提交 f9ce0be7 编写于 作者: K Kirill A. Shutemov 提交者: Will Deacon

mm: Cleanup faultaround and finish_fault() codepaths

alloc_set_pte() has two users with different requirements: in the
faultaround code, it called from an atomic context and PTE page table
has to be preallocated. finish_fault() can sleep and allocate page table
as needed.

PTL locking rules are also strange, hard to follow and overkill for
finish_fault().

Let's untangle the mess. alloc_set_pte() has gone now. All locking is
explicit.

The price is some code duplication to handle huge pages in faultaround
path, but it should be fine, having overall improvement in readability.

Link: https://lore.kernel.org/r/20201229132819.najtavneutnf7ajp@boxSigned-off-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com>
[will: s/from from/from/ in comment; spotted by willy]
Signed-off-by: NWill Deacon <will@kernel.org>
上级 19c329f6
...@@ -1319,17 +1319,19 @@ xfs_filemap_pfn_mkwrite( ...@@ -1319,17 +1319,19 @@ xfs_filemap_pfn_mkwrite(
return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true); return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
} }
static void static vm_fault_t
xfs_filemap_map_pages( xfs_filemap_map_pages(
struct vm_fault *vmf, struct vm_fault *vmf,
pgoff_t start_pgoff, pgoff_t start_pgoff,
pgoff_t end_pgoff) pgoff_t end_pgoff)
{ {
struct inode *inode = file_inode(vmf->vma->vm_file); struct inode *inode = file_inode(vmf->vma->vm_file);
vm_fault_t ret;
xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
filemap_map_pages(vmf, start_pgoff, end_pgoff); ret = filemap_map_pages(vmf, start_pgoff, end_pgoff);
xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
return ret;
} }
static const struct vm_operations_struct xfs_file_vm_ops = { static const struct vm_operations_struct xfs_file_vm_ops = {
......
...@@ -542,8 +542,8 @@ struct vm_fault { ...@@ -542,8 +542,8 @@ struct vm_fault {
* is not NULL, otherwise pmd. * is not NULL, otherwise pmd.
*/ */
pgtable_t prealloc_pte; /* Pre-allocated pte page table. pgtable_t prealloc_pte; /* Pre-allocated pte page table.
* vm_ops->map_pages() calls * vm_ops->map_pages() sets up a page
* alloc_set_pte() from atomic context. * table from atomic context.
* do_fault_around() pre-allocates * do_fault_around() pre-allocates
* page table to avoid allocation from * page table to avoid allocation from
* atomic context. * atomic context.
...@@ -578,7 +578,7 @@ struct vm_operations_struct { ...@@ -578,7 +578,7 @@ struct vm_operations_struct {
vm_fault_t (*fault)(struct vm_fault *vmf); vm_fault_t (*fault)(struct vm_fault *vmf);
vm_fault_t (*huge_fault)(struct vm_fault *vmf, vm_fault_t (*huge_fault)(struct vm_fault *vmf,
enum page_entry_size pe_size); enum page_entry_size pe_size);
void (*map_pages)(struct vm_fault *vmf, vm_fault_t (*map_pages)(struct vm_fault *vmf,
pgoff_t start_pgoff, pgoff_t end_pgoff); pgoff_t start_pgoff, pgoff_t end_pgoff);
unsigned long (*pagesize)(struct vm_area_struct * area); unsigned long (*pagesize)(struct vm_area_struct * area);
...@@ -988,7 +988,9 @@ static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) ...@@ -988,7 +988,9 @@ static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
return pte; return pte;
} }
vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page); vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
void do_set_pte(struct vm_fault *vmf, struct page *page);
vm_fault_t finish_fault(struct vm_fault *vmf); vm_fault_t finish_fault(struct vm_fault *vmf);
vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
#endif #endif
...@@ -2622,7 +2624,7 @@ extern void truncate_inode_pages_final(struct address_space *); ...@@ -2622,7 +2624,7 @@ extern void truncate_inode_pages_final(struct address_space *);
/* generic vm_area_ops exported for stackable file systems */ /* generic vm_area_ops exported for stackable file systems */
extern vm_fault_t filemap_fault(struct vm_fault *vmf); extern vm_fault_t filemap_fault(struct vm_fault *vmf);
extern void filemap_map_pages(struct vm_fault *vmf, extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
pgoff_t start_pgoff, pgoff_t end_pgoff); pgoff_t start_pgoff, pgoff_t end_pgoff);
extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
......
...@@ -1314,6 +1314,17 @@ static inline int pmd_trans_unstable(pmd_t *pmd) ...@@ -1314,6 +1314,17 @@ static inline int pmd_trans_unstable(pmd_t *pmd)
#endif #endif
} }
/*
* the ordering of these checks is important for pmds with _page_devmap set.
* if we check pmd_trans_unstable() first we will trip the bad_pmd() check
* inside of pmd_none_or_trans_huge_or_clear_bad(). this will end up correctly
* returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
*/
static inline int pmd_devmap_trans_unstable(pmd_t *pmd)
{
return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
}
#ifndef CONFIG_NUMA_BALANCING #ifndef CONFIG_NUMA_BALANCING
/* /*
* Technically a PTE can be PROTNONE even when not doing NUMA balancing but * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
......
...@@ -42,6 +42,7 @@ ...@@ -42,6 +42,7 @@
#include <linux/psi.h> #include <linux/psi.h>
#include <linux/ramfs.h> #include <linux/ramfs.h>
#include <linux/page_idle.h> #include <linux/page_idle.h>
#include <asm/pgalloc.h>
#include "internal.h" #include "internal.h"
#define CREATE_TRACE_POINTS #define CREATE_TRACE_POINTS
...@@ -2911,74 +2912,164 @@ vm_fault_t filemap_fault(struct vm_fault *vmf) ...@@ -2911,74 +2912,164 @@ vm_fault_t filemap_fault(struct vm_fault *vmf)
} }
EXPORT_SYMBOL(filemap_fault); EXPORT_SYMBOL(filemap_fault);
void filemap_map_pages(struct vm_fault *vmf, static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
pgoff_t start_pgoff, pgoff_t end_pgoff)
{ {
struct file *file = vmf->vma->vm_file; struct mm_struct *mm = vmf->vma->vm_mm;
/* Huge page is mapped? No need to proceed. */
if (pmd_trans_huge(*vmf->pmd)) {
unlock_page(page);
put_page(page);
return true;
}
if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
vm_fault_t ret = do_set_pmd(vmf, page);
if (!ret) {
/* The page is mapped successfully, reference consumed. */
unlock_page(page);
return true;
}
}
if (pmd_none(*vmf->pmd)) {
vmf->ptl = pmd_lock(mm, vmf->pmd);
if (likely(pmd_none(*vmf->pmd))) {
mm_inc_nr_ptes(mm);
pmd_populate(mm, vmf->pmd, vmf->prealloc_pte);
vmf->prealloc_pte = NULL;
}
spin_unlock(vmf->ptl);
}
/* See comment in handle_pte_fault() */
if (pmd_devmap_trans_unstable(vmf->pmd)) {
unlock_page(page);
put_page(page);
return true;
}
return false;
}
static struct page *next_uptodate_page(struct page *page,
struct address_space *mapping,
struct xa_state *xas, pgoff_t end_pgoff)
{
unsigned long max_idx;
do {
if (!page)
return NULL;
if (xas_retry(xas, page))
continue;
if (xa_is_value(page))
continue;
if (PageLocked(page))
continue;
if (!page_cache_get_speculative(page))
continue;
/* Has the page moved or been split? */
if (unlikely(page != xas_reload(xas)))
goto skip;
if (!PageUptodate(page) || PageReadahead(page))
goto skip;
if (PageHWPoison(page))
goto skip;
if (!trylock_page(page))
goto skip;
if (page->mapping != mapping)
goto unlock;
if (!PageUptodate(page))
goto unlock;
max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
if (xas->xa_index >= max_idx)
goto unlock;
return page;
unlock:
unlock_page(page);
skip:
put_page(page);
} while ((page = xas_next_entry(xas, end_pgoff)) != NULL);
return NULL;
}
static inline struct page *first_map_page(struct address_space *mapping,
struct xa_state *xas,
pgoff_t end_pgoff)
{
return next_uptodate_page(xas_find(xas, end_pgoff),
mapping, xas, end_pgoff);
}
static inline struct page *next_map_page(struct address_space *mapping,
struct xa_state *xas,
pgoff_t end_pgoff)
{
return next_uptodate_page(xas_next_entry(xas, end_pgoff),
mapping, xas, end_pgoff);
}
vm_fault_t filemap_map_pages(struct vm_fault *vmf,
pgoff_t start_pgoff, pgoff_t end_pgoff)
{
struct vm_area_struct *vma = vmf->vma;
struct file *file = vma->vm_file;
struct address_space *mapping = file->f_mapping; struct address_space *mapping = file->f_mapping;
pgoff_t last_pgoff = start_pgoff; pgoff_t last_pgoff = start_pgoff;
unsigned long max_idx; unsigned long address = vmf->address;
XA_STATE(xas, &mapping->i_pages, start_pgoff); XA_STATE(xas, &mapping->i_pages, start_pgoff);
struct page *head, *page; struct page *head, *page;
unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss); unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
vm_fault_t ret = 0;
rcu_read_lock(); rcu_read_lock();
xas_for_each(&xas, head, end_pgoff) { head = first_map_page(mapping, &xas, end_pgoff);
if (xas_retry(&xas, head)) if (!head)
continue; goto out;
if (xa_is_value(head))
goto next;
/* if (filemap_map_pmd(vmf, head)) {
* Check for a locked page first, as a speculative ret = VM_FAULT_NOPAGE;
* reference may adversely influence page migration. goto out;
*/ }
if (PageLocked(head))
goto next;
if (!page_cache_get_speculative(head))
goto next;
/* Has the page moved or been split? */ vmf->address = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
if (unlikely(head != xas_reload(&xas))) vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl);
goto skip; do {
page = find_subpage(head, xas.xa_index); page = find_subpage(head, xas.xa_index);
if (PageHWPoison(page))
if (!PageUptodate(head) ||
PageReadahead(page) ||
PageHWPoison(page))
goto skip;
if (!trylock_page(head))
goto skip;
if (head->mapping != mapping || !PageUptodate(head))
goto unlock;
max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
if (xas.xa_index >= max_idx)
goto unlock; goto unlock;
if (mmap_miss > 0) if (mmap_miss > 0)
mmap_miss--; mmap_miss--;
vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT; vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
if (vmf->pte) vmf->pte += xas.xa_index - last_pgoff;
vmf->pte += xas.xa_index - last_pgoff;
last_pgoff = xas.xa_index; last_pgoff = xas.xa_index;
if (alloc_set_pte(vmf, page))
if (!pte_none(*vmf->pte))
goto unlock; goto unlock;
do_set_pte(vmf, page);
/* no need to invalidate: a not-present page won't be cached */
update_mmu_cache(vma, vmf->address, vmf->pte);
unlock_page(head); unlock_page(head);
goto next;
/* The fault is handled */
if (vmf->address == address)
ret = VM_FAULT_NOPAGE;
continue;
unlock: unlock:
unlock_page(head); unlock_page(head);
skip:
put_page(head); put_page(head);
next: } while ((head = next_map_page(mapping, &xas, end_pgoff)) != NULL);
/* Huge page is mapped? No need to proceed. */ pte_unmap_unlock(vmf->pte, vmf->ptl);
if (pmd_trans_huge(*vmf->pmd)) out:
break;
}
rcu_read_unlock(); rcu_read_unlock();
vmf->address = address;
WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss); WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
return ret;
} }
EXPORT_SYMBOL(filemap_map_pages); EXPORT_SYMBOL(filemap_map_pages);
......
...@@ -3503,7 +3503,7 @@ static vm_fault_t do_anonymous_page(struct vm_fault *vmf) ...@@ -3503,7 +3503,7 @@ static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
if (pte_alloc(vma->vm_mm, vmf->pmd)) if (pte_alloc(vma->vm_mm, vmf->pmd))
return VM_FAULT_OOM; return VM_FAULT_OOM;
/* See the comment in pte_alloc_one_map() */ /* See comment in handle_pte_fault() */
if (unlikely(pmd_trans_unstable(vmf->pmd))) if (unlikely(pmd_trans_unstable(vmf->pmd)))
return 0; return 0;
...@@ -3643,66 +3643,6 @@ static vm_fault_t __do_fault(struct vm_fault *vmf) ...@@ -3643,66 +3643,6 @@ static vm_fault_t __do_fault(struct vm_fault *vmf)
return ret; return ret;
} }
/*
* The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
* If we check pmd_trans_unstable() first we will trip the bad_pmd() check
* inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
* returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
*/
static int pmd_devmap_trans_unstable(pmd_t *pmd)
{
return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
}
static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
{
struct vm_area_struct *vma = vmf->vma;
if (!pmd_none(*vmf->pmd))
goto map_pte;
if (vmf->prealloc_pte) {
vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
if (unlikely(!pmd_none(*vmf->pmd))) {
spin_unlock(vmf->ptl);
goto map_pte;
}
mm_inc_nr_ptes(vma->vm_mm);
pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
spin_unlock(vmf->ptl);
vmf->prealloc_pte = NULL;
} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
return VM_FAULT_OOM;
}
map_pte:
/*
* If a huge pmd materialized under us just retry later. Use
* pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
* pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
* under us and then back to pmd_none, as a result of MADV_DONTNEED
* running immediately after a huge pmd fault in a different thread of
* this mm, in turn leading to a misleading pmd_trans_huge() retval.
* All we have to ensure is that it is a regular pmd that we can walk
* with pte_offset_map() and we can do that through an atomic read in
* C, which is what pmd_trans_unstable() provides.
*/
if (pmd_devmap_trans_unstable(vmf->pmd))
return VM_FAULT_NOPAGE;
/*
* At this point we know that our vmf->pmd points to a page of ptes
* and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
* for the duration of the fault. If a racing MADV_DONTNEED runs and
* we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
* be valid and we will re-check to make sure the vmf->pte isn't
* pte_none() under vmf->ptl protection when we return to
* alloc_set_pte().
*/
vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
&vmf->ptl);
return 0;
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE #ifdef CONFIG_TRANSPARENT_HUGEPAGE
static void deposit_prealloc_pte(struct vm_fault *vmf) static void deposit_prealloc_pte(struct vm_fault *vmf)
{ {
...@@ -3717,7 +3657,7 @@ static void deposit_prealloc_pte(struct vm_fault *vmf) ...@@ -3717,7 +3657,7 @@ static void deposit_prealloc_pte(struct vm_fault *vmf)
vmf->prealloc_pte = NULL; vmf->prealloc_pte = NULL;
} }
static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
{ {
struct vm_area_struct *vma = vmf->vma; struct vm_area_struct *vma = vmf->vma;
bool write = vmf->flags & FAULT_FLAG_WRITE; bool write = vmf->flags & FAULT_FLAG_WRITE;
...@@ -3775,52 +3715,17 @@ static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) ...@@ -3775,52 +3715,17 @@ static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
return ret; return ret;
} }
#else #else
static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
{ {
BUILD_BUG(); return VM_FAULT_FALLBACK;
return 0;
} }
#endif #endif
/** void do_set_pte(struct vm_fault *vmf, struct page *page)
* alloc_set_pte - setup new PTE entry for given page and add reverse page
* mapping. If needed, the function allocates page table or use pre-allocated.
*
* @vmf: fault environment
* @page: page to map
*
* Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
* return.
*
* Target users are page handler itself and implementations of
* vm_ops->map_pages.
*
* Return: %0 on success, %VM_FAULT_ code in case of error.
*/
vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page)
{ {
struct vm_area_struct *vma = vmf->vma; struct vm_area_struct *vma = vmf->vma;
bool write = vmf->flags & FAULT_FLAG_WRITE; bool write = vmf->flags & FAULT_FLAG_WRITE;
pte_t entry; pte_t entry;
vm_fault_t ret;
if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
ret = do_set_pmd(vmf, page);
if (ret != VM_FAULT_FALLBACK)
return ret;
}
if (!vmf->pte) {
ret = pte_alloc_one_map(vmf);
if (ret)
return ret;
}
/* Re-check under ptl */
if (unlikely(!pte_none(*vmf->pte))) {
update_mmu_tlb(vma, vmf->address, vmf->pte);
return VM_FAULT_NOPAGE;
}
flush_icache_page(vma, page); flush_icache_page(vma, page);
entry = mk_pte(page, vma->vm_page_prot); entry = mk_pte(page, vma->vm_page_prot);
...@@ -3837,14 +3742,8 @@ vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page) ...@@ -3837,14 +3742,8 @@ vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page)
page_add_file_rmap(page, false); page_add_file_rmap(page, false);
} }
set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
/* no need to invalidate: a not-present page won't be cached */
update_mmu_cache(vma, vmf->address, vmf->pte);
return 0;
} }
/** /**
* finish_fault - finish page fault once we have prepared the page to fault * finish_fault - finish page fault once we have prepared the page to fault
* *
...@@ -3862,12 +3761,12 @@ vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page) ...@@ -3862,12 +3761,12 @@ vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page)
*/ */
vm_fault_t finish_fault(struct vm_fault *vmf) vm_fault_t finish_fault(struct vm_fault *vmf)
{ {
struct vm_area_struct *vma = vmf->vma;
struct page *page; struct page *page;
vm_fault_t ret = 0; vm_fault_t ret;
/* Did we COW the page? */ /* Did we COW the page? */
if ((vmf->flags & FAULT_FLAG_WRITE) && if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
!(vmf->vma->vm_flags & VM_SHARED))
page = vmf->cow_page; page = vmf->cow_page;
else else
page = vmf->page; page = vmf->page;
...@@ -3876,12 +3775,38 @@ vm_fault_t finish_fault(struct vm_fault *vmf) ...@@ -3876,12 +3775,38 @@ vm_fault_t finish_fault(struct vm_fault *vmf)
* check even for read faults because we might have lost our CoWed * check even for read faults because we might have lost our CoWed
* page * page
*/ */
if (!(vmf->vma->vm_flags & VM_SHARED)) if (!(vma->vm_flags & VM_SHARED)) {
ret = check_stable_address_space(vmf->vma->vm_mm); ret = check_stable_address_space(vma->vm_mm);
if (!ret) if (ret)
ret = alloc_set_pte(vmf, page); return ret;
if (vmf->pte) }
pte_unmap_unlock(vmf->pte, vmf->ptl);
if (pmd_none(*vmf->pmd)) {
if (PageTransCompound(page)) {
ret = do_set_pmd(vmf, page);
if (ret != VM_FAULT_FALLBACK)
return ret;
}
if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
return VM_FAULT_OOM;
}
/* See comment in handle_pte_fault() */
if (pmd_devmap_trans_unstable(vmf->pmd))
return 0;
vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
vmf->address, &vmf->ptl);
ret = 0;
/* Re-check under ptl */
if (likely(pte_none(*vmf->pte)))
do_set_pte(vmf, page);
else
ret = VM_FAULT_NOPAGE;
update_mmu_tlb(vma, vmf->address, vmf->pte);
pte_unmap_unlock(vmf->pte, vmf->ptl);
return ret; return ret;
} }
...@@ -3951,13 +3876,12 @@ static vm_fault_t do_fault_around(struct vm_fault *vmf) ...@@ -3951,13 +3876,12 @@ static vm_fault_t do_fault_around(struct vm_fault *vmf)
pgoff_t start_pgoff = vmf->pgoff; pgoff_t start_pgoff = vmf->pgoff;
pgoff_t end_pgoff; pgoff_t end_pgoff;
int off; int off;
vm_fault_t ret = 0;
nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
vmf->address = max(address & mask, vmf->vma->vm_start); address = max(address & mask, vmf->vma->vm_start);
off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
start_pgoff -= off; start_pgoff -= off;
/* /*
...@@ -3965,7 +3889,7 @@ static vm_fault_t do_fault_around(struct vm_fault *vmf) ...@@ -3965,7 +3889,7 @@ static vm_fault_t do_fault_around(struct vm_fault *vmf)
* the vma or nr_pages from start_pgoff, depending what is nearest. * the vma or nr_pages from start_pgoff, depending what is nearest.
*/ */
end_pgoff = start_pgoff - end_pgoff = start_pgoff -
((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
PTRS_PER_PTE - 1; PTRS_PER_PTE - 1;
end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
start_pgoff + nr_pages - 1); start_pgoff + nr_pages - 1);
...@@ -3973,31 +3897,11 @@ static vm_fault_t do_fault_around(struct vm_fault *vmf) ...@@ -3973,31 +3897,11 @@ static vm_fault_t do_fault_around(struct vm_fault *vmf)
if (pmd_none(*vmf->pmd)) { if (pmd_none(*vmf->pmd)) {
vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
if (!vmf->prealloc_pte) if (!vmf->prealloc_pte)
goto out; return VM_FAULT_OOM;
smp_wmb(); /* See comment in __pte_alloc() */ smp_wmb(); /* See comment in __pte_alloc() */
} }
vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
/* Huge page is mapped? Page fault is solved */
if (pmd_trans_huge(*vmf->pmd)) {
ret = VM_FAULT_NOPAGE;
goto out;
}
/* ->map_pages() haven't done anything useful. Cold page cache? */
if (!vmf->pte)
goto out;
/* check if the page fault is solved */
vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
if (!pte_none(*vmf->pte))
ret = VM_FAULT_NOPAGE;
pte_unmap_unlock(vmf->pte, vmf->ptl);
out:
vmf->address = address;
vmf->pte = NULL;
return ret;
} }
static vm_fault_t do_read_fault(struct vm_fault *vmf) static vm_fault_t do_read_fault(struct vm_fault *vmf)
...@@ -4353,7 +4257,18 @@ static vm_fault_t handle_pte_fault(struct vm_fault *vmf) ...@@ -4353,7 +4257,18 @@ static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
*/ */
vmf->pte = NULL; vmf->pte = NULL;
} else { } else {
/* See comment in pte_alloc_one_map() */ /*
* If a huge pmd materialized under us just retry later. Use
* pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
* of pmd_trans_huge() to ensure the pmd didn't become
* pmd_trans_huge under us and then back to pmd_none, as a
* result of MADV_DONTNEED running immediately after a huge pmd
* fault in a different thread of this mm, in turn leading to a
* misleading pmd_trans_huge() retval. All we have to ensure is
* that it is a regular pmd that we can walk with
* pte_offset_map() and we can do that through an atomic read
* in C, which is what pmd_trans_unstable() provides.
*/
if (pmd_devmap_trans_unstable(vmf->pmd)) if (pmd_devmap_trans_unstable(vmf->pmd))
return 0; return 0;
/* /*
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册