len);
va = ioremap_wc(mem->dma, mem->len);
if (IS_ERR_OR_NULL(va)) {
dev_err(dev, "Unable to map memory region: %pa+%x\n",
&mem->dma, mem->len);
return -ENOMEM;
}
/* Update memory entry va */
mem->va = va;
return 0;
}
static int stm32_rproc_mem_release(struct rproc *rproc,
struct rproc_mem_entry *mem)
{
dev_dbg(rproc->dev.parent, "unmap memory: %pa\n", &mem->dma);
iounmap(mem->va);
return 0;
}
static int stm32_rproc_of_memory_translations(struct rproc *rproc)
{
struct device *parent, *dev = rproc->dev.parent;
struct stm32_rproc *ddata = rproc->priv;
struct device_node *np;
struct stm32_rproc_mem *p_mems;
struct stm32_rproc_mem_ranges *mem_range;
int cnt, array_size, i, ret = 0;
parent = dev->parent;
np = parent->of_node;
cnt = of_property_count_elems_of_size(np, "dma-ranges",
sizeof(*mem_range));
if (cnt <= 0) {
dev_err(dev, "%s: dma-ranges property not defined\n", __func__);
return -EINVAL;
}
p_mems = devm_kcalloc(dev, cnt, sizeof(*p_mems), GFP_KERNEL);
if (!p_mems)
return -ENOMEM;
mem_range = kcalloc(cnt, sizeof(*mem_range), GFP_KERNEL);
if (!mem_range)
return -ENOMEM;
array_size = cnt * sizeof(struct stm32_rproc_mem_ranges) / sizeof(u32);
ret = of_property_read_u32_array(np, "dma-ranges",
(u32 *)mem_range, array_size);
if (ret) {
dev_err(dev, "error while get dma-ranges property: %x\n", ret);
goto free_mem;
}
for (i = 0; i < cnt; i++) {
p_mems[i].bus_addr = mem_range[i].bus_addr;
p_mems[i].dev_addr = mem_range[i].dev_addr;
p_mems[i].size = mem_range[i].size;
dev_dbg(dev, "memory range[%i]: da %#x, pa %pa, size %#zx:\n",
i, p_mems[i].dev_addr, &p_mems[i].bus_addr,
p_mems[i].size);
}
ddata->rmems = p_mems;
ddata->nb_rmems = cnt;
free_mem:
kfree(mem_range);
return ret;
}
static int stm32_rproc_mbox_idx(struct rproc *rproc, const unsigned char *name)
{
struct stm32_rproc *ddata = rproc->priv;
int i;
for (i = 0; i < ARRAY_SIZE(ddata->mb); i++) {
if (!strncmp(ddata->mb[i].name, name, strlen(name)))
return i;
}
dev_err(&rproc->dev, "mailbox %s not found\n", name);
return -EINVAL;
}
static int stm32_rproc_elf_load_rsc_table(struct rproc *rproc,
const struct firmware *fw)
{
if (rproc_elf_load_rsc_table(rproc, fw))
dev_warn(&rproc->dev, "no resource table found for this firmware\n");
return 0;
}
static int stm32_rproc_parse_fw(struct rproc *rproc, const struct firmware *fw)
{
struct device *dev = rproc->dev.parent;
struct device_node *np = dev->of_node;
struct of_phandle_iterator it;
struct rproc_mem_entry *mem;
struct reserved_mem *rmem;
u64 da;
int index = 0;
/* Register associated reserved memory regions */
of_phandle_iterator_init(&it, np, "memory-region", NULL, 0);
while (of_phandle_iterator_next(&it) == 0) {
rmem = of_reserved_mem_lookup(it.node);
if (!rmem) {
dev_err(dev, "unable to acquire memory-region\n");
return -EINVAL;
}
if (stm32_rproc_pa_to_da(rproc, rmem->base, &da) < 0) {
dev_err(dev, "memory region not valid %pa\n",
&rmem->base);
return -EINVAL;
}
/* No need to map vdev buffer */
if (strcmp(it.node->name, "vdev0buffer")) {
/* Register memory region */
mem = rproc_mem_entry_init(dev, NULL,
(dma_addr_t)rmem->base,
rmem->size, da,
stm32_rproc_mem_alloc,
stm32_rproc_mem_release,
it.node->name);
if (mem)
rproc_coredump_add_segment(rproc, da,
rmem->size);
} else {
/* Register reserved memory for vdev buffer alloc */
mem = rproc_of_resm_mem_entry_init(dev, index,
rmem->size,
rmem->base,
it.node->name);
}
if (!mem)
return -ENOMEM;
rproc_add_carveout(rproc, mem);
index++;
}
return stm32_rproc_elf_load_rsc_table(rproc, fw);
}
static irqreturn_t stm32_rproc_wdg(int irq, void *data)
{
struct rproc *rproc = data;
rproc_report_crash(rproc, RPROC_WATCHDOG);
return IRQ_HANDLED;
}
static void stm32_rproc_mb_callback(struct mbox_client *cl, void *data)
{
struct rproc *rproc = dev_get_drvdata(cl->dev);
struct stm32_mbox *mb = container_of(cl, struct stm32_mbox, client);
if (rproc_vq_interrupt(rproc, mb->vq_id) == IRQ_NONE)
dev_dbg(&rproc->dev, "no message found in vq%d\n", mb->vq_id);
}
static void stm32_rproc_free_mbox(struct rproc *rproc)
{
struct stm32_rproc *ddata = rproc->priv;
unsigned int i;
for (i = 0; i < ARRAY_SIZE(ddata->mb); i++) {
if (ddata->mb[i].chan)
mbox_free_channel(ddata->mb[i].chan);
ddata->mb[i].chan = NULL;
}
}
static const struct stm32_mbox stm32_rproc_mbox[MBOX_NB_MBX] = {
{
.name = STM32_MBX_VQ0,
.vq_id = 0,
.client = {
.rx_callback = stm32_rproc_mb_callback,
.tx_block = false,
},
},
{
.name = STM32_MBX_VQ1,
.vq_id = 1,
.client = {
.rx_callback = stm32_rproc_mb_callback,
.tx_block = false,
},
},
{
.name = STM32_MBX_SHUTDOWN,
.vq_id = -1,
.client = {
.tx_block = true,
.tx_done = NULL,
.tx_tout = 500, /* 500 ms time out */
},
}
};
static void stm32_rproc_request_mbox(struct rproc *rproc)
{
struct stm32_rproc *ddata = rproc->priv;
struct device *dev = &rproc->dev;
unsigned int i;
const unsigned char *name;
struct mbox_client *cl;
/* Initialise mailbox structure table */
memcpy(ddata->mb, stm32_rproc_mbox, sizeof(stm32_rproc_mbox));
for (i = 0; i < MBOX_NB_MBX; i++) {
name = ddata->mb[i].name;
cl = &ddata->mb[i].client;
cl->dev = dev->parent;
ddata->mb[i].chan = mbox_request_channel_byname(cl, name);
if (IS_ERR(ddata->mb[i].chan)) {
dev_warn(dev, "cannot get %s mbox\n", name);
ddata->mb[i].chan = NULL;
}
}
}
static int stm32_rproc_set_hold_boot(struct rproc *rproc, bool hold)
{
struct stm32_rproc *ddata = rproc->priv;
struct stm32_syscon hold_boot = ddata->hold_boot;
struct arm_smccc_res smc_res;
int val, err;
val = hold ? HOLD_BOOT : RELEASE_BOOT;
if (IS_ENABLED(CONFIG_HAVE_ARM_SMCCC) && ddata->secured_soc) {
arm_smccc_smc(STM32_SMC_RCC, STM32_SMC_REG_WRITE,
hold_boot.reg, val, 0, 0, 0, 0, &smc_res);
err = smc_res.a0;
} else {
err = regmap_update_bits(hold_boot.map, hold_boot.reg,
hold_boot.mask, val);
}
if (err)
dev_err(&rproc->dev, "failed to set hold boot\n");
return err;
}
static void stm32_rproc_add_coredump_trace(struct rproc *rproc)
{
struct rproc_debug_trace *trace;
struct rproc_dump_segment *segment;
bool already_added;
list_for_each_entry(trace, &rproc->traces, node) {
already_added = false;
list_for_each_entry(segment, &rproc->dump_segments, node) {
if (segment->da == trace->trace_mem.da) {
already_added = true;
break;
}
}
if (!already_added)
rproc_coredump_add_segment(rproc, trace->trace_mem.da,
trace->trace_mem.len);
}
}
static int stm32_rproc_start(struct rproc *rproc)
{
int err;
stm32_rproc_add_coredump_trace(rproc);
err = stm32_rproc_set_hold_boot(rproc, false);
if (err)
return err;
return stm32_rproc_set_hold_boot(rproc, true);
}
static int stm32_rproc_stop(struct rproc *rproc)
{
struct stm32_rproc *ddata = rproc->priv;
int err, dummy_data, idx;
/* request shutdown of the remote processor */
if (rproc->state != RPROC_OFFLINE) {
idx = stm32_rproc_mbox_idx(rproc, STM32_MBX_SHUTDOWN);
if (idx >= 0 && ddata->mb[idx].chan) {
/* a dummy data is sent to allow to block on transmit */
err = mbox_send_message(ddata->mb[idx].chan,
&dummy_data);
if (err < 0)
dev_warn(&rproc->dev, "warning: remote FW shutdown without ack\n");
}
}
err = stm32_rproc_set_hold_boot(rproc, true);
if (err)
return err;
err = reset_control_assert(ddata->rst);
if (err) {
dev_err(&rproc->dev, "failed to assert the reset\n");
return err;
}
/* to allow platform Standby power mode, set remote proc Deep Sleep */
if (ddata->pdds.map) {
err = regmap_update_bits(ddata->pdds.map, ddata->pdds.reg,
ddata->pdds.mask, 1);
if (err) {
dev_err(&rproc->dev, "failed to set pdds\n");
return err;
}
}
return 0;
}
static void stm32_rproc_kick(struct rproc *rproc, int vqid)
{
struct stm32_rproc *ddata = rproc->priv;
unsigned int i;
int err;
if (WARN_ON(vqid >= MBOX_NB_VQ))
return;
for (i = 0; i < MBOX_NB_MBX; i++) {
if (vqid != ddata->mb[i].vq_id)
continue;
if (!ddata->mb[i].chan)
return;
err = mbox_send_message(ddata->mb[i].chan, (void *)(long)vqid);
if (err < 0)
dev_err(&rproc->dev, "%s: failed (%s, err:%d)\n",
__func__, ddata->mb[i].name, err);
return;
}
}
static struct rproc_ops st_rproc_ops = {
.start = stm32_rproc_start,
.stop = stm32_rproc_stop,
.kick = stm32_rproc_kick,
.load = rproc_elf_load_segments,
.parse_fw = stm32_rproc_parse_fw,
.find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table,
.sanity_check = rproc_elf_sanity_check,
.get_boot_addr = rproc_elf_get_boot_addr,
};
static const struct of_device_id stm32_rproc_match[] = {
{ .compatible = "st,stm32mp1-m4" },
{},
};
MODULE_DEVICE_TABLE(of, stm32_rproc_match);
static int stm32_rproc_get_syscon(struct device_node *np, const char *prop,
struct stm32_syscon *syscon)
{
int err = 0;
syscon->map = syscon_regmap_lookup_by_phandle(np, prop);
if (IS_ERR(syscon->map)) {
err = PTR_ERR(syscon->map);
syscon->map = NULL;
goto out;
}
err = of_property_read_u32_index(np, prop, 1, &syscon->reg);
if (err)
goto out;
err = of_property_read_u32_index(np, prop, 2, &syscon->mask);
out:
return err;
}
static int stm32_rproc_parse_dt(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
struct rproc *rproc = platform_get_drvdata(pdev);
struct stm32_rproc *ddata = rproc->priv;
struct stm32_syscon tz;
unsigned int tzen;
int err, irq;
irq = platform_get_irq(pdev, 0);
if (irq > 0) {
err = devm_request_irq(dev, irq, stm32_rproc_wdg, 0,
dev_name(dev), rproc);
if (err) {
dev_err(dev, "failed to request wdg irq\n");
return err;
}
dev_info(dev, "wdg irq registered\n");
}
ddata->rst = devm_reset_control_get_by_index(dev, 0);
if (IS_ERR(ddata->rst)) {
dev_err(dev, "failed to get mcu reset\n");
return PTR_ERR(ddata->rst);
}
/*
* if platform is secured the hold boot bit must be written by
* smc call and read normally.
* if not secure the hold boot bit could be read/write normally
*/
err = stm32_rproc_get_syscon(np, "st,syscfg-tz", &tz);
if (err) {
dev_err(dev, "failed to get tz syscfg\n");
return err;
}
err = regmap_read(tz.map, tz.reg, &tzen);
if (err) {
dev_err(&rproc->dev, "failed to read tzen\n");
return err;
}
ddata->secured_soc = tzen & tz.mask;
err = stm32_rproc_get_syscon(np, "st,syscfg-holdboot",
&ddata->hold_boot);
if (err) {
dev_err(dev, "failed to get hold boot\n");
return err;
}
err = stm32_rproc_get_syscon(np, "st,syscfg-pdds", &ddata->pdds);
if (err)
dev_warn(dev, "failed to get pdds\n");
rproc->auto_boot = of_property_read_bool(np, "st,auto-boot");
return stm32_rproc_of_memory_translations(rproc);
}
static int stm32_rproc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct stm32_rproc *ddata;
struct device_node *np = dev->of_node;
struct rproc *rproc;
int ret;
ret = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(32));
if (ret)
return ret;
rproc = rproc_alloc(dev, np->name, &st_rproc_ops, NULL, sizeof(*ddata));
if (!rproc)
return -ENOMEM;
rproc->has_iommu = false;
ddata = rproc->priv;
platform_set_drvdata(pdev, rproc);
ret = stm32_rproc_parse_dt(pdev);
if (ret)
goto free_rproc;
stm32_rproc_request_mbox(rproc);
ret = rproc_add(rproc);
if (ret)
goto free_mb;
return 0;
free_mb:
stm32_rproc_free_mbox(rproc);
free_rproc:
rproc_free(rproc);
return ret;
}
static int stm32_rproc_remove(struct platform_device *pdev)
{
struct rproc *rproc = platform_get_drvdata(pdev);
if (atomic_read(&rproc->power) > 0)
rproc_shutdown(rproc);
rproc_del(rproc);
stm32_rproc_free_mbox(rproc);
rproc_free(rproc);
return 0;
}
static struct platform_driver stm32_rproc_driver = {
.probe = stm32_rproc_probe,
.remove = stm32_rproc_remove,
.driver = {
.name = "stm32-rproc",
.of_match_table = of_match_ptr(stm32_rproc_match),
},
};
module_platform_driver(stm32_rproc_driver);
MODULE_DESCRIPTION("STM32 Remote Processor Control Driver");
MODULE_AUTHOR("Ludovic Barre <ludovic.barre@st.com>");
MODULE_AUTHOR("Fabien Dessenne <fabien.dessenne@st.com>");
MODULE_LICENSE("GPL v2");
......@@ -66,6 +66,66 @@ ssize_t qcom_mdt_get_size(const struct firmware *fw)
}
EXPORT_SYMBOL_GPL(qcom_mdt_get_size);
/**
* qcom_mdt_read_metadata() - read header and metadata from mdt or mbn
* @fw: firmware of mdt header or mbn
* @data_len: length of the read metadata blob
*
* The mechanism that performs the authentication of the loading firmware
* expects an ELF header directly followed by the segment of hashes, with no
* padding inbetween. This function allocates a chunk of memory for this pair
* and copy the two pieces into the buffer.
*
* In the case of split firmware the hash is found directly following the ELF
* header, rather than at p_offset described by the second program header.
*
* The caller is responsible to free (kfree()) the returned pointer.
*
* Return: pointer to data, or ERR_PTR()
*/
void *qcom_mdt_read_metadata(const struct firmware *fw, size_t *data_len)
{
const struct elf32_phdr *phdrs;
const struct elf32_hdr *ehdr;
size_t hash_offset;
size_t hash_size;
size_t ehdr_size;
void *data;
ehdr = (struct elf32_hdr *)fw->data;
phdrs = (struct elf32_phdr *)(ehdr + 1);
if (ehdr->e_phnum < 2)
return ERR_PTR(-EINVAL);
if (phdrs[0].p_type == PT_LOAD || phdrs[1].p_type == PT_LOAD)
return ERR_PTR(-EINVAL);
if ((phdrs[1].p_flags & QCOM_MDT_TYPE_MASK) != QCOM_MDT_TYPE_HASH)
return ERR_PTR(-EINVAL);
ehdr_size = phdrs[0].p_filesz;
hash_size = phdrs[1].p_filesz;
data = kmalloc(ehdr_size + hash_size, GFP_KERNEL);
if (!data)
return ERR_PTR(-ENOMEM);
/* Is the header and hash already packed */
if (ehdr_size + hash_size == fw->size)
hash_offset = phdrs[0].p_filesz;
else
hash_offset = phdrs[1].p_offset;
memcpy(data, fw->data, ehdr_size);
memcpy(data + ehdr_size, fw->data + hash_offset, hash_size);
*data_len = ehdr_size + hash_size;
return data;
}
EXPORT_SYMBOL_GPL(qcom_mdt_read_metadata);
static int __qcom_mdt_load(struct device *dev, const struct firmware *fw,
const char *firmware, int pas_id, void *mem_region,
phys_addr_t mem_phys, size_t mem_size,
......@@ -78,12 +138,14 @@ static int __qcom_mdt_load(struct device *dev, const struct firmware *fw,
phys_addr_t mem_reloc;
phys_addr_t min_addr = PHYS_ADDR_MAX;
phys_addr_t max_addr = 0;
size_t metadata_len;
size_t fw_name_len;
ssize_t offset;
void *metadata;
char *fw_name;
bool relocate = false;
void *ptr;
int ret;
int ret = 0;
int i;
if (!fw || !mem_region || !mem_phys || !mem_size)
......@@ -101,7 +163,15 @@ static int __qcom_mdt_load(struct device *dev, const struct firmware *fw,
return -ENOMEM;
if (pas_init) {
ret = qcom_scm_pas_init_image(pas_id, fw->data, fw->size);
metadata = qcom_mdt_read_metadata(fw, &metadata_len);
if (IS_ERR(metadata)) {
ret = PTR_ERR(metadata);
goto out;
}
ret = qcom_scm_pas_init_image(pas_id, metadata, metadata_len);
kfree(metadata);
if (ret) {
dev_err(dev, "invalid firmware metadata\n");
goto out;
......@@ -162,7 +232,19 @@ static int __qcom_mdt_load(struct device *dev, const struct firmware *fw,
ptr = mem_region + offset;
if (phdr->p_filesz) {
if (phdr->p_filesz && phdr->p_offset < fw->size) {
/* Firmware is large enough to be non-split */
if (phdr->p_offset + phdr->p_filesz > fw->size) {
dev_err(dev,
"failed to load segment %d from truncated file %s\n",
i, firmware);
ret = -EINVAL;
break;
}
memcpy(ptr, fw->data + phdr->p_offset, phdr->p_filesz);
} else if (phdr->p_filesz) {
/* Firmware not large enough, load split-out segments */
sprintf(fw_name + fw_name_len - 3, "b%02d", i);
ret = request_firmware_into_buf(&seg_fw, fw_name, dev,
ptr, phdr->p_filesz);
......
......@@ -100,7 +100,9 @@ struct fw_rsc_hdr {
* the remote processor will be writing logs.
* @RSC_VDEV: declare support for a virtio device, and serve as its
* virtio header.
* @RSC_LAST: just keep this one at the end
* @RSC_LAST: just keep this one at the end of standard resources
* @RSC_VENDOR_START: start of the vendor specific resource types range
* @RSC_VENDOR_END: end of the vendor specific resource types range
*
* For more details regarding a specific resource type, please see its
* dedicated structure below.
......@@ -111,11 +113,13 @@ struct fw_rsc_hdr {
* please update it as needed.
*/
enum fw_resource_type {
RSC_CARVEOUT = 0,
RSC_DEVMEM = 1,
RSC_TRACE = 2,
RSC_VDEV = 3,
RSC_LAST = 4,
RSC_CARVEOUT = 0,
RSC_DEVMEM = 1,
RSC_TRACE = 2,
RSC_VDEV = 3,
RSC_LAST = 4,
RSC_VENDOR_START = 128,
RSC_VENDOR_END = 512,
};
#define FW_RSC_ADDR_ANY (-1)
......@@ -339,6 +343,16 @@ struct rproc_mem_entry {
struct firmware;
/**
* enum rsc_handling_status - return status of rproc_ops handle_rsc hook
* @RSC_HANDLED: resource was handled
* @RSC_IGNORED: resource was ignored
*/
enum rsc_handling_status {
RSC_HANDLED = 0,
RSC_IGNORED = 1,
};
/**
* struct rproc_ops - platform-specific device handlers
* @start: power on the device and boot it
......@@ -346,6 +360,10 @@ struct firmware;
* @kick: kick a virtqueue (virtqueue id given as a parameter)
* @da_to_va: optional platform hook to perform address translations
* @parse_fw: parse firmware to extract information (e.g. resource table)
* @handle_rsc: optional platform hook to handle vendor resources. Should return
* RSC_HANDLED if resource was handled, RSC_IGNORED if not handled and a
* negative value on error
* @load_rsc_table: load resource table from firmware image
* @find_loaded_rsc_table: find the loaded resouce table
* @load: load firmware to memory, where the remote processor
* expects to find it
......@@ -358,6 +376,8 @@ struct rproc_ops {
void (*kick)(struct rproc *rproc, int vqid);
void * (*da_to_va)(struct rproc *rproc, u64 da, int len);
int (*parse_fw)(struct rproc *rproc, const struct firmware *fw);
int (*handle_rsc)(struct rproc *rproc, u32 rsc_type, void *rsc,
int offset, int avail);
struct resource_table *(*find_loaded_rsc_table)(
struct rproc *rproc, const struct firmware *fw);
int (*load)(struct rproc *rproc, const struct firmware *fw);
......
......@@ -21,4 +21,6 @@ int qcom_mdt_load_no_init(struct device *dev, const struct firmware *fw,
const char *fw_name, int pas_id, void *mem_region,
phys_addr_t mem_phys, size_t mem_size,
phys_addr_t *reloc_base);
void *qcom_mdt_read_metadata(const struct firmware *fw, size_t *data_len);
#endif
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册