提交 f08fcced 编写于 作者: C Corentin Labbe 提交者: Herbert Xu

crypto: allwinner - Add sun8i-ss cryptographic offloader

The Security System is an hardware cryptographic offloader present
on Allwinner SoCs A80 and A83T.
It is different from the previous sun4i-ss.

This driver supports AES cipher in CBC and ECB mode.
Acked-by: NMaxime Ripard <mripard@kernel.org>
Signed-off-by: NCorentin Labbe <clabbe.montjoie@gmail.com>
Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
上级 a1afe274
......@@ -58,3 +58,30 @@ config CRYPTO_DEV_SUN8I_CE_DEBUG
Say y to enable sun8i-ce debug stats.
This will create /sys/kernel/debug/sun8i-ce/stats for displaying
the number of requests per flow and per algorithm.
config CRYPTO_DEV_SUN8I_SS
tristate "Support for Allwinner Security System cryptographic offloader"
select CRYPTO_BLKCIPHER
select CRYPTO_ENGINE
select CRYPTO_ECB
select CRYPTO_CBC
select CRYPTO_AES
select CRYPTO_DES
depends on CRYPTO_DEV_ALLWINNER
depends on PM
help
Select y here to have support for the Security System available on
Allwinner SoC A80, A83T.
The Security System handle AES/3DES ciphers in ECB/CBC mode.
To compile this driver as a module, choose M here: the module
will be called sun8i-ss.
config CRYPTO_DEV_SUN8I_SS_DEBUG
bool "Enable sun8i-ss stats"
depends on CRYPTO_DEV_SUN8I_SS
depends on DEBUG_FS
help
Say y to enable sun8i-ss debug stats.
This will create /sys/kernel/debug/sun8i-ss/stats for displaying
the number of requests per flow and per algorithm.
obj-$(CONFIG_CRYPTO_DEV_SUN4I_SS) += sun4i-ss/
obj-$(CONFIG_CRYPTO_DEV_SUN8I_CE) += sun8i-ce/
obj-$(CONFIG_CRYPTO_DEV_SUN8I_SS) += sun8i-ss/
obj-$(CONFIG_CRYPTO_DEV_SUN8I_SS) += sun8i-ss.o
sun8i-ss-y += sun8i-ss-core.o sun8i-ss-cipher.o
// SPDX-License-Identifier: GPL-2.0
/*
* sun8i-ss-cipher.c - hardware cryptographic offloader for
* Allwinner A80/A83T SoC
*
* Copyright (C) 2016-2019 Corentin LABBE <clabbe.montjoie@gmail.com>
*
* This file add support for AES cipher with 128,192,256 bits keysize in
* CBC and ECB mode.
*
* You could find a link for the datasheet in Documentation/arm/sunxi/README
*/
#include <linux/crypto.h>
#include <linux/dma-mapping.h>
#include <linux/io.h>
#include <linux/pm_runtime.h>
#include <crypto/scatterwalk.h>
#include <crypto/internal/skcipher.h>
#include "sun8i-ss.h"
static bool sun8i_ss_need_fallback(struct skcipher_request *areq)
{
struct scatterlist *in_sg = areq->src;
struct scatterlist *out_sg = areq->dst;
struct scatterlist *sg;
if (areq->cryptlen == 0 || areq->cryptlen % 16)
return true;
if (sg_nents(areq->src) > 8 || sg_nents(areq->dst) > 8)
return true;
sg = areq->src;
while (sg) {
if ((sg->length % 16) != 0)
return true;
if ((sg_dma_len(sg) % 16) != 0)
return true;
if (!IS_ALIGNED(sg->offset, 16))
return true;
sg = sg_next(sg);
}
sg = areq->dst;
while (sg) {
if ((sg->length % 16) != 0)
return true;
if ((sg_dma_len(sg) % 16) != 0)
return true;
if (!IS_ALIGNED(sg->offset, 16))
return true;
sg = sg_next(sg);
}
/* SS need same numbers of SG (with same length) for source and destination */
in_sg = areq->src;
out_sg = areq->dst;
while (in_sg && out_sg) {
if (in_sg->length != out_sg->length)
return true;
in_sg = sg_next(in_sg);
out_sg = sg_next(out_sg);
}
if (in_sg || out_sg)
return true;
return false;
}
static int sun8i_ss_cipher_fallback(struct skcipher_request *areq)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
struct sun8i_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm);
struct sun8i_cipher_req_ctx *rctx = skcipher_request_ctx(areq);
int err;
SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, op->fallback_tfm);
#ifdef CONFIG_CRYPTO_DEV_SUN8I_SS_DEBUG
struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
struct sun8i_ss_alg_template *algt;
algt = container_of(alg, struct sun8i_ss_alg_template, alg.skcipher);
algt->stat_fb++;
#endif
skcipher_request_set_sync_tfm(subreq, op->fallback_tfm);
skcipher_request_set_callback(subreq, areq->base.flags, NULL, NULL);
skcipher_request_set_crypt(subreq, areq->src, areq->dst,
areq->cryptlen, areq->iv);
if (rctx->op_dir & SS_DECRYPTION)
err = crypto_skcipher_decrypt(subreq);
else
err = crypto_skcipher_encrypt(subreq);
skcipher_request_zero(subreq);
return err;
}
static int sun8i_ss_cipher(struct skcipher_request *areq)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
struct sun8i_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm);
struct sun8i_ss_dev *ss = op->ss;
struct sun8i_cipher_req_ctx *rctx = skcipher_request_ctx(areq);
struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
struct sun8i_ss_alg_template *algt;
struct scatterlist *sg;
unsigned int todo, len, offset, ivsize;
void *backup_iv = NULL;
int nr_sgs = 0;
int nr_sgd = 0;
int err = 0;
int i;
algt = container_of(alg, struct sun8i_ss_alg_template, alg.skcipher);
dev_dbg(ss->dev, "%s %s %u %x IV(%p %u) key=%u\n", __func__,
crypto_tfm_alg_name(areq->base.tfm),
areq->cryptlen,
rctx->op_dir, areq->iv, crypto_skcipher_ivsize(tfm),
op->keylen);
#ifdef CONFIG_CRYPTO_DEV_SUN8I_SS_DEBUG
algt->stat_req++;
#endif
rctx->op_mode = ss->variant->op_mode[algt->ss_blockmode];
rctx->method = ss->variant->alg_cipher[algt->ss_algo_id];
rctx->keylen = op->keylen;
rctx->p_key = dma_map_single(ss->dev, op->key, op->keylen, DMA_TO_DEVICE);
if (dma_mapping_error(ss->dev, rctx->p_key)) {
dev_err(ss->dev, "Cannot DMA MAP KEY\n");
err = -EFAULT;
goto theend;
}
ivsize = crypto_skcipher_ivsize(tfm);
if (areq->iv && crypto_skcipher_ivsize(tfm) > 0) {
rctx->ivlen = ivsize;
rctx->biv = kzalloc(ivsize, GFP_KERNEL | GFP_DMA);
if (!rctx->biv) {
err = -ENOMEM;
goto theend_key;
}
if (rctx->op_dir & SS_DECRYPTION) {
backup_iv = kzalloc(ivsize, GFP_KERNEL);
if (!backup_iv) {
err = -ENOMEM;
goto theend_key;
}
offset = areq->cryptlen - ivsize;
scatterwalk_map_and_copy(backup_iv, areq->src, offset,
ivsize, 0);
}
memcpy(rctx->biv, areq->iv, ivsize);
rctx->p_iv = dma_map_single(ss->dev, rctx->biv, rctx->ivlen,
DMA_TO_DEVICE);
if (dma_mapping_error(ss->dev, rctx->p_iv)) {
dev_err(ss->dev, "Cannot DMA MAP IV\n");
err = -ENOMEM;
goto theend_iv;
}
}
if (areq->src == areq->dst) {
nr_sgs = dma_map_sg(ss->dev, areq->src, sg_nents(areq->src),
DMA_BIDIRECTIONAL);
if (nr_sgs <= 0 || nr_sgs > 8) {
dev_err(ss->dev, "Invalid sg number %d\n", nr_sgs);
err = -EINVAL;
goto theend_iv;
}
nr_sgd = nr_sgs;
} else {
nr_sgs = dma_map_sg(ss->dev, areq->src, sg_nents(areq->src),
DMA_TO_DEVICE);
if (nr_sgs <= 0 || nr_sgs > 8) {
dev_err(ss->dev, "Invalid sg number %d\n", nr_sgs);
err = -EINVAL;
goto theend_iv;
}
nr_sgd = dma_map_sg(ss->dev, areq->dst, sg_nents(areq->dst),
DMA_FROM_DEVICE);
if (nr_sgd <= 0 || nr_sgd > 8) {
dev_err(ss->dev, "Invalid sg number %d\n", nr_sgd);
err = -EINVAL;
goto theend_sgs;
}
}
len = areq->cryptlen;
i = 0;
sg = areq->src;
while (i < nr_sgs && sg && len) {
if (sg_dma_len(sg) == 0)
goto sgs_next;
rctx->t_src[i].addr = sg_dma_address(sg);
todo = min(len, sg_dma_len(sg));
rctx->t_src[i].len = todo / 4;
dev_dbg(ss->dev, "%s total=%u SGS(%d %u off=%d) todo=%u\n", __func__,
areq->cryptlen, i, rctx->t_src[i].len, sg->offset, todo);
len -= todo;
i++;
sgs_next:
sg = sg_next(sg);
}
if (len > 0) {
dev_err(ss->dev, "remaining len %d\n", len);
err = -EINVAL;
goto theend_sgs;
}
len = areq->cryptlen;
i = 0;
sg = areq->dst;
while (i < nr_sgd && sg && len) {
if (sg_dma_len(sg) == 0)
goto sgd_next;
rctx->t_dst[i].addr = sg_dma_address(sg);
todo = min(len, sg_dma_len(sg));
rctx->t_dst[i].len = todo / 4;
dev_dbg(ss->dev, "%s total=%u SGD(%d %u off=%d) todo=%u\n", __func__,
areq->cryptlen, i, rctx->t_dst[i].len, sg->offset, todo);
len -= todo;
i++;
sgd_next:
sg = sg_next(sg);
}
if (len > 0) {
dev_err(ss->dev, "remaining len %d\n", len);
err = -EINVAL;
goto theend_sgs;
}
err = sun8i_ss_run_task(ss, rctx, crypto_tfm_alg_name(areq->base.tfm));
theend_sgs:
if (areq->src == areq->dst) {
dma_unmap_sg(ss->dev, areq->src, nr_sgs, DMA_BIDIRECTIONAL);
} else {
dma_unmap_sg(ss->dev, areq->src, nr_sgs, DMA_TO_DEVICE);
dma_unmap_sg(ss->dev, areq->dst, nr_sgd, DMA_FROM_DEVICE);
}
theend_iv:
if (rctx->p_iv)
dma_unmap_single(ss->dev, rctx->p_iv, rctx->ivlen,
DMA_TO_DEVICE);
if (areq->iv && ivsize > 0) {
if (rctx->biv) {
offset = areq->cryptlen - ivsize;
if (rctx->op_dir & SS_DECRYPTION) {
memcpy(areq->iv, backup_iv, ivsize);
memzero_explicit(backup_iv, ivsize);
kzfree(backup_iv);
} else {
scatterwalk_map_and_copy(areq->iv, areq->dst, offset,
ivsize, 0);
}
kfree(rctx->biv);
}
}
theend_key:
dma_unmap_single(ss->dev, rctx->p_key, op->keylen, DMA_TO_DEVICE);
theend:
return err;
}
static int sun8i_ss_handle_cipher_request(struct crypto_engine *engine, void *areq)
{
int err;
struct skcipher_request *breq = container_of(areq, struct skcipher_request, base);
err = sun8i_ss_cipher(breq);
crypto_finalize_skcipher_request(engine, breq, err);
return 0;
}
int sun8i_ss_skdecrypt(struct skcipher_request *areq)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
struct sun8i_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm);
struct sun8i_cipher_req_ctx *rctx = skcipher_request_ctx(areq);
struct crypto_engine *engine;
int e;
memset(rctx, 0, sizeof(struct sun8i_cipher_req_ctx));
rctx->op_dir = SS_DECRYPTION;
if (sun8i_ss_need_fallback(areq))
return sun8i_ss_cipher_fallback(areq);
e = sun8i_ss_get_engine_number(op->ss);
engine = op->ss->flows[e].engine;
rctx->flow = e;
return crypto_transfer_skcipher_request_to_engine(engine, areq);
}
int sun8i_ss_skencrypt(struct skcipher_request *areq)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
struct sun8i_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm);
struct sun8i_cipher_req_ctx *rctx = skcipher_request_ctx(areq);
struct crypto_engine *engine;
int e;
memset(rctx, 0, sizeof(struct sun8i_cipher_req_ctx));
rctx->op_dir = SS_ENCRYPTION;
if (sun8i_ss_need_fallback(areq))
return sun8i_ss_cipher_fallback(areq);
e = sun8i_ss_get_engine_number(op->ss);
engine = op->ss->flows[e].engine;
rctx->flow = e;
return crypto_transfer_skcipher_request_to_engine(engine, areq);
}
int sun8i_ss_cipher_init(struct crypto_tfm *tfm)
{
struct sun8i_cipher_tfm_ctx *op = crypto_tfm_ctx(tfm);
struct sun8i_ss_alg_template *algt;
const char *name = crypto_tfm_alg_name(tfm);
struct crypto_skcipher *sktfm = __crypto_skcipher_cast(tfm);
struct skcipher_alg *alg = crypto_skcipher_alg(sktfm);
int err;
memset(op, 0, sizeof(struct sun8i_cipher_tfm_ctx));
algt = container_of(alg, struct sun8i_ss_alg_template, alg.skcipher);
op->ss = algt->ss;
sktfm->reqsize = sizeof(struct sun8i_cipher_req_ctx);
op->fallback_tfm = crypto_alloc_sync_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(op->fallback_tfm)) {
dev_err(op->ss->dev, "ERROR: Cannot allocate fallback for %s %ld\n",
name, PTR_ERR(op->fallback_tfm));
return PTR_ERR(op->fallback_tfm);
}
dev_info(op->ss->dev, "Fallback for %s is %s\n",
crypto_tfm_alg_driver_name(&sktfm->base),
crypto_tfm_alg_driver_name(crypto_skcipher_tfm(&op->fallback_tfm->base)));
op->enginectx.op.do_one_request = sun8i_ss_handle_cipher_request;
op->enginectx.op.prepare_request = NULL;
op->enginectx.op.unprepare_request = NULL;
err = pm_runtime_get_sync(op->ss->dev);
if (err < 0) {
dev_err(op->ss->dev, "pm error %d\n", err);
goto error_pm;
}
return 0;
error_pm:
crypto_free_sync_skcipher(op->fallback_tfm);
return err;
}
void sun8i_ss_cipher_exit(struct crypto_tfm *tfm)
{
struct sun8i_cipher_tfm_ctx *op = crypto_tfm_ctx(tfm);
if (op->key) {
memzero_explicit(op->key, op->keylen);
kfree(op->key);
}
crypto_free_sync_skcipher(op->fallback_tfm);
pm_runtime_put_sync(op->ss->dev);
}
int sun8i_ss_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct sun8i_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm);
struct sun8i_ss_dev *ss = op->ss;
switch (keylen) {
case 128 / 8:
break;
case 192 / 8:
break;
case 256 / 8:
break;
default:
dev_dbg(ss->dev, "ERROR: Invalid keylen %u\n", keylen);
crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
if (op->key) {
memzero_explicit(op->key, op->keylen);
kfree(op->key);
}
op->keylen = keylen;
op->key = kmalloc(keylen, GFP_KERNEL | GFP_DMA);
if (!op->key)
return -ENOMEM;
memcpy(op->key, key, keylen);
crypto_sync_skcipher_clear_flags(op->fallback_tfm, CRYPTO_TFM_REQ_MASK);
crypto_sync_skcipher_set_flags(op->fallback_tfm, tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK);
return crypto_sync_skcipher_setkey(op->fallback_tfm, key, keylen);
}
int sun8i_ss_des3_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct sun8i_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm);
struct sun8i_ss_dev *ss = op->ss;
if (unlikely(keylen != 3 * DES_KEY_SIZE)) {
dev_dbg(ss->dev, "Invalid keylen %u\n", keylen);
crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
if (op->key) {
memzero_explicit(op->key, op->keylen);
kfree(op->key);
}
op->keylen = keylen;
op->key = kmalloc(keylen, GFP_KERNEL | GFP_DMA);
if (!op->key)
return -ENOMEM;
memcpy(op->key, key, keylen);
crypto_sync_skcipher_clear_flags(op->fallback_tfm, CRYPTO_TFM_REQ_MASK);
crypto_sync_skcipher_set_flags(op->fallback_tfm, tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK);
return crypto_sync_skcipher_setkey(op->fallback_tfm, key, keylen);
}
// SPDX-License-Identifier: GPL-2.0
/*
* sun8i-ss-core.c - hardware cryptographic offloader for
* Allwinner A80/A83T SoC
*
* Copyright (C) 2015-2019 Corentin Labbe <clabbe.montjoie@gmail.com>
*
* Core file which registers crypto algorithms supported by the SecuritySystem
*
* You could find a link for the datasheet in Documentation/arm/sunxi/README
*/
#include <linux/clk.h>
#include <linux/crypto.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
#include <crypto/internal/skcipher.h>
#include "sun8i-ss.h"
static const struct ss_variant ss_a80_variant = {
.alg_cipher = { SS_ALG_AES, SS_ALG_DES, SS_ALG_3DES,
},
.op_mode = { SS_OP_ECB, SS_OP_CBC,
},
.ss_clks = {
{ "bus", 0, 300 * 1000 * 1000 },
{ "mod", 0, 300 * 1000 * 1000 },
}
};
static const struct ss_variant ss_a83t_variant = {
.alg_cipher = { SS_ALG_AES, SS_ALG_DES, SS_ALG_3DES,
},
.op_mode = { SS_OP_ECB, SS_OP_CBC,
},
.ss_clks = {
{ "bus", 0, 300 * 1000 * 1000 },
{ "mod", 0, 300 * 1000 * 1000 },
}
};
/*
* sun8i_ss_get_engine_number() get the next channel slot
* This is a simple round-robin way of getting the next channel
*/
int sun8i_ss_get_engine_number(struct sun8i_ss_dev *ss)
{
return atomic_inc_return(&ss->flow) % MAXFLOW;
}
int sun8i_ss_run_task(struct sun8i_ss_dev *ss, struct sun8i_cipher_req_ctx *rctx,
const char *name)
{
int flow = rctx->flow;
u32 v = 1;
int i;
#ifdef CONFIG_CRYPTO_DEV_SUN8I_SS_DEBUG
ss->flows[flow].stat_req++;
#endif
/* choose between stream0/stream1 */
if (flow)
v |= SS_FLOW1;
else
v |= SS_FLOW0;
v |= rctx->op_mode;
v |= rctx->method;
if (rctx->op_dir)
v |= SS_DECRYPTION;
switch (rctx->keylen) {
case 128 / 8:
v |= SS_AES_128BITS << 7;
break;
case 192 / 8:
v |= SS_AES_192BITS << 7;
break;
case 256 / 8:
v |= SS_AES_256BITS << 7;
break;
}
for (i = 0; i < MAX_SG; i++) {
if (!rctx->t_dst[i].addr)
break;
mutex_lock(&ss->mlock);
writel(rctx->p_key, ss->base + SS_KEY_ADR_REG);
if (i == 0) {
if (rctx->p_iv)
writel(rctx->p_iv, ss->base + SS_IV_ADR_REG);
} else {
if (rctx->biv) {
if (rctx->op_dir == SS_ENCRYPTION)
writel(rctx->t_dst[i - 1].addr + rctx->t_dst[i - 1].len * 4 - rctx->ivlen, ss->base + SS_IV_ADR_REG);
else
writel(rctx->t_src[i - 1].addr + rctx->t_src[i - 1].len * 4 - rctx->ivlen, ss->base + SS_IV_ADR_REG);
}
}
dev_dbg(ss->dev,
"Processing SG %d on flow %d %s ctl=%x %d to %d method=%x opmode=%x opdir=%x srclen=%d\n",
i, flow, name, v,
rctx->t_src[i].len, rctx->t_dst[i].len,
rctx->method, rctx->op_mode,
rctx->op_dir, rctx->t_src[i].len);
writel(rctx->t_src[i].addr, ss->base + SS_SRC_ADR_REG);
writel(rctx->t_dst[i].addr, ss->base + SS_DST_ADR_REG);
writel(rctx->t_src[i].len, ss->base + SS_LEN_ADR_REG);
reinit_completion(&ss->flows[flow].complete);
ss->flows[flow].status = 0;
wmb();
writel(v, ss->base + SS_CTL_REG);
mutex_unlock(&ss->mlock);
wait_for_completion_interruptible_timeout(&ss->flows[flow].complete,
msecs_to_jiffies(2000));
if (ss->flows[flow].status == 0) {
dev_err(ss->dev, "DMA timeout for %s\n", name);
return -EFAULT;
}
}
return 0;
}
static irqreturn_t ss_irq_handler(int irq, void *data)
{
struct sun8i_ss_dev *ss = (struct sun8i_ss_dev *)data;
int flow = 0;
u32 p;
p = readl(ss->base + SS_INT_STA_REG);
for (flow = 0; flow < MAXFLOW; flow++) {
if (p & (BIT(flow))) {
writel(BIT(flow), ss->base + SS_INT_STA_REG);
ss->flows[flow].status = 1;
complete(&ss->flows[flow].complete);
}
}
return IRQ_HANDLED;
}
static struct sun8i_ss_alg_template ss_algs[] = {
{
.type = CRYPTO_ALG_TYPE_SKCIPHER,
.ss_algo_id = SS_ID_CIPHER_AES,
.ss_blockmode = SS_ID_OP_CBC,
.alg.skcipher = {
.base = {
.cra_name = "cbc(aes)",
.cra_driver_name = "cbc-aes-sun8i-ss",
.cra_priority = 400,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
.cra_ctxsize = sizeof(struct sun8i_cipher_tfm_ctx),
.cra_module = THIS_MODULE,
.cra_alignmask = 0xf,
.cra_init = sun8i_ss_cipher_init,
.cra_exit = sun8i_ss_cipher_exit,
},
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = sun8i_ss_aes_setkey,
.encrypt = sun8i_ss_skencrypt,
.decrypt = sun8i_ss_skdecrypt,
}
},
{
.type = CRYPTO_ALG_TYPE_SKCIPHER,
.ss_algo_id = SS_ID_CIPHER_AES,
.ss_blockmode = SS_ID_OP_ECB,
.alg.skcipher = {
.base = {
.cra_name = "ecb(aes)",
.cra_driver_name = "ecb-aes-sun8i-ss",
.cra_priority = 400,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
.cra_ctxsize = sizeof(struct sun8i_cipher_tfm_ctx),
.cra_module = THIS_MODULE,
.cra_alignmask = 0xf,
.cra_init = sun8i_ss_cipher_init,
.cra_exit = sun8i_ss_cipher_exit,
},
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = sun8i_ss_aes_setkey,
.encrypt = sun8i_ss_skencrypt,
.decrypt = sun8i_ss_skdecrypt,
}
},
{
.type = CRYPTO_ALG_TYPE_SKCIPHER,
.ss_algo_id = SS_ID_CIPHER_DES3,
.ss_blockmode = SS_ID_OP_CBC,
.alg.skcipher = {
.base = {
.cra_name = "cbc(des3_ede)",
.cra_driver_name = "cbc-des3-sun8i-ss",
.cra_priority = 400,
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
.cra_ctxsize = sizeof(struct sun8i_cipher_tfm_ctx),
.cra_module = THIS_MODULE,
.cra_alignmask = 0xf,
.cra_init = sun8i_ss_cipher_init,
.cra_exit = sun8i_ss_cipher_exit,
},
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.ivsize = DES3_EDE_BLOCK_SIZE,
.setkey = sun8i_ss_des3_setkey,
.encrypt = sun8i_ss_skencrypt,
.decrypt = sun8i_ss_skdecrypt,
}
},
{
.type = CRYPTO_ALG_TYPE_SKCIPHER,
.ss_algo_id = SS_ID_CIPHER_DES3,
.ss_blockmode = SS_ID_OP_ECB,
.alg.skcipher = {
.base = {
.cra_name = "ecb(des3_ede)",
.cra_driver_name = "ecb-des3-sun8i-ss",
.cra_priority = 400,
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
.cra_ctxsize = sizeof(struct sun8i_cipher_tfm_ctx),
.cra_module = THIS_MODULE,
.cra_alignmask = 0xf,
.cra_init = sun8i_ss_cipher_init,
.cra_exit = sun8i_ss_cipher_exit,
},
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.setkey = sun8i_ss_des3_setkey,
.encrypt = sun8i_ss_skencrypt,
.decrypt = sun8i_ss_skdecrypt,
}
},
};
#ifdef CONFIG_CRYPTO_DEV_SUN8I_SS_DEBUG
static int sun8i_ss_dbgfs_read(struct seq_file *seq, void *v)
{
struct sun8i_ss_dev *ss = seq->private;
int i;
for (i = 0; i < MAXFLOW; i++)
seq_printf(seq, "Channel %d: nreq %lu\n", i, ss->flows[i].stat_req);
for (i = 0; i < ARRAY_SIZE(ss_algs); i++) {
if (!ss_algs[i].ss)
continue;
switch (ss_algs[i].type) {
case CRYPTO_ALG_TYPE_SKCIPHER:
seq_printf(seq, "%s %s %lu %lu\n",
ss_algs[i].alg.skcipher.base.cra_driver_name,
ss_algs[i].alg.skcipher.base.cra_name,
ss_algs[i].stat_req, ss_algs[i].stat_fb);
break;
}
}
return 0;
}
static int sun8i_ss_dbgfs_open(struct inode *inode, struct file *file)
{
return single_open(file, sun8i_ss_dbgfs_read, inode->i_private);
}
static const struct file_operations sun8i_ss_debugfs_fops = {
.owner = THIS_MODULE,
.open = sun8i_ss_dbgfs_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
#endif
static void sun8i_ss_free_flows(struct sun8i_ss_dev *ss, int i)
{
while (i >= 0) {
crypto_engine_exit(ss->flows[i].engine);
i--;
}
}
/*
* Allocate the flow list structure
*/
static int allocate_flows(struct sun8i_ss_dev *ss)
{
int i, err;
ss->flows = devm_kcalloc(ss->dev, MAXFLOW, sizeof(struct sun8i_ss_flow),
GFP_KERNEL);
if (!ss->flows)
return -ENOMEM;
for (i = 0; i < MAXFLOW; i++) {
init_completion(&ss->flows[i].complete);
ss->flows[i].engine = crypto_engine_alloc_init(ss->dev, true);
if (!ss->flows[i].engine) {
dev_err(ss->dev, "Cannot allocate engine\n");
i--;
err = -ENOMEM;
goto error_engine;
}
err = crypto_engine_start(ss->flows[i].engine);
if (err) {
dev_err(ss->dev, "Cannot start engine\n");
goto error_engine;
}
}
return 0;
error_engine:
sun8i_ss_free_flows(ss, i);
return err;
}
/*
* Power management strategy: The device is suspended unless a TFM exists for
* one of the algorithms proposed by this driver.
*/
static int sun8i_ss_pm_suspend(struct device *dev)
{
struct sun8i_ss_dev *ss = dev_get_drvdata(dev);
int i;
reset_control_assert(ss->reset);
for (i = 0; i < SS_MAX_CLOCKS; i++)
clk_disable_unprepare(ss->ssclks[i]);
return 0;
}
static int sun8i_ss_pm_resume(struct device *dev)
{
struct sun8i_ss_dev *ss = dev_get_drvdata(dev);
int err, i;
for (i = 0; i < SS_MAX_CLOCKS; i++) {
if (!ss->variant->ss_clks[i].name)
continue;
err = clk_prepare_enable(ss->ssclks[i]);
if (err) {
dev_err(ss->dev, "Cannot prepare_enable %s\n",
ss->variant->ss_clks[i].name);
goto error;
}
}
err = reset_control_deassert(ss->reset);
if (err) {
dev_err(ss->dev, "Cannot deassert reset control\n");
goto error;
}
/* enable interrupts for all flows */
writel(BIT(0) | BIT(1), ss->base + SS_INT_CTL_REG);
return 0;
error:
sun8i_ss_pm_suspend(dev);
return err;
}
static const struct dev_pm_ops sun8i_ss_pm_ops = {
SET_RUNTIME_PM_OPS(sun8i_ss_pm_suspend, sun8i_ss_pm_resume, NULL)
};
static int sun8i_ss_pm_init(struct sun8i_ss_dev *ss)
{
int err;
pm_runtime_use_autosuspend(ss->dev);
pm_runtime_set_autosuspend_delay(ss->dev, 2000);
err = pm_runtime_set_suspended(ss->dev);
if (err)
return err;
pm_runtime_enable(ss->dev);
return err;
}
static void sun8i_ss_pm_exit(struct sun8i_ss_dev *ss)
{
pm_runtime_disable(ss->dev);
}
static int sun8i_ss_register_algs(struct sun8i_ss_dev *ss)
{
int ss_method, err, id, i;
for (i = 0; i < ARRAY_SIZE(ss_algs); i++) {
ss_algs[i].ss = ss;
switch (ss_algs[i].type) {
case CRYPTO_ALG_TYPE_SKCIPHER:
id = ss_algs[i].ss_algo_id;
ss_method = ss->variant->alg_cipher[id];
if (ss_method == SS_ID_NOTSUPP) {
dev_info(ss->dev,
"DEBUG: Algo of %s not supported\n",
ss_algs[i].alg.skcipher.base.cra_name);
ss_algs[i].ss = NULL;
break;
}
id = ss_algs[i].ss_blockmode;
ss_method = ss->variant->op_mode[id];
if (ss_method == SS_ID_NOTSUPP) {
dev_info(ss->dev, "DEBUG: Blockmode of %s not supported\n",
ss_algs[i].alg.skcipher.base.cra_name);
ss_algs[i].ss = NULL;
break;
}
dev_info(ss->dev, "DEBUG: Register %s\n",
ss_algs[i].alg.skcipher.base.cra_name);
err = crypto_register_skcipher(&ss_algs[i].alg.skcipher);
if (err) {
dev_err(ss->dev, "Fail to register %s\n",
ss_algs[i].alg.skcipher.base.cra_name);
ss_algs[i].ss = NULL;
return err;
}
break;
default:
ss_algs[i].ss = NULL;
dev_err(ss->dev, "ERROR: tryed to register an unknown algo\n");
}
}
return 0;
}
static void sun8i_ss_unregister_algs(struct sun8i_ss_dev *ss)
{
int i;
for (i = 0; i < ARRAY_SIZE(ss_algs); i++) {
if (!ss_algs[i].ss)
continue;
switch (ss_algs[i].type) {
case CRYPTO_ALG_TYPE_SKCIPHER:
dev_info(ss->dev, "Unregister %d %s\n", i,
ss_algs[i].alg.skcipher.base.cra_name);
crypto_unregister_skcipher(&ss_algs[i].alg.skcipher);
break;
}
}
}
static int sun8i_ss_get_clks(struct sun8i_ss_dev *ss)
{
unsigned long cr;
int err, i;
for (i = 0; i < SS_MAX_CLOCKS; i++) {
if (!ss->variant->ss_clks[i].name)
continue;
ss->ssclks[i] = devm_clk_get(ss->dev, ss->variant->ss_clks[i].name);
if (IS_ERR(ss->ssclks[i])) {
err = PTR_ERR(ss->ssclks[i]);
dev_err(ss->dev, "Cannot get %s SS clock err=%d\n",
ss->variant->ss_clks[i].name, err);
return err;
}
cr = clk_get_rate(ss->ssclks[i]);
if (!cr)
return -EINVAL;
if (ss->variant->ss_clks[i].freq > 0 &&
cr != ss->variant->ss_clks[i].freq) {
dev_info(ss->dev, "Set %s clock to %lu (%lu Mhz) from %lu (%lu Mhz)\n",
ss->variant->ss_clks[i].name,
ss->variant->ss_clks[i].freq,
ss->variant->ss_clks[i].freq / 1000000,
cr, cr / 1000000);
err = clk_set_rate(ss->ssclks[i], ss->variant->ss_clks[i].freq);
if (err)
dev_err(ss->dev, "Fail to set %s clk speed to %lu hz\n",
ss->variant->ss_clks[i].name,
ss->variant->ss_clks[i].freq);
}
if (ss->variant->ss_clks[i].max_freq > 0 &&
cr > ss->variant->ss_clks[i].max_freq)
dev_warn(ss->dev, "Frequency for %s (%lu hz) is higher than datasheet's recommandation (%lu hz)",
ss->variant->ss_clks[i].name, cr,
ss->variant->ss_clks[i].max_freq);
}
return 0;
}
static int sun8i_ss_probe(struct platform_device *pdev)
{
struct sun8i_ss_dev *ss;
int err, irq;
u32 v;
ss = devm_kzalloc(&pdev->dev, sizeof(*ss), GFP_KERNEL);
if (!ss)
return -ENOMEM;
ss->dev = &pdev->dev;
platform_set_drvdata(pdev, ss);
ss->variant = of_device_get_match_data(&pdev->dev);
if (!ss->variant) {
dev_err(&pdev->dev, "Missing Crypto Engine variant\n");
return -EINVAL;
}
ss->base = devm_platform_ioremap_resource(pdev, 0);;
if (IS_ERR(ss->base))
return PTR_ERR(ss->base);
err = sun8i_ss_get_clks(ss);
if (err)
return err;
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(ss->dev, "Cannot get SecuritySystem IRQ\n");
return irq;
}
ss->reset = devm_reset_control_get(&pdev->dev, NULL);
if (IS_ERR(ss->reset)) {
if (PTR_ERR(ss->reset) == -EPROBE_DEFER)
return PTR_ERR(ss->reset);
dev_err(&pdev->dev, "No reset control found\n");
return PTR_ERR(ss->reset);
}
mutex_init(&ss->mlock);
err = allocate_flows(ss);
if (err)
return err;
err = sun8i_ss_pm_init(ss);
if (err)
goto error_pm;
err = devm_request_irq(&pdev->dev, irq, ss_irq_handler, 0, "sun8i-ss", ss);
if (err) {
dev_err(ss->dev, "Cannot request SecuritySystem IRQ (err=%d)\n", err);
goto error_irq;
}
err = sun8i_ss_register_algs(ss);
if (err)
goto error_alg;
err = pm_runtime_get_sync(ss->dev);
if (err < 0)
goto error_alg;
v = readl(ss->base + SS_CTL_REG);
v >>= SS_DIE_ID_SHIFT;
v &= SS_DIE_ID_MASK;
dev_info(&pdev->dev, "Security System Die ID %x\n", v);
pm_runtime_put_sync(ss->dev);
#ifdef CONFIG_CRYPTO_DEV_SUN8I_SS_DEBUG
/* Ignore error of debugfs */
ss->dbgfs_dir = debugfs_create_dir("sun8i-ss", NULL);
ss->dbgfs_stats = debugfs_create_file("stats", 0444,
ss->dbgfs_dir, ss,
&sun8i_ss_debugfs_fops);
#endif
return 0;
error_alg:
sun8i_ss_unregister_algs(ss);
error_irq:
sun8i_ss_pm_exit(ss);
error_pm:
sun8i_ss_free_flows(ss, MAXFLOW);
return err;
}
static int sun8i_ss_remove(struct platform_device *pdev)
{
struct sun8i_ss_dev *ss = platform_get_drvdata(pdev);
sun8i_ss_unregister_algs(ss);
#ifdef CONFIG_CRYPTO_DEV_SUN8I_SS_DEBUG
debugfs_remove_recursive(ss->dbgfs_dir);
#endif
sun8i_ss_free_flows(ss, MAXFLOW);
sun8i_ss_pm_exit(ss);
return 0;
}
static const struct of_device_id sun8i_ss_crypto_of_match_table[] = {
{ .compatible = "allwinner,sun8i-a83t-crypto",
.data = &ss_a83t_variant },
{ .compatible = "allwinner,sun9i-a80-crypto",
.data = &ss_a80_variant },
{}
};
MODULE_DEVICE_TABLE(of, sun8i_ss_crypto_of_match_table);
static struct platform_driver sun8i_ss_driver = {
.probe = sun8i_ss_probe,
.remove = sun8i_ss_remove,
.driver = {
.name = "sun8i-ss",
.pm = &sun8i_ss_pm_ops,
.of_match_table = sun8i_ss_crypto_of_match_table,
},
};
module_platform_driver(sun8i_ss_driver);
MODULE_DESCRIPTION("Allwinner SecuritySystem cryptographic offloader");
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Corentin Labbe <clabbe.montjoie@gmail.com>");
/* SPDX-License-Identifier: GPL-2.0 */
/*
* sun8i-ss.h - hardware cryptographic offloader for
* Allwinner A80/A83T SoC
*
* Copyright (C) 2016-2019 Corentin LABBE <clabbe.montjoie@gmail.com>
*/
#include <crypto/aes.h>
#include <crypto/des.h>
#include <crypto/engine.h>
#include <crypto/skcipher.h>
#include <linux/atomic.h>
#include <linux/debugfs.h>
#include <linux/crypto.h>
#define SS_ENCRYPTION 0
#define SS_DECRYPTION BIT(6)
#define SS_ALG_AES 0
#define SS_ALG_DES (1 << 2)
#define SS_ALG_3DES (2 << 2)
#define SS_CTL_REG 0x00
#define SS_INT_CTL_REG 0x04
#define SS_INT_STA_REG 0x08
#define SS_KEY_ADR_REG 0x10
#define SS_IV_ADR_REG 0x18
#define SS_SRC_ADR_REG 0x20
#define SS_DST_ADR_REG 0x28
#define SS_LEN_ADR_REG 0x30
#define SS_ID_NOTSUPP 0xFF
#define SS_ID_CIPHER_AES 0
#define SS_ID_CIPHER_DES 1
#define SS_ID_CIPHER_DES3 2
#define SS_ID_CIPHER_MAX 3
#define SS_ID_OP_ECB 0
#define SS_ID_OP_CBC 1
#define SS_ID_OP_MAX 2
#define SS_AES_128BITS 0
#define SS_AES_192BITS 1
#define SS_AES_256BITS 2
#define SS_OP_ECB 0
#define SS_OP_CBC (1 << 13)
#define SS_FLOW0 BIT(30)
#define SS_FLOW1 BIT(31)
#define MAX_SG 8
#define MAXFLOW 2
#define SS_MAX_CLOCKS 2
#define SS_DIE_ID_SHIFT 20
#define SS_DIE_ID_MASK 0x07
/*
* struct ss_clock - Describe clocks used by sun8i-ss
* @name: Name of clock needed by this variant
* @freq: Frequency to set for each clock
* @max_freq: Maximum frequency for each clock
*/
struct ss_clock {
const char *name;
unsigned long freq;
unsigned long max_freq;
};
/*
* struct ss_variant - Describe SS capability for each variant hardware
* @alg_cipher: list of supported ciphers. for each SS_ID_ this will give the
* coresponding SS_ALG_XXX value
* @op_mode: list of supported block modes
* @ss_clks! list of clock needed by this variant
*/
struct ss_variant {
char alg_cipher[SS_ID_CIPHER_MAX];
u32 op_mode[SS_ID_OP_MAX];
struct ss_clock ss_clks[SS_MAX_CLOCKS];
};
struct sginfo {
u32 addr;
u32 len;
};
/*
* struct sun8i_ss_flow - Information used by each flow
* @engine: ptr to the crypto_engine for this flow
* @complete: completion for the current task on this flow
* @status: set to 1 by interrupt if task is done
* @stat_req: number of request done by this flow
*/
struct sun8i_ss_flow {
struct crypto_engine *engine;
struct completion complete;
int status;
#ifdef CONFIG_CRYPTO_DEV_SUN8I_SS_DEBUG
unsigned long stat_req;
#endif
};
/*
* struct sun8i_ss_dev - main container for all this driver information
* @base: base address of SS
* @ssclks: clocks used by SS
* @reset: pointer to reset controller
* @dev: the platform device
* @mlock: Control access to device registers
* @flows: array of all flow
* @flow: flow to use in next request
* @variant: pointer to variant specific data
* @dbgfs_dir: Debugfs dentry for statistic directory
* @dbgfs_stats: Debugfs dentry for statistic counters
*/
struct sun8i_ss_dev {
void __iomem *base;
struct clk *ssclks[SS_MAX_CLOCKS];
struct reset_control *reset;
struct device *dev;
struct mutex mlock;
struct sun8i_ss_flow *flows;
atomic_t flow;
const struct ss_variant *variant;
#ifdef CONFIG_CRYPTO_DEV_SUN8I_SS_DEBUG
struct dentry *dbgfs_dir;
struct dentry *dbgfs_stats;
#endif
};
/*
* struct sun8i_cipher_req_ctx - context for a skcipher request
* @t_src: list of mapped SGs with their size
* @t_dst: list of mapped SGs with their size
* @p_key: DMA address of the key
* @p_iv: DMA address of the IV
* @method: current algorithm for this request
* @op_mode: op_mode for this request
* @op_dir: direction (encrypt vs decrypt) for this request
* @flow: the flow to use for this request
* @ivlen: size of biv
* @keylen: keylen for this request
* @biv: buffer which contain the IV
*/
struct sun8i_cipher_req_ctx {
struct sginfo t_src[MAX_SG];
struct sginfo t_dst[MAX_SG];
u32 p_key;
u32 p_iv;
u32 method;
u32 op_mode;
u32 op_dir;
int flow;
unsigned int ivlen;
unsigned int keylen;
void *biv;
};
/*
* struct sun8i_cipher_tfm_ctx - context for a skcipher TFM
* @enginectx: crypto_engine used by this TFM
* @key: pointer to key data
* @keylen: len of the key
* @ss: pointer to the private data of driver handling this TFM
* @fallback_tfm: pointer to the fallback TFM
*/
struct sun8i_cipher_tfm_ctx {
struct crypto_engine_ctx enginectx;
u32 *key;
u32 keylen;
struct sun8i_ss_dev *ss;
struct crypto_sync_skcipher *fallback_tfm;
};
/*
* struct sun8i_ss_alg_template - crypto_alg template
* @type: the CRYPTO_ALG_TYPE for this template
* @ss_algo_id: the SS_ID for this template
* @ss_blockmode: the type of block operation SS_ID
* @ss: pointer to the sun8i_ss_dev structure associated with
* this template
* @alg: one of sub struct must be used
* @stat_req: number of request done on this template
* @stat_fb: total of all data len done on this template
*/
struct sun8i_ss_alg_template {
u32 type;
u32 ss_algo_id;
u32 ss_blockmode;
struct sun8i_ss_dev *ss;
union {
struct skcipher_alg skcipher;
} alg;
#ifdef CONFIG_CRYPTO_DEV_SUN8I_SS_DEBUG
unsigned long stat_req;
unsigned long stat_fb;
#endif
};
int sun8i_ss_enqueue(struct crypto_async_request *areq, u32 type);
int sun8i_ss_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen);
int sun8i_ss_des3_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen);
int sun8i_ss_cipher_init(struct crypto_tfm *tfm);
void sun8i_ss_cipher_exit(struct crypto_tfm *tfm);
int sun8i_ss_skdecrypt(struct skcipher_request *areq);
int sun8i_ss_skencrypt(struct skcipher_request *areq);
int sun8i_ss_get_engine_number(struct sun8i_ss_dev *ss);
int sun8i_ss_run_task(struct sun8i_ss_dev *ss, struct sun8i_cipher_req_ctx *rctx, const char *name);
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册